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Abstract—QoS requirements of current network control and
management applications require the ability to conduct precise
measurements of network elements, including switches, routers
and Virtual Network Functions (VNFs). State-of-the-art network
switches have a forwarding delay of 1µs and below and offer
high bandwidths of hundreds Gigabits per second. This imposes
high time accuracy and loss-detection requirements on measure-
ment equipment that are not met by existing, software-based
measurement tools. The use of specialized tools, meeting these
requirements, is restricted by limited flexibility and high cost.

In this work, we introduce P4STA, an open source frame-
work that combines the flexibility of software-based traffic load
generation with the accuracy of hardware packet timestamp-
ing. Our evaluation results, obtained using an off-the-shelf P4-
programmable switch, show that a time resolution up to 1ns
can be achieved on these programmable data plane platforms.
Moreover we show how to combine the traffic load of multiple
software-based load generators to achieve a measurement load of
up to 100Gbit/s per port. Experiments on further programmable
platforms, specifically on P4-SmartNICs and FPGAs, show sim-
ilar results. With this work, we make P4STA available for the
research community to advance high performance experiment
measurements at nanosecond accuracy.

Index Terms—Performance Measurement, Latency, Through-
put, P4, Timestamping, Nanosecond Precision

I. INTRODUCTION

Benchmarking network elements such as switches, routers
and softwarized virtual network functions is crucial for net-
work management and system optimization in data centers,
carrier networks and Internet exchange points. Benchmarking
tools need to cope with stricter requirements in terms of ever-
increasing workloads and lower latencies. For example, state-
of-the-art data centers process millions of requests per second
that are forwarded and load balanced by the network [20]
where high latency and packet loss significantly impact the
overall performance especially in the tail [6].

The total latency and packet loss of a data flow accumulate
over network elements on the flow path. In order to identify
the causes of performance bottlenecks, such as microbursts
originating from web or cache traffic [21], along a path in
a data center, it is necessary to investigate individual network
elements. Bear in mind that current high performance network
switches have a forwarding delay below 1µs [17] and a
minuscule packet loss probability. These very low latencies

and short microburst lengths that are in the order of a
few microseconds require benchmarking tools at nanosecond
precision not only to accurately capture them but also to
capture their timing difference, hence their correlation. Note
that such a precision is imperative when measuring Time-
Sensitive Networks (TSN) where the jitter is required to be
in the nanosecond range [16], as well as when measuring
the packet duplication and multicasting behavior. In addition
to the timing precision, exact packet counting is required at
very small packet loss probabilities as prescribed by high
reliability applications, e.g. URLLC in 5G. Both requirements,
nanosecond timing precision and exact packet counting, make
a software-based measurement impossible as their inaccuracy
is magnitudes higher than the phenomenon to be investigated.

To put the previous comparison into perspective, the
standard deviation for timestamps taken with tcpdump at
100Mbit/s load is around 100µs and the missed packet rate
is roughly 0.1% [2]. This problem becomes harder if this
high time accuracy and loss detection is required under high
loads, e.g. up to 100Gbit/s. Consequently, we note that loss
detection and precise time measurements require hardware
assistance. While some specialized, commercial solutions are
available, these tools are inflexible in operation for customized
scenarios and protocols; in addition to usually being very
expensive [1], [4].

Currently, hardware-supported time measurement is based
either on custom-built hardware for packet timestamping (e.g.
Spirent, IXIA or DAG-cards), or on powerful network inter-
face cards, which assist a software load generator by stamping
packets before sending and after receiving [4] [18]. However,
we note that there is a lack of flexible and programmable
measurement assistance for timestamping and loss detection
in laboratory environments. For example, the evaluation of the
newly proposed L4S capable routers in high speed networks of
100 Gbit/s requires the generation of TCP-Prague traffic [12]
in addition to normal traffic at this high network speed. This is
easiest accomplished by load aggregation over many common
Linux servers [12]. In the mean time, timestamping and loss
detection with very high precision is required to validate the
behavior of the investigated router. With P4STA we address
this dependency using off-the-shelf network hardware and
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software-based load generators. By disaggregating load gen-
eration, timestamping and measurement, we created an open
source framework which is neither limited to specific times-
tamping hardware nor to specific load generators to achieve
high accuracies of time measurements and loss detection.

The main contributions of this paper are:
• A concept and framework for disaggregating load gener-

ation, timestamping, results capturing and test manage-
ment with commodity hardware,

• A detailed analysis of the timestamping performance of a
state-of-the-art P4 hardware switch and comparable test
devices,

• P4STA, an open source framework for packet timestamp-
ing and load aggregation that is available on Github.

First, in Section II, we provide an overview of the related work
and introduce the relevant terminology, as well as, technical
challenges. We introduce the system design in Section III,
describing all main components of P4STA. Our evaluation
results are discussed in Section IV where we demonstrate
the correctness and accuracy of P4STA. Finally, we provide a
conclusion in Section V.

II. BACKGROUND AND RELATED WORK

In the following we give an overview of technologies and
terminologies, on which P4STA is based on before discussing
the related work.

A. Background

One enabler of P4STA is the open programming language
P4 [3], introduced in 2014, which permits the description
of the behavior of packet header processing pipelines in a
flexible way. This language allows the definition of custom
header formats, header field manipulation, forwarding as well
as dropping of packets. In a P4-packet processing chip, as
illustrated in the sequel in Figure 2, the ingress and egress
pipeline can be programmed with P4 and the behavior of
buffers and Media Access Controllers (MACs) can be affected
by setting particular flags in these P4-pipeline segments. For
P4STA this language enables the easy capturing of timestamps
and storing them in registers or in any parsed or added header
field. In addition, special forwarding rules which are only
typical for testbed setups, can be realized with ease. Many
massive experiment design and execution frameworks, e.g.
MACI [5], and testing frameworks as Robot focus on the
initialization, execution and result management of repeated
and parallel executed experiments. Conceptually, P4STA is
complementary to such frameworks as it may be integrated
either through its CLI or Python-RPC Interface.

B. Related Work

Software-based load generators such as MoonGen [4],
TREX, and WARP17 [10] enable testing networking equip-
ment. DPDK-based approaches support a timestamp granu-
larity of 100ns in software and up to 10ns in hardware
as discussed by Primorac et al. [18]. The authors state that
commercial test tools are too expensive and that Application

Specific Integrated Circuit (ASIC)-based hardware solutions
are too inflexible. We go around this issue in the P4STA ap-
proach by using P4-programmable ASICs, NPUs and FPGAs,
sold in higher volumes.
Micheel et al. [13] introduce Data Acquisition and Generation
(DAG) capturing network interface cards that currently support
bandwidths of up to 40Gbit/s, as well as, timestamping with
a 4ns granularity and time synchronization (IEEE-1588 and
GPS) for distributed measurements.

The question of how to conduct latency measurements is
discussed by Hernandez and Magana [7]. They conclude that
one-way delay measurements are preferable over two-way,
round-trip time (RTT) measurements and highlight the impact
of latency on the throughput. Papagiannaki et al. [15] propose
storing per-packet timestamps inside the sending and receiving
DAG cards. They do so by matching packets with hash
values of their IP headers. While this approach is seemingly
promising, it is limited at a time resolution of 1 second latency
for an OC-12 (622 Mbit/s) link as the hash table has only
1 million entries. Assuming a higher bandwidth or smaller
packet sizes shows that this approach is not suitable for many
scenarios, even with special hardware. Besides that, Morton
proposes in RFC 8172 [14] that virtual network functions
should also be considered as blackboxes, which is a main
principle of P4STA as well.

The Open Source Network Tester (OSNT) [1] addresses two
main use cases: (1) load generation and (2) monitoring with
high flexibility and low costs (< 2000$). Building on FPGAs
as hardware platform for load generation and timestamping,
the authors found out that the timestamping granularity de-
pends on the clock frequency; in their work it was 6.25ns. One
main bottleneck identified in this work is the PCIe path for
flow duplication to the host which is limited by the provided
PCIe speed of the used FPGA. On the one hand, we are
convinced that high bandwidth packet sending over PCIe on
FPGAs leads to many challenges and the use of standard NICs
makes life much easier for user-space load generators. But on
the other hand, FPGAs currently suffer from having only a
few ports and PCIe extend the number of available network
interfaces. In-band Network Telemetry proposed by Kim et
al. [11] is commercially available and constitutes one approach
to measure QoS metrics in operational networks based on
similar technologies. However, this approach, focusing on
performance monitoring in networks based on attributes like
queue sizes and link utilization, does not address the goals
of this work such as accurate timestamping and test load
aggregation.

III. SYSTEM MODEL AND DESIGN

With P4STA we propose an open source framework for
high performance packet timestamping and load aggregation.
In contrast to existing approaches, the P4STA model consists
of different functional components which disaggregate the load
generation and timestamping functionality with commodity
hardware. The modular approach enables the system to work
on a wide range of platforms.
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FIG. 1: Modular architecture of P4STA: n load generators,
one hardware load aggregation and timestamping device and
a Device Under Test in loopback.

As stated by the related work, hardware assistance is needed
for high-accuracy timestamping while software flexibility is
required for stateful network traffic generation. In this space,
P4STA is conceived to combine the advantages of software
and hardware on commodity packet processing platforms. For
example, TCP congestion control and checksum validation
is done with tested and powerful software, whereas time-
and performance-critical actions are executed in P4-based
hardware.

The overall system design is depicted in Figure 1. We
describe each of its components in the following:

• DUT: The Device Under Test can and should be con-
sidered as a blackbox [14]. It is connected by at least
one Ethernet cable to the Stamper component of P4STA.
Typical are two links which are used to send and receive
packets to/from the DUT but even more are possible as
well, e.g. for a 3-port load balancing DUT. Additional
physical or logical connections are not needed, however
a initial configuration of the DUT, depending on its
functionality, might be required.

• Load Generator(s): Typically, x86-servers are used as
load generators. However, any load generator creating
and sending Ethernet packets can be used as well.
These generators are divided into n groups (typically
n = 2) which is always equal to the number DUT-
ports. Typical link speeds between these load generators
and the Stamper component are 10Gbit/s and above.
Supported load generators can be started automatically
by the management server, as depicted in Figure 1,
over the management network (dotted lines) using ssh.
After test execution, load generator statistics and outputs
can be gathered automatically as well. Both, stateless
and bidirectional stateful traffic are supported by this
system design. A typical packet flow of a TCP session
between LoadGen 1.1 and LoadGen n.1 sends packets
from the first load generator to the Stamper, where the
first timestamp (t1) is taken. From there, the packets
are forwarded to the DUT, traversing an unknown DUT-

behavior. Coming back from the DUT, the packets enter
the Stamper again, where the second timestamp (t1) is
taken and the packets are forwarded to LoadGen n.1.

• Stamper: The central component of P4STA is the Stam-
per. First, it aggregates the flows of multiple load gen-
erators in order to create higher per-port loads. Second,
every packet to and from the DUT can be stamped with
the current time. Third, packets from the DUT can be
duplicated (MultiCast) to further increase the traffic load
and to send packet duplicates, including both timestamps,
to the external measurement host (Ext-Host). Last, a
subset of the statistical data can be measured and stored
inside the Stamper by using hardware counters/registers
(CNTR), e.g. average delays and packet loss.

• External Host: All packets that go through the DUT
and arrive at the Stamper for the second time can be
duplicated and forwarded to the external host, extracting
the timestamps for each received packet and creates a
time series (t1, t2)p∀p ∈ P . After each test execution,
this data is transmitted to the management server.

• Management Server: This server is the central con-
trolling unit, also called P4STA-Core. It provides a CLI
and web user interface for configuration, deployment, test
execution and result analysis. By having access to all load
generator servers, the Stamper and the external host, test
preparation and execution can be initialized through this
single node.

Note that these P4STA components, with except of the Stam-
per, can run on almost any server. For example, the external
host and Stamper can be realized using the same device
whereas the management server can also be realized on the
same device as well. Thus, a minimum setup consists of a
single server, which has a supported hardware for the Stamper
(e.g. a NetFPGA or SmartNIC), and the DUT. In the following
subsections we discuss some design decisions in detail.

A. Packet Switching in the Stamper Component

The load generators are separated in n groups which belong
to the DUT-ports dut 1 to dut n. All incoming packets from
a load generator are forwarded to the corresponding DUT-port.
However, forwarding packets, sent to and received from the
DUT at the Stamper, is not that easy and can be realized in
the following three ways which are all supported in P4STA:

• Layer 1 forwarding: This is the simplest and most robust
forwarding mode which supports only 1 server per group.
All forwarding decisions are made on the ingress ports
only (layer 1 information). This is useful if none of the
packet headers contains useful forwarding information.
However, load aggregation can not be supported.

• Layer 2 forwarding: As Ethernet is currently the only
supported link layer protocol, this mode behaves like a
normal L2-switch for packets arriving at the ports dut_1
and dut_2. Broadcast packets are forwarded to all load
generators in this group.

• Layer 3 forwarding: Uses IPv4/IPv6 destination ad-
dresses instead of L2 addresses. This is useful if a
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custom L2 protocol (or none) is in use containing no
or insufficient destination addresses.

Additional forwarding modes can be added by the user if
needed. However, with L1 forwarding almost every scenario
is testable with at least reasonable performance.

B. Storing Timestamps

P4STA uses 48 bit for storing each time information, which
is compatible with existing IEEE 1588 MAC-timestamping
units. There are two general options to store per-packet time
information:

• Inside the packet: Every timestamp is stored somewhere
inside the packet, either in the payload or in a packet
header. This approach is used by P4STA.

• In the Stamper memory: The packet is not modified and
the timestamp is stored in the memory of the Stamper.

The first approach, storing timestamps inside the packets,
has the disadvantage that either the packet size increases or ex-
isting bytes must be reused at a known position in the packet.
Note, checksum updates might be required. In contrast, storing
the timestamp outside the packet leaves the packet intact at
the cost of memory consumption. If we assume a line rate of
100Gbit/s, 64 byte long packets and a constant DUT latency
of 10ms we find that about 2 ·106 packets are always in flight.
Assuming no storage overhead, a 48 bit timestamp for each
packet requires 12MB of memory for the in flight packets.
As most eligible hardware, like programmable switches and
FPGAs, have only a highly limited internal memory space
(e.g. SRAM) of a few MBs due to technological reasons,
storing timestamps in the hardware chip of the Stamper device
is not advisable. Focusing only on devices (DUT) with a
guaranteed latency below a few µs and storing the timestamps
in the Stamper device might be possible but still leads to the
following challenges:

1) timestamps of lost packets must be deleted after a certain
time as packet loss may occur,

2) for each packet two timestamps must be sent out imme-
diately after taking the second timestamp (t2), as there
is only enough memory for the in flight packets,

3) packets must be mapped to the timestamp taken at the
first Stamper pass based on distinct hashes or sequence
numbers and

4) internal memory structures must allow an address-based
memory access for read and write operations concur-
rently.

Reducing P4STA to devices with external, low-speed memory
(e.g. DRAM) is not an option, because this memory option
is often not available and would significantly reduce the
number of compatible devices. However, the bandwidth of
these external memory technologies might be sufficient as only
timestamps must be stored and not all packets. Thus, we finally
decide to store both timestamps, taken before and after the
DUT, inside the packet.

While IPv4 and IPv6 options often lead to packet drops in
routers due to security policies, a storage location in a layer 4

protocol or higher is more appropriate for most use cases.
Timestamps can be either stored in a packet header option
field or inside the payload, which is both supported by P4STA.
We choose an additional TCP options header as primary
timestamp position, added by the Stamper to the packet.
However, UDP packet timestamping is supported as well. As
UDP does not support optional header fields, the timestamps
will be stored in the beginning of the payload, presuming
that the payload is not meaningful used. Furthermore, parsing
these timestamps is fault-prone as no header field indicates a
subsequent timestamp.

For every unstamped packet the Stamper allocates space for
both timestamps (before and after DUT) as TCP option field in
the header stack. Thereby, it guarantees constant packet sizes
when the second timestamp is written after a packet traversed
the DUT. UDP does not support option fields but a timestamp
storage in the beginning of the UDP payload is possible as
well, but only if the payload is not used by the load generator
in a meaningful way. Figure 3 depicts the integration of two
48 bit timestamps as a TCP option. We use the option type
0x0f (alternate checksum), as it is obsolete and should be
ignored by all hosts and middleboxes. In addition, updates of
the IP/TCP/UDP checksums are required. As the old checksum
of the header is known and a one’s complement checksum is
used, the new checksum is simply computed based on the old
checksum and the applied packet modifications in the Stamper.

One detail to account for is the packet size: When adding
the additional header, e.g., 20 bytes for the TCP option,
the increased size might exceed the maximum transmission
unit (MTU) of DUT or load generators. In case of UDP
payload timestamping, the packet size stays constant.

C. High Precision Timestamping

The next important question to answer concerns where the
timestamp should be retrieved in the pipeline. In general, the
first timestamp, i.e., prior to the DUT, should be taken as
late as possible while the second timestamp, after returning
from the DUT, should be taken as early as possible. Figure 2
depicts the P414 reference pipeline with additional ingress and
egress ports and Media Access Controllers (MAC). Although
this pipeline model is slightly specific, its principles are
very similar to non P4-pipeline ASICs such as FPGAs and
SmartNICs.

Depending on the capabilities of the hardware, an ingress
timestamp might be provided either by the ingress MAC, the
parser or the programmable match-action pipeline, where in
general the first one should be used. For example, the P4-
NetFPGA project uses shared resources in the packet parser.
Following from this, micro congestion may occur between
MAC and packet parser which can lead to measurement inac-
curacy in the range of multiple ns. This MAC-timestamp can
be provided by the programmable pipeline as a metadata value.
Thus, it can be stored later somewhere in the programmable
pipeline.

Taking the first timestamp and counting packets must be
done after dequeueing the packets from the buffer of the
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Stamper device as this queueing can create a random added
delay which would falsify the measurement results. The de-
queue timestamp of a packet, provided by the packet buffer as
metadata, can be added by the egress pipeline to the packet
header. However, if we assume a variable processing time
of the deparser, e.g. due to a shared parser for all ports,
this still might lead to inaccuracy as well. Note that many
target hardware, like Barefoot Tofino, NetFPGA Sume and
Netronome SmartNICs, support inserting timestamps at the
transmit MAC in accordance with the IEEE 1588 standard,
which can be used for P4STA as well. Instead of writing
the timestamp directly into the packet, an additional metadata
value, called Tx-MAC, is provided to the MAC together with
the packet. This metadata value contains the positions inside
the packet where the timestamp should be inserted, as well as,
where the TCP/UDP checksum is located in order to update
it. Even if low level FPGA-designs are used without a P4
high level synthesis, the process of inserting an IEEE 1588
timestamp in the transmit MAC is very similar. This standard,
motivated with high accuracy time synchronization, leads to
many devices on the market with hardware timestamping
capabilities.

Besides programmable data planes, common NICs should
be considered: On the one hand, the use of P4 programmable
SmartNICs allows a similar timestamp insertion to P4 pro-
grammable switches. On the other hand, current chipsets of
NICs, e.g. Intel X520 or X710, do not support hardware
timestamping with default kernel modules and thus the use
of DPDK is required [8], [9]. Therefore, many load generator
rely on DPDK, e.g. MoonGen [4], which creates a dependency
between the load generator and the timestamping functionality.
Furthermore, we note that for precise timestamping results, a
dedicated queue on the NIC is required for the packets to
be timestamped. This in turn leads to the fact that not all

packets can be stamped and not all metrics can be measured
in hardware. Besides that, load aggregation can only be per-
formed with limitations, e.g. shard PCIe bus, by different load
generation threads on the same machine. In summary, state-
of-the-art, DPDK-based load generation and timestamping can
be integrated within P4STA but, due to flexibility limitations,
they are currently only supported as load generator. Currently,
more flexible Stamper devices like (P4-)SmartNICs, FPGAs
or programmable P4 switches are more suitable.

D. Stateful Stamper Operations

While storing the timestamp data inside the packet header,
the following information can and will be captured and stored
inside the Stamper:

• Timestamped Packet Count: The total number of times-
tamped packets and bytes before and after the DUT which
enables, e.g., the calculation of packet loss.

• Send and Received Packet Count: The number of
packets and bytes sent and received per physical port.
This indicates the load distribution between multiple
load generators. In contrast to timestamped packets, this
may also contain noisy traffic like neighbor discovery
messages.

• Total DUT Delay: The sum of all measured delays
for the DUT in ns. Based on that and the number of
stamped packets, the average delay can be derived. Note
that the interpretation of these values requires a thorough
understanding of the measurement setup (e.g. busy period
length, delay correlations, . . . )

• Minimum/Maximum Delay: As in some cases not all
packets can be forwarded to the external host, a mini-
mum/maximum delay can be recorded in hardware.

The counters for the total number of stamped packets and
bytes as well as the total DUT delay are implemented as 64bit
counters in order to avoid overflows whereas a 48 bit register
is sufficient for the minimum and maximum delay. All these
values are read out after test execution automatically by the
P4STA management server and are available for analysis.

E. Load Generation, Aggregation and Shaping

In general, any load generator can be used with P4STA as
long as the timestamp format (header or payload) matches
the Stamper implementation. Nevertheless, we assume that
mainly software based load generators are used as they are
inexpensive and flexible. Currently we integrate iPerf3 and
MoonGen as load generators which are Linux kernel socket
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and DPDK based, respectively. Note that MoonGen also
supports hardware timestamping within limitations of the used
NIC, as discussed before. The integration of a generic load
generator control interface in P4STA allows to simply transmit
traffic and collect result at all load generators sources and
sinks. A custom load generator can either be integrated into
P4STA or started from outside.

Flows from multiple load generators can be aggregated,
limited by the number of ports of the Stamper device. This is
based on Layer 2/3 forwarding as described in Section III-A.
Hence, using, e.g., 10 servers each with 10Gbit/s link speed,
load can be aggregated on a single 100Gbit/s link. This is
useful as current software load generators are not able to
generate such a high traffic load at small packet sizes.

If the Stamper device has packet queues, as assumed in the
generic P414 pipeline, these can be used to shape the data
rate towards the DUT. Shaping is useful if the DUT should be
tested with specific traffic patterns, e.g., under a load sweep,
or if the maximum supported bandwidth by the DUT is limited
to a value lower than the link bandwidth, e.g. due to added
headers in the network function. This shaping can guarantee
a constant load towards the DUT as long as the arriving rate
of the load generators is higher than the shaped rate and the
rate control at the load generators is packet loss agnostic.

F. Data Capturing

Timestamps are captured at the external host through seek-
ing the predefined signature, e.g. the introduced TCP option
0x0f. Note that further information such as packet reordering
can easily be detected here as well. Additionally, tracing
and storing all packets, including the timestamps, for later
evaluation is possible. In P4STA two implementations of
the external host are provided: (1) one Python based raw
socket implementation which is able to capture packets up
to a bandwidth of 1Gbit/s. While this implementation is
supported by any target with a network interface port, it can
not capture packets at line rate of the DUT, which may be up to
100Gbit/s. Hence, the Stamper can be configured to duplicate
only every nth packet towards the external host. In contrast, (2)
a high performance DPDK version of the external host can be
used instead, however this requires a DPDK compatible NIC.

G. Testbed Setup, Results and Reproducibility

Installing P4STA depends on the used target for the Stam-
per, load generators and external host. We provide installation
scripts which configure all servers for kernel based external
host implementation and iPerf3 as load generator.

The workflow of P4STA is divided into four steps: (1)
Testbed configuration, (2) configuration deployment to all
involved devices, (3) test execution and (4) analysis of the
results. In the first step, all ports, load generators and link
bandwidths are defined by the user interface or configuration
file. In the second step, this configuration is converted consid-
ering the selected Stamper target and is deployed to it. Third,
either an integrated load generator can be started in the UI or
any other load can be initiated manually and all results are

ExtHost Stamper LoadGen UI CLI

P4STA-Core Analytics

FIG. 4: Modular Software Components of P4STA. Modules
can be replaced depending on the hardware to be used.

retrieved and permanently stored by the management server.
Last, with P4STA Analytics we provide a tool-chain to evalu-
ate the measured results and provide graphs, measured values
and computed statistics. These graphs, including raw data,
computed statistics and all required scripts for customization
and recreations of the plots can be downloaded as zip archive
file. Additionally, the testbed setup can be reconstructed with
this download later, e.g. for reproducing research results.

H. Extendibility and Setup

The P4STA management component is implemented as a
Python-based web server and core logic, which is divided into
several parts of different functionality as depicted in Figure
4. While for the UI and CLI only one implementation is
provided, the implementation and interfaces for the external
host, Stamper and load generators can be extended for other
targets or extended functionality. For example, the installation
of the target Barefoot Tofino can be achieved by copying
the corresponding sub-repository into the StamperTargets
folder. The process of integrating further external host or load
generator implementations is similar. As the source code for
all modules is available, custom features can be integrated
easily. For example, stamping of packets with a special header
structure can be integrated by only updating the data plane de-
scription of the Stamper. For illustration, we tested a tunneling
network function where the timestamp was written into the
TCP options header inside the encapsulation payload of the
packet without changes except for the P4 data plane program.

IV. EVALUATION

In this chapter we pursue two main goals: (1) show the
correctness and accuracy of P4STA with a P4 programmable
switch and (2) provide exemplary results for different network
devices that illustrate the abilities of this framework.

A. Packet Timestamping with Nanosecond Precision

In this section, we will measure the accuracy of P4STA
timestamping and packet loss detection with a programmable
P4 switch based on the Barefoot Tofino ASIC (1st generation).
To show the accuracy of the measurement system we conduct
measurements of the latency of fiber-optic cables of known
lengths. The used Stamper implementation is optimized for
this target and uses IEEE-1588 timestamping capabilities of
the ingress and egress MACs as illustrated in Figure 2.

We performed multiple tests with MTP OM4 fibers, con-
nected to two ports of the timestamper. We assume that the
latency l depends on a constant offset tc, caused by MAC,
transceivers and other (unknown) functional units, and the
length of the fiber lenf , i.e., l = tc+ lenf ·cfiber where cfiber is
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actual length avg. latency std. dev. packet loss
1m 1,06 m 107,830 ns 1,46 ns 0
2m 2,08 m 112,850 ns 1,61 ns 0
3m 3,18 m 118,336 ns 1,52 ns 0
10m 10,12 m 152,883 ns 1,61 ns 0

TABLE I: Measured latency and standard deviation for MTP
OM4 multimode fibers with different lengths.

the speed of light in the optical fiber. The measurements were
conducted as follows: First, we measure the latency for MTP
OM4 multimode fibers with varying lengths in the range of 1m
to 10m. Each test was conducted for 10s, resulting in about 8
million measured packets of 1514 bytes for each run. All test
runs are performed with the same transceivers and 10 Gbit/s
load in 40GBase-SR4 link mode and MAC-timestamping is
enabled. The resulting values are listed in Table I.

Using a linear regression, we estimate the values tc =
102.52ns and cfiber = 4.97ns/m. The average absolute
residuum is 0.018ns and the maximum error is 0.03ns (1m
Fiber) with a minuscule confidence interval for multiple test
runs. Note that the speed of light in an optical cable depends
on the refractive index of the fiber and can be assumed to
be between 67% and 69% of the speed of light in vacuum
leading to a range of 4.83ns/m − 4.98ns/m [18], [19],
which is consistent with our measurements. The value tc
can be computed once and subtracted from further measured
results in order to obtain the DUT latency. While the average
latency has a sub-nanosecond accuracy, the standard deviation
is 1.6ns and the latency range is 12ns (delayavg±6ns). Thus,
the delay of a single packet can only be measured with an
error of ±6ns but average delays have a (sub)nanosecond
precision. The packet loss, computed by the counter values
of all sent and received packets, is zero for all tests. As
one measurement series consists of many measurements, we
consider these results reproducible with high time accuracy
and detectable packet loss as small as 1 per 1 million packets.

Recall that results of timestamping packets in the ingress
and egress pipeline instead of in the MACs can be slightly
worse. However, we observed results which are, with respect
to a higher latency offset, very similar in time accuracy. For
FPGAs a timestamp granularity of 1ns is not possible as
their clock frequency is in the range of 100MHz to 350MHz
and a single clock cycle takes 10ns− 3ns. First experiments
with FPGAs have shown an ingress timestamp accuracy within
20ns without using MAC timestamp capabilities.

B. Network Elements Evaluation

In this section we show and compare results of P4STA
consisting of a P4 programmable Barefoot Tofino switch and
Moongen as load generator. We use constant bit rate input
without bursts and packet sizes of 1020 bytes (including
timestamp) for measuring the following network elements with
a link speed of 10Gbit/s:

• NetFPGA SUME bridging two ports with a store-and-
forward FIFO realized with internal memory.
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FIG. 5: Average latency of NetFPGA-Sume, Linux-server,
DPDK forwarding (Intel 82599) and loss of Linux. The loss of
all other DUT is always zero, except of the NetFPGA-Sume
with 10 Gbit/s load (0.003% loss). Packet size: 1020 byte.

• DPDK packet forwarding based on the DPDK ba-
sicfwd.c sample application on a Dell PowerEdge R740
(2x Intel E5-2670v3, 128 GB) with an Intel 82599 NIC.

• Linux kernel packet forwarding based on L3 addresses
and static configured routing tables.

We focus on selected measurement results for space reasons
and to highlight the benefits of P4STA as illustrated in Table
II for some selected metrics.

Figure 5 visualizes the average latency of the selected DUT
dependent on the load. While the DPDK and the FPGA yield
a constant latency, the forwarding delay of the Linux kernel
starts increasing from a load of 2Gbit/s jumping from 40µs to
1.45ms in average. DPDK and NetFPGA only deviate from
the constant latency when the load is identical to the link
speed, i.e., in the step going from 9.9Gbit/s to 10Gbit/s.

Figure 6a depicts the packet latency of the investigated
DUT as a function of the packet input time. We observe that
the latency of the NetFPGA shows a nonstationary behavior
where it increases up to 7.4µs when increasing the load from
9.9Gbit/s to 10Gbit/s. This latency corresponds to the size
of the FIFO packet queue which connects the two ports,
and shows a typical tail drop queue behavior which explains
the packet loss in this setting. The figure shows that for an
input rate of 9.9Gbit/s the packets can be forwarded without
queueing. The figure also shows that the DPDK application
shows a similar behavior as the FPGA for 10Gbit/s. However,
in DPDK the amount of buffered packets may increase during
the test period up to a delay of 733µs as the memory size is
not limited. Consequently, no packets are lost in this setting.

Figure 6b shows the tail latency for the DUT given different
loads. Note the extreme jumps for the Linux kernel packet
forwarding and ceiling due to memory allocation. Similarly,
Figure 6c depicts how the Linux kernel packet forwarding
behaves for 1020 byte packets under a load of 5Gbit/s, that
can be regarded the edge case between functional correctness
and overload, and the overload case of 7Gbit/s. The depicted
result conforms with the values of the average absolute IPDV
and standard deviation reported in Table II. Plots like this,
measured and created with P4STA, make the evaluation and
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NetFPGA(9.9G) NetFPGA(10G) DPDK(9.9G) DPDK(10G) Linux(2G) Linux(5G) Linux(7G)
transmitted packets 11887798 12005428 11886608 12007588 2405708 6012055 8412592
lost packets 0 340 0 0 0 503711 1979288
loss 0% 0.003% 0% 0% 0% 8.38% 23.5%
average delay 1.49µs 6.89µs 7.23µs 338.89µs 37, 42µs 522µs 1450µs
min delay 1.43µs 1.45µs 6.10µs 6.05µs 8.87µs 7.47µs 37.18µs
max delay 1.57µs 7.43µs 23.36µs 733.22µs 256.78µs 3220µs 3210µs
std. delay deviation 28.9ns 664ns 427.9ns 220630ns 17230ns 917400ns 98620ns

TABLE II: Measured results with P4STA and a P4 programmable switch for different devices under test and bandwidths. Rate
Limiting was performed inside the Stamper. Average delay and loss was measured with registers inside the Stamper device,
all other values are captured by the external host for every 100. packet. Packet size: 1020 byte. No offset-correction.
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FIG. 6: (A) Latency time series of individual packets at NetFPGA-Sume for 9.9Gbit/s and 10Gbit/s load and a Linux server
with DPDK packet forwarding under 9.9Gbit/s load. Packet size: 1020 byte. (B) Tail latency percentile of the investigated
DUT. (C) Latency time series of individual packets at a server with DPDK capable NIC. Showing results for Linux kernel
with 5Gbit/s and 7Gbit/s load and DPDK with 10Gbit/s for comparison. Packet size: 1020 byte.

understanding of network elements, e.g. FPGA based network
functions with a latency of hundreds of ns, much easier.

C. Resource Utilization and Limitations

The current design of the Stamper for P4 targets has a
dependency graph of 6 pipeline stages for the ingress and 1 for
the egress pipeline. In case of Barefoot Tofino, this number of
stages is needed as well. However, the resources of each stage
have only a low utilization and further logic can be combined
with P4STA on a Tofino architecture. Furthermore, if some
functionality, e.g. L2/3 forwarding, is not needed, it can be
removed from the code to reduce the resource utilization
further. We made the observation that rate limiting and packet
duplication are non-trivial for FPGAs and programmable
switches as this influences the timing of the total pipeline and
can affect the accuracy of timestamps in some cases.

D. Costs and Required Hardware

The P4STA framework can be used with multiple hardware
timestamping devices that are not particularly built for this
primary use case and can be used by research institutes for
many other applications as well. In addition to the reusability
of the hardware, the costs connected to P4STA are lower as
such common devices are sold in higher volumes. In contrast a
commercial load generator may cost above 100k$ if high loads
and special protocols are required. Programmable SmartNICs
are available for a few hundreds of dollars, high-performance
network-FPGAs are available below 1500$ and even pro-
grammable white-box switches are available for 7500$1.

1Web-price for Aurora 710, July 2019

V. CONCLUSION

In this paper we introduced a concept and a corresponding
open source framework, denoted P4STA, for disaggregated
load generation and packet timestamping at line rate with
nanosecond accuracy. P4STA is designed for off-the-shelf
programmable network devices, such as FPGAs, SmartNICs
and P4 switches. We demonstrated its high accuracy in mea-
suring latency in the range of nanoseconds in addition to
highly accurate loss detection and load aggregation capabil-
ities. Furthermore, we proposed an approach for in-packet
timestamp-storage, shown on the example of TCP options.
We note that in addition to being flexible, the costs of a P4
programmable SmartNIC or switch are much lower than for
a special purpose built load generator. The P4STA framework
is available as open source2. Currently supported targets are
the reference software switch bmv2, Barefoot Tofino and
Netronome SmartNICs. A reference implementation for the
NetFPGA will follow soon. In future work we plan to support
further hardware targets, as well as, the investigation of
distributed measurements with IEEE1588 time synchronized
Stamper devices and advanced evaluation tools.
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[5] A. Frömmgen, D. Stohr, B. Koldehofe, and A. Rizk, “Don’t repeat
yourself: seamless execution and analysis of extensive network ex-
periments,” in Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’18.
ACM, 2018, pp. 20–26.

[6] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17, 2017, pp. 225–238.

[7] A. Hernandez and E. Magana, “One-way delay measurement and char-
acterization,” in International Conference on Networking and Services
(ICNS’07). IEEE, 2007.

[8] Intel. (2014) Data plane development kit. [Online]. Available:
https://www.dpdk.org/

[9] ——. (2018) Does intel xl710-qda2 support hw timestamping. [Online].
Available: https://forums.intel.com/s/question/0D50P000049xNZ1SAM/
does-intel-xl710qda2-support-hw-timestamping?language=de

[10] Juniper. (2016) Warp17: The stateful traffic generator. [Online].
Available: https://github.com/Juniper/warp17

[11] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker.
(2015) In-band network telemetry via programmable dataplanes. [On-
line]. Available: https://github.com/p4lang/papers/tree/master/int-demo

[12] J. Luo, J. Jin, and F. Shan, “Standardization of low-latency tcp with
explicit congestion notification: A survey,” IEEE Internet Computing,
vol. 21, no. 1, pp. 48–55, 2017.

[13] J. Micheel, S. Donnelly, and I. Graham, “Precision timestamping of
network packets,” in Proceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement, ser. IMW ’01. ACM, 2001, pp. 273–277.

[14] A. Morton, “Considerations for benchmarking virtual network functions
and their infrastructure,” Internet Engineering Task Force, Request for
Comments 8172, 2017.

[15] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Mea-
surement and analysis of single-hop delay on an ip backbone network,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, pp.
908–921, 2003.

[16] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
source opc ua pubsub over tsn for realtime industrial communication,”
in IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1, Sep. 2018, pp. 1087–1090.

[17] I. Plexxi. (2016) Latency in ethernet switches. [On-
line]. Available: http://www.plexxi.com/wp-content/uploads/2016/01/
Latency-in-Ethernet-Switches.pdf

[18] M. Primorac, E. Bugnion, and K. Argyraki, “How to measure the
killer microsecond,” in Proceedings of the Workshop on Kernel-Bypass
Networks, ser. KBNets ’17. ACM, 2017, pp. 37–42.

[19] Quora. (2015) What is precisely the speed of light
in fiber optics? [Online]. Available: https://www.quora.com/
What-is-precisely-the-speed-of-light-in-fiber-optics

[20] A. F. Voellm. (2013) Compute engine load balancing
hits 1 million requests per second! [Online].
Available: https://cloudplatform.googleblog.com/2013/11/
compute-engine-load-balancing-hits-1-million-requests-per-second.
html

[21] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the Internet
Measurement Conference, 2017, pp. 78–85.


