
The Third International Multi-Conference on Computing in the Global Information Technology

[KSKS08] Sebastian Kaune, Jan Stohenburg, Aleksandra Kovacevic, Ralf Steinmetz; Understanding
BitTorrent's Suitability in Various Applications and Environments. In: The Third
International Multi-Conference on Computing in the Global Information Technology (ComP2P
'08), IEEE Computer Society Press, July 2008. Seite 256-262

Understanding BitTorrent's Suitability in Various Applications and
Environments

Sebastian Kaune, Jan Stolzenburg, Aleksandra KovaCeviC, Ralf Steinmetz
Multimedia Communications Lab, TU Darmstadt

{kaune, stolzenburg, sandra, steinmetz) @kom.tu-darmstadt.de

Ruben Cuevas
Universidad Carlos I11 de Madrid

{rcuevas) (2it.uc3m.e~

Abstract

Peer-to-peer systems have recently emerged as an attrac-
tive alternative to client/server approaches, especially in
the area of content distribution. By efficiently leveraging
the available upload bandwidth of the end users, BitTorrent
becomes a de facto standard for scalable content distribu-
tion. Inspired by its success, many companies try to shifi
the major upload burden frorn their rented source servers to
end users by using this protocol, since many hosting sites
charge thern based on the used egress capacity.

In this Paper; we perfonn an in-depth study of the over-
all perfomnce of BitTorrent in its entirety, in order to get
a broader understanding of its suitability for different appli-
cations domains. We analyze its perfomnce from a bifocal
perspective, namely that of the content providers und that of
the end users. In this context, we find that the decrease of
the source server's upload capacity has a highly negative
impact on the overall protocol perfomnce. In addition, it
is shown that giving incentives to peers to stay online after
cornpleting downloading does not pay ofl

1 Introduction

Peer-to-peer (p2p) systems have recently emerged as an
attractive alternative to client/server approaches, especially
in the area of content distribution. By leveraging the avail-
able upload bandwidth of the end users, or so called peers,
these systems overcome the limitations of centralized ap-
proaches in that they have the potential to scale to large net-
work sizes.

to interested parties. Accordingly, the inventor of BitTor-
rent, Bram Cohen, recently extended the web portal of the
original client, also known as mainline client, to a managed
platform for commercial-grade content delivery [2].

However, despite of the fact that BitTorrent is proven
to be highly effective in distributing content over the Inter-
net, users often have to wait long time periods when down-
loading a very popular file. In addition to this, many host-
ing sites charge content providers based on the use of the
egress capacity. Thus, many companies are highly inter-
ested in shifting the major upload burden from their rented
source servers to the end users; to this end, the peer-to-peer
paradigrn, and especially BitTorrent, seems to be the most
appropriate technology. For instance, Blizzard Entertain-
ment spreads patches, videos and demos of the successful
online game "World of Warcraft" to end systems by using a
specific BitTorrent client named Blizzard downloader [3].

Inspired by these demands, there are still Open questions
that need to be answered in order to get a broader under-
standing of the suitability of BitTorrent in different appli-
cation domains. Within this paper we give answers to the
following questions which we feel are, amongst others, of
major importance in the context of content distribution:

What are the effects on BitTorrent's overall perfor-
mance if the source server has only a very limited
upload capacity? Can content providers reduce their
costs in terms of saved upload bandwidth or will end-
users suffer from highly increased download times?

Does it pay off for content providers to encourage
users to stay online for a predefined time interval after
they have finished their downloads? If so, are there any
correlations to the download times of the end users?

Especially in the domain of file sharing, BitTor- Does BitTorrent work well solely with large files?
rent [9] becomes a de facto standard for scalable content- How appropriate is BitTorrent for small files, for ex-
distribution justified by its efficiency in spreading content ample, patches, small software updates or MP3's?

978-0-7695-3275-2108 $25.00 O 2008 IEEE
D01 10. I I09/1CCGI.2008.24

IEEE
'0 Computer

society

How much of the uploaded data is served by the source
server? In general, do peers have to provide the Same
amount of uploaded data? 1s it evenly balanced among
all peers or does a small group has to carry the major
burden?

Are there any correlations between the download times
and the point in time at which a peer joins a torrent?
Furthermore, does the network joining Lime influence
a peer's carried upload capacity?

To answer these questions, we present a detailed study
of the overall performance of BitTorrent in two different
use case scenarios. The first scenario describes a so called
Jash crowd. That is, this scenario reflects a common real
world situation in which a very popular file is made avail-
able by a content provider and a large number of peers try
to download it within a short time frame.

The second download scenario, named constant stream,
reflects the situation in which one specific file is stored on
a web server together with many other files over several
weeks or months. This scenario Covers the case in which
rented web servers are combined with software archives or
mirror servers offering reams of different video files, soft-
Ware updates, and patches. However, due to the large num-
ber of files, the upload bandwidth of the content server is
very limited, meaning that only a limited upload capacity is
available per file.

The main contribution of this paper is the analysis of the
overall performance of BitTorrent in its entirety. That is,
we investigate its behavior and effectiveness under various
influential factors by using the proposed use case scenar-
ios as fundamentals of our research. Previous work, e.g.
[l I] [I01 [8], focuses, instead, on specific mechanisms and
algorithms applied in BitTorrent. In particular, they solely
explore the impact of those algorithms on the performance
of BitTorrent by comparing them to existing or newly intro-
duced alternatives.

The rest of this paper is structured as follows. Section 2
provides a brief background on BitTorrent. In Section 3 and
4, we present our evaluation methodology and the results
of our analyses. Discussion and remarks are given in Sec-
tion 5. Related work is in Section 6, while in Section 7 we
conclude the paper.

from a meta info file, also called a torrent, which is usually
stored on a web server. Each torrent also contains the TP
address and port of a central component called the tracker.
This component periodically receives statistics from nodes
currently involved in the download process and keeps track
of when peers join and leave the system.

To join the system, each peer downloads a torrent file
and then contacts the corresponding tracker to obtain a list
containing a random subset of the peers (typically 50 nodes)
currently in the system. The new node then tries to establish
a connection to its so called neighbors in order to be incor-
porated into the current download process. Nodes replicate
data among each others at a block-level by using swarming
techniques. For further details about the applied algorithms
of BitTorrent, we refer the interested reader to [2].

3 Evaluation Methodology

Inspired by the increasing demand of BitTorrent in com-
mercial applications, it is essential to analyze its perfor-
mance in different use case scenarios in more detail. in
particular, a distinction has to be made between commer-
cially driven closed source clients such as the Blizzard
Downloader, and Open source variants like Azureus [I], and
pTorrent [7].

Analyzing the latter Comes with many influential factors
which can highly falsify the results of measurement, espe-
cially in environments consisting of diverse descendants of
the mainline client. For instance, reason for this might be
user-manipulated software clients, different Parameter se-
tups or even specific choking algorithms applied by each
compatible client. Hence, conclusions about the real per-
formance of BitTorrent might be misleading in these het-
erogeneous environments.

Instead, a closed source variant allows the creation of a
homogenous environment that is, on the one hand, much
more controllable for developers, and that has, on the other
hand, a positive side effect that the underlying algorithms of
BitTorrent are harder to manipulate. Not surprisingly, the
mainline client of BitTorrent is closed source as of a few
months ago.

3.1 Simulation Model
2 Overview of BitTorrent

BitTorrent is a P2P file distribution protocol whose goal
is to enahle fast and efficient content replication over the In-
temet. It leverages the upload bandwidth of the download-
ing peers and thereby increases the global system capacity
with increasing network size. In particular, the basic idea
is to split a file into pieces of typically 256 KB, and then to
further divided each piece into blocks of 16 KB. All infor-
mation necessary to download a specific file can be obtained

For this reason, we assume for our experiments, a ho-
mogeneous environment consisting entirely of peers using
the mainline client 5.2.0. By inspecting the source code
of this client, we have accurately implemented it in Peer-
factSim 151, a large scale simulator for p2p Systems. The
protocol Settings, e.g. the maximum number of outgoing
connections, the maximum Peer Set size and the number of
peers initially retumed by the tracker, are adjusted to the
default values to be as close to reality as possible.

BitTorrent uses TCP Streams to transfer data between
two peers; therefore, in order to reflect the underlying net-
work topology, several gigabytes of internet measurement
data derived from the CAIDA [4] and PingER (61 project are
integrated into the core simulation framework of Peerfact-
Sim. This allows us to realistically model concurrent and
competing TCP streams, and thus to capture the real world
behavior of BitTorrent. In addition to this, the integration of
the measurement data also allows us to realistically model
round-trip-times of overlay messages, packet loss probabil-
ities, and inter packet delay variations (also known as jitter)
for inter, and intra country, and regional connections from
all over the world.

The use of simulation as a means of evaluation enables to
study particular situations reflecting different use case sce-
narios that would be hard to realize in real word experi-
ments.

3.2 Metrics

The performance criterion refers to the download time
of users. In particular, we analyze in detail:

Mean download time. This metric specifies the aver-
age time it takes for each User to download a demanded
file. We compare the mean download time to a simu-
lated optirnum in which users are able to fully utilize
their download within the entire download process.

Absolute download$nish time. This metric specifies
the absolute point in time at which each peer's down-
load finishes relatively to the start of the scenario at
time point Zero. E.g. if a peer joins the network at time
point 30 and his download takes 60 minutes, the abso-
lute download finish time would be 90. Ry using this
metric, we are able to quantify correlations between
the download times and the network joining times.

The costs criterion stands for the effort measured in up-
loaded data that both the users and the source server rented
by content providers have to make in order to spread a file.
We differentiate between the following two metrics:

Load on the source server. This is defined as the
amount of uploaded data (e.g. in GB's) provided by
the source server. In our presentation, we divide this
load by the aggregated upload data of the whole net-
work. Thus, we are able quantify the fraction of data
sent out by the source server.

Load on the peers. This is defined by total amount
of data uploaded by the users relative to the aggregate
upload data of the whole network. This metric directly
depends on the previous one. That is, the more load
carried by the source server, the less data uploaded by
the peers, and vice versa. However, it is also important

to consider the load-balancing in terms of provided up-
load data between the users, e.g., do a few peers cany
the whole load or is it evenly distributed between all
participants.

3.3 Scenarios

The following two use case scenarios were evaluated in
this work. In each scenario, we used the default settings as
stated below, although we do vary these settings to reflect
different situations of interest as noted later On.

I) Scenario "Flash Crowd": In this scenario, a popu-
lar software update is made available by a content provider.
The basic setups has the following settings:

File size: 100 MB
Number of source servers: 1 (which stays on through-
out the duration of the experiment)

Source server upload bandwidth: 1000 Kbps

Peer download/upload bandwidth: 1000J128 Kbps

JoinAeave process: A flash crowd where nodes join the
network in 40-second intervals. Each peer leaves the
network as soon as he finishes the download

Duration of Experiment: 1 hour of joining, and then
until all peers have finished their downloads

Number of peers that join the System: 100

Additionally to this basic setup, we varied specific pa-
rameters within the different simulation runs according to
Tab. 1.

Table 1. Variations used in our simulations for
the "Flash Crowd" scenario.

2) Scenario "Constant Stream": This scenario reflects a
particular situation in which a demanded file is stored on a
web server among several other files, thus constituting a file
archive. For this reason, only a limited upload bandwidth
of the source server can be reserved by the content provider
for this particular file. The basic setup of this scenario has
the following settings:

File size: 40 MB
Number of source servers: 1 (which stays on through-
out the duration of the experiment)

Source server upload bandwidth: 256 Kbps

Peer download/upload bandwidth: 1000J128 Kbps

-
..*--.-.-. - . . .

. . . . 180
C 2 0 0 . ..
g I s s .

5 . . 198 .
197

196
D 140 2 1 9 5 .

130
P q 194

0 10 20 30 40 M M) 0 1 0 2 0 3 0 4 0 5 0 6 0 0 10 20 30 40 M M)

N m loiring Ums (n n-inutei) Nst.rak)anin9 Urne (In mlr*nss) Nelwwk ldning Ime (in n-inutes)

(a) The amount of uploaded data of each peer de- (b) The download time of each peer dependent on (C) The point in time at which each peers down-
pendent on the network joining time (bosic serup). the network joining time (basic serup). load finishes dependent on the network joining

time (variation "altruistic clients").

Figure 1. Results of the "Flash Crowd" scenario

Joinlleave process: Peers are joining the network in 2-
minute intervals. Each peer leaves the network as soon
as he finishes the download

Duration of Experiment: 24 hours of joining, and then
until all peers have finished their downloads

Number of peers that join the System: 2880

Also in this scenario, we varied specific Parameters ac-
cording to Tab. 2.

Table 2. Variations used in our simulations for
the "Constant Stream" scenario.

4 Results

4.1 Scenario "Flash Crowd"

The outcomes of this scenario using the basic setup are
as follows. The source server has to carry 15% of the total
amount of uploaded data in the whole network (cf. Tab. 3).
The remaining 85% is carried by the leeching peers. Fig.
l(a) depicts the average amount of bytes uploaded by each
peer, depending on the time he joined the network. It can
be Seen that there are large fluctuations in the amount of up-
loaded data of each peer. Some peers only provide 40 MB
whereas a small group of peers provide 120 MB. Keeping in
mind that all peers have the Same bandwidth capacities, we
conclude that the load balancing of BitTorrent in this sce-
nario is far from the optimum in which the load would be
evenly distributed between all clients. Moreover, the graph
also suggests that there is no dependency between the join-
ing time of a peer and the amount of upload he provides.

The analysis of the download times show that the later
a peer joins the network, the less time he needs to receive
the complete file (cf. Fig. l(b)). This observation seems to
be logical since the more time proceeds the more potential
seeding peers are available in the network. Peers joining
later into the network benefit from this situation. The sim-
ulations showed further that the absolute download finish
times of all leeching peers are close together'. That is, ir-
respective of the network joining times, all peers finished
their downloads nearly at the Same point in time.

In conclusion, the content server has to carry only a sev-
enth part (15%) of the load he would have to carry with-
out BitTorrent! On the other hand, as Seen in Tab. 3, the
mean download time in this scenario was 169 minutes. If
we compare this time, with the theoretical optimum of 13
minutes which is achieved if each peer is able to fully uti-
lize its download bandwidth, the leeching peers have to wait
on average thirteen times longer compared to this optimal
download time.

1) Variation "Slow Seed". The bisection of the source
Server's bandwidth capacity leads to surprising results. On
the one hand, the aggregated upload data that the source
server has to carry is further reduced to 12% (cf. Tab.
3). However, the download times are now twice as long
as compared to the basic setup of this scenario. Our sim-
ulations showed that in the worst case, some peers need 6
hours to finish their download. Furthermore, the simula-
tions revealed thal the fluctuations of the amount of upload
data each peer has to carry on average ranges now between
25MB and 200 MB. Thus, the ratio of the upper and lower
bounds grows from 1 :3 to 1 :8 when compared to the basic
setup before. We conclude that the upload capacity of the
source server has a high impact on the overail performance
of BitTorrent in a flash crowd scenario.

2) Variation "Allruistic Clients". In this setup, the leech-
ing peers stay onlinc 30 rninutes after they have finished
their downloads. One might suggest that this circumstance

' ~ h e correspondent graphs are not shown due to space constraints.

Nehvork joining Ihm (In mlnutes) Nelwwk Ming i i i (in mimites) Nehvak joining lirne (in houra)

(a) The amount of uploaded data of each peer de- (b) The download time of each peer dependent on (C) The amount of uploaded data of each peer de-
pendent on the network joining time in the flash the network joining time in the flash crowd sce- pendent on the network joining time in the con-
crowd scenario (variaiion "smnlljle"). nario (variarion ".~~ruillJile"). stant stream Scenario (basic serup).

Figure 2. Results of the "Flash Crowd" and "Constant Stream" scenario.

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 4 8 12 16 20 24

180
4o :

would boost the download times. However, the measured
results show the opposite (cf. Tab. 3). Neither the mean
download times nor the amount of aggregated upload car-
ried by the source server changes significantly cornpared to
the basic setup. In addition to this, Fig. l(c) confirms again
the observation already mentioned in the basic setup, that
nearly all peers finish at the same point in time. Our sirnula-
tions showed further that the download times only decreases
for peers joining at the end of the simulated scenario, and
that this was not even a significant decrease, cornpared to
the basic setup. Thus, if we compare the effort to encourage
Users to stay online 30 minutes after their downloads have
completed, we have to conclude that it does not pay off in a
flash crowd.

1 6 0 .

m tu,

70

- W -

: 50..
E
, 5 4 0 .
a

35

Table 3. Overview about results ("Flash
Crowd" scenario).

. . . .
-

*..
. .

3) Variation "Small File". In this scenario, the leeching
peers tned to download a relatively small file, amounting
to 20 MB. The results show interesting new insights into
the performance of BitTorrent. First, the load on the source
server in terms of provided upload data was as twice as that
of the basic setup. That is, the seed has to carry about 29%
of the aggregated amount of uploaded data (see Tab. 3).
Furthermore, peers joining at the beginning of the simu-
lated flash crowd scenario have to bear a high upload burden
sometimes reaching over 30 MB (cf. Fig. 2(a)). In contrast,
peers joining at the end only have to carry around 5-10 MB.

............ ...

Hence, it can be obsewed that the load-balancing of BitTor-
rent in terms of provided upload data is bad for small files.
Second, Fig. 2(b) shows very high fluctuations in the down-
load times of the leeching peers, ranging from 5 minutes to
1 hour. Remarkably, there is a clear trend that peers joining
at the end of the simulated scenario never need more than
20 minutes to finish the download. In contrast, some peers,
joining at the beginning of the scenario, needed an average
of 45 minutes to receive the file.

In Summary, we conclude that BitTorrent performs sub-
optimally for small file sizes. Peers joining at the end of the
flash crowd scenario have, on the one hand, only to cany a
very limited amount of the total upload burden, but benefit
from very low download times; whereas peers joining at the
beginning suffer from both high download times and the
major upload burden.

. +...

3 0 25
20 ..:.... . -. n ,. 8 *

4.2 Scenario " Constant Stream"

? 20
0

10
4 10

5 .

The results of the constant stream scenario in its basic
configuration, derived from a measurement period of 24
hours, showed that the source server has to cany only a very
lirnited load, namely 8% of the total amount of upload data
(cf. Tab. 4). Fig. 2(c) depicts the amount of uploaded data
of each peer. It can be seen that many of the leeching peers
contribute around 10-30 MB, while a small fraction has to
bear the brunt of the load, around 150MB. Compared to the
previous scenario (flash crowd), we observe a rnuch better
load-balancing in terms of send data by each peer.

Also, the analysis of the download times offers good re-
sults. The optimum time by fully utilizing the download
bandwidth would be 5 minutes, which no peer has achieved.
However, the simulation showed that some of them man-
aged to finish their downloads in 10 minutes, whereas the
measured average was 29 minutes (see Tab. 4). Further,
Fig. 3(a) shows a linear increase of the absolute download
finish times of the leeching peers. This indicates that the
majority need the same time to download the file; only some
of them suffer from a higher deviation of the average.

. Zr ..- ..
e*:. . . .

. . . -:. -.'t ...
0 0

8 10 12 14 16 18 20
N e M joinlng time (in hwrs)

(a) The point in time at which each peers down- (b) The point in time at which each peers down- (C) The amount of uploaded data of each peer de-
load finishes dependent on ihe network joining load finishes dependent on the network j o i ~ n g pendent on the network joining time (variarion
time (basic serup). time (variarion "altruistic clients "). "altruisric clients").

Figure 3. Results of the "Constant Strearn" scenario.

We conclude that BitTorrent is very appropriate in this ing users to stay online for a short time period (five min-
use case scenario. First, it efficiently leverages the available utes in this variation) after they have finished the download.
upload bandwidth of the leeching peers, and at the same Moreover, the average completion time to download the file
time it provides download times being partly close to the does not significantly decrease (cf. Tab. 4).
theoretical optimum of 5 minutes. Only a very small frac- 2) Variation "Slow Seed". Also, the experiments in
tion suffers from the unbalanced load distribution in terms the constant stream scenario have shown that the bisection
of provided upload bandwidth. of the source server's upload bandwidth capacity to only

128 kbps leads to a negative impact on the overall perfor-
mance of BitTorrent. The results reflect the same picture
as aiready obsewed in the flash crowd scenario (cf. Tab. 3
and Tab. 4), except in that the load on the source server de-
creases. Our simulations also showed that download com-
pletion times dramatically fluctuate. The results ranged
from 10 minutes to 5 hours. Hence, these outcomes act
again as an indicator that the bandwidth of the source server
has to be well-proportioned in order to achieve an optimal
overall performance in BitTorrent.

Table 4. Overview about results ("Constant
Stream" scenario). 5 Discussion and Remarks

I) Variation "Altruistic Clients". In this variation the
peers stayed online five minutes after finishing their down-
loads. At first glance, this slight variation should not
strongly affect the outcomes of the rneasurements; however,
Fig. 3(b) and Fig. 3(c) give some interesting insights.

From Fig. 3(b), it can be seen that, in terms of absolute
download finish times, the equilibnum is heavily disturbed
compared to Fig. 3(a). In particular, the peers cluster to-
gether in srnall groups and finish their downloads at nearly
the same point in time. Peers which are online in the be-
ginning of each cluster formation have to wait the longest
to finish their downloads and have additionally to cany the
highest amount of upload data (cf. Fig. 3(c)). On the other
hand, peers that are joining at the end of a cluster forma-
tion finish their downloads in a nearly optimal time (5-10
minutes) and provide only very little upload data.

In conclusion, content providers can only reduce 2% of
the costs in terms of provided upload data when encourag-

The simulations showed that the decrease of the source
server's upload bandwidth had a highly negative impact on
the overall performance of BitTorrent. More precisely, in
both use case scenarios, the bisection of the content Servers
upload bandwidth lead to rnean download completion times
that were double the norm, and to a significant imbalance in
the amount of upload data provided for each peer. In con-
trast to this, the load on the source server was only reduced
by 3% when compared to the basic setup variation of both
scenarios. We conclude that the reduction of the source's
upload bandwidth is only somewhat recommendable as it
can highly impair the overall performance of BitTorrent. A
further interesting insight is that the intention to encourage
users to stay online after they have finished their download,
does not significantly boost the mean download completion
times, even though the load on the source server is only
reduced by 3-4% compared to the basic setup of both use
case scenarios. If we compare the effort to encourage users

to stay online for a further amount of time, we have to con-
clude that it does not pay off for either the content providers,
in terms of save costs, or the leeching peers, in terms of de-
creased download times.

To answer the question whether BitTorrent is also ap-
propriate for srnall sized files, we studied the flash crowd
scenano with two different file size vanations (1 00 MB I20
MB). In the variation with 20 MB, the simulations showed
an increase from 15% to 29% in the load on the source
server compared to the variation with 100 MB. The results
further showed a high imbalance in terms of provided up-
load data of each peer. In particular, the peers joining at the
end of the flash crowd scenario have only to cany a very
limited amount of the total upload burden, but get to benefit
from very low download times. For this reason, BitTorrent
performs sub-optimally for small file sizes.

In general, it can be said that the load on the source
server in all variations of both use case scenarios never ex-
ceeded the 15% threshold, except the small size variation
as mentioned before. The analyses of the constant stream
scenario, in which the load never exceeded 8%, particu-
larly emphasized that BitTorrent is a very nice alternative
to clientlserver approaches. Further, in all scenarios, we ob-
served an imbalance in the amount of upload data each peer
had to cany. A few peers always had the bad luck to cany
a major burden of it, irrespective of their joining time.

6 Related Work

Recently, a lot of research has been done in order to
analyze the performance of BitTorrent. Most of it is only
focusing on specific algonthms of the protocol; however,
there are no conclusions about the overall effectiveness of
the protocol.

In [l l] [12], the main functionality of both the rarest-
first and choking algonthm are under study. The authors
find that the rarest-first algonthm is crucial for a high di-
versity of the pieces. They also point out that the choke
algorithm in its last version is fair, fosters reciprocation and
is robust against free-nders. In [8], different mechanisms to
improve the performance of BitTorrent are proposed. They
observe that BitTorrent's rate based tit-for-tat mechanism
does not prevent unfairness in User populations having het-
erogeneous bandwidth. That is, end Users with higher up-
load link capacities cluster together and are therefore able
to finish downloads in less time. In [IO], the authors find
that BitTorrent lacks faimess. More precisely, they claim
that neither contributing nodes are properly rewarded nor
free-nders are effectively punished. [I21 argues that the
optimistic unchoke mechanism strengthens the robustness
by giving leeching peers the possibility to find seeders with
high upload capacities.

7 Conclusion

In this paper, we provided a depth-in study of the overall
performance of BitTorrent in two representative use case
scenarios, and thereby we were able to answer the questions
posed in the beginning of this work.

We find that BitTorrent efficiently leverages the available
upload bandwidth of the participating peers, and therefore
significantly reduces the load of the source server. However,
the measured mean download times were often far away
from the theoretical optimum since peers were not able to
fully utilize their available download bandwidth due to the
widely-spread asymmetric DSL connections.

Valuable future work should further investigaie our find-
ing that giving inccntives to peers to stay online after finish-
ing downloading does not pay off in BitTorrent.

Acknowledgement

The collaboration on this paper has been funded through
the European Network of Excellence CONTENT, FP6-
0384239

References

[l] Azureus. http://azureus.sourceforge.net.
[2] BitTorrent. http://www.bittorrent.com.
[3] Blizzard Downloader. http://www.worldofwarcraft.com~info/faq/

blizzarddownloader.htm1.
[4] Cooperative Association for Intemet Data Anal-

ysis (CAIDA). Macroscopic Topology Project.
http://www.caida.org/analysis-/topology/scopic/.

[5] PeerfactSim.KOM: A simulator for large-scale peer-to-peer
networks. http://www.peerfactsim.com/.

[6] The PingER Project. http://www-
iepm.slac.stanford.edu/pinger/.

[7] uTorrent. http://www.utorrent.com.
[8] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. An-

alyzing and improving a bittorrent networks performance
mechanisms. In INFOCOM. IEEE, 2006.

[9] B. Cohen. Incentives build robusrness in bittorrent. In Pm-
ceedings of the Workshop on Economics of Peer-to-Peer Sys-
tems, Berkeley, CA, USA, 2003.

[I01 S. Jun and M. Ahamad. lncentives in bittorrent induce free
riding. In PZPECON '05: Pmceedings of fhe 2005 ACM
SIGCOMM workshop on Economics of peer-to-peer sys-
tems, pages 1 16-121, New York, NY, USA, 2005. ACM.

[l 11 Legout, Urvoy-Keller, and Michiardi. Rarest first and choke
algonthms are enough. In ACM SIGCOMM Interner Mea-
surement Conference, 2006.

1121 A. Legout, G. Urvoy-Keller, and P. Michiardi. Understand-
ing bittorreni: An experimental perspective. Technical re-
port, July 08 2005.

