Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

Implementation and Evaluation of the KOM RSVP Engine

Martin Karsten, Jens Schmitt Ralf Steinmetz
Darmstadt University of Technology, Darmstadt, Germany Darmstadt University of Technology, Darmstadt, Germany
http://www.kom.e-technik.tu-darmstadt.de/ GMD IPSI, Darmstadt, Germany

http://wwwp.ipsi.gmd.de
Email: {Martin.Karsten,Jens.Schmitt,Ralf. Steinmetz}@KOM.tu-darmstadt.de

Abstract - In this paper, we describe implementation rity and reliability and furthermore, to improve the state
aspects and performance results of an innovative and pub- refreshing mechanism, which is already identified as currently
licly available RSVP implementation. Much debate exists limiting overall performance. On the other hand, little atten-
about the applicability of RSVP as a signalling protocol in tion has been paid to the implementation of the core protocol
the Internet, particularly for a large number of unicast engine itself. As a result, RSVP is often assessed as having a
flows. While there has been a significant amount of work poor performance, however, those judgments are rarely based
published on the theoretical concepts of RSVP signalling on solid data. Therefore, the internal design structure and
and conjectures about its presumed shortcomings, rather algorithms, as well as the overall protocol performance, have
little attention has been paid to the implementation details been subject to careful investigation in this work. In this eval-
of the core protocol engine. With our work, in spite of uation, we focus on large numbers of unicast flows. One rea-
being still far from a final judgement, we try to shed light son is given by the prohibitively extensive infrastructure
on this issue by presenting certain design details of a new necessary to carry out large-scale experiments with multicast
implementation and a study about its performance. One communication. The second and more important reason is that
particular result is given by the observation that a rela- the suitability of RSVP to handle large multicast groups, for
tively cheap router based on PC hardware can sustain the which it was intentionally designed, is commonly undisputed.

signalling for more than 50,000 unicast flows. Rather, the handling of a large number of unicast flows is con-
sidered as the dominant scalability problem of RSVP.
. INTRODUCTION The paper is structured as follows. In Section Il, we review

Much debate exists about the applicability and performand¥evious work related to RSVP performance and its evalua-
capabilities of RSVP [1] as a QoS signalling protocol for thdion. Secthn Il presents our RSVP |mplementat|(_)n, particu-
Internet. However, the discussion of this issue usually lack@rly certain central design concepts. In Section IV, we
solid performance figures from real experiments using a redfscribe the general setup for the performance experiments,
implementation. Furthermore, the issues of signalling comvhile the results are reported in Section V. In Section VI, we
plexity (control plane) in general and packet forwarding COm_present profiling information to f_urther back up cer_tain find-
plexity (data plane) of per-flow and per-hop reserved flows al89s from the performance experiments. The paper is wrapped
often confused. The goals of this paper are twofold. First, wdP by presenting a summary, conclusion and outlook to future
aim to provide additional insight about RSVP’s performanc¥ork in Section VIL.
capabilities by presenting central design characteristics of our
protocol implementation. Second, we present detailed experi-
mental data describing load measurements we have carri&d
out using this implementation. These data cannot be used to
draw a single major conclusion, but represent detailed hard Little work has been reported to assess the performance of
facts for others to extrapolate them into their respective impl&ommercial RSVP implementations. A notable exception is
mentation context. We do however observe that, despite @ven by [2], in which a technical framework for carrying out
undebatable complexity, RSVP can perform better than oft&tch tests is presented. From the performance figures for a
assumed. Additionally, we conclude that there is potential foeommercial midrange router” given in [2], it can be deduced
further optimization, both through protocol extensions as wefhat RSVP flow setup scales significantly worse than linear.
as internal optimization of the protocol engine. These results indicate that the particular version of the RSVP

In the past, various proposals have been published, whigfiplementation under consideration may have been in a rather
describe useful extensions to the basic version of RSVP (searly development stage and cannot serve as a basis for judge-
Section I1.B for details). The goals of these extensions af@ents about its signalling performance.
mainly to complete RSVP’s specification in the areas of secu- Another investigation of RSVP’s performance is reported in
[3]. However, this work mainly considers an existing imple-
mentation, thdSI rsvpd[4], which we do not regard as the

 This work is partially funded by the European Commission optimal choice for performance measurements. This is further
under the 5th Framework Programme IST, Project M3l (11429).

Il. RELATED WORK

RSVP Performance

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

documented in the rest of this paper. Some performance num- [ll. KOM RSVP ENGINE
bers are listed in [3] for another commercial RSVP implemen-
tation. However, this implementation does not sustain mox
than 600 sessions and thus, can be assessed similarly to

implementation studied in [2]. and coding quality and contains bugs. Therefore, we do not

RS?}Ber put;)l:shed_twr?rk dtesgrlbgs :)het ;rr]rlpleme?tz:\jtlon fOf 3onsider it as the optimal choice for experimenting with proto-
~capaple Switch-router in [5], but the reported per OMM:o| extensions and performance assessments and we devel-
ance figures are targeted towards the fundamental capabil

£ th ¢ o deli S obiecti i the first bl 8¥ed a new protocol engine from scratch, terrd€M RSVP
of In€ system fo defver QO. ovjectives n the Nirst p ace(-:‘ngine or KOM rsvpdfor short. The main design goals of this
rather than performance of signalling at a large scale.

: . ’ implementation are clarity of code, flexibility and extensibil-
In [6], interesting performance figures are reported fo.

RSVP . il router platf fty. Additionally, we aim at providing an experimental soft-
message processing on a commerclal router piatiorfy,, ., platform for other researchers. Such an implementation
However, these performance figures are somewhat Wlth(c)g

For an overview and explanation of RSVP, see [14]. Unfor-
nately, the only publicly available router implementation of
P, the ISI rsvpd, turns out to be of questionably design

text. b i i tioned und hich load a regular workstation using a common UNIX operating
context, because 1t IS not mentioned under which load con [Fg/stem can only serve as a proof of concept and research plat-

rm for future investigations. Therefore, although we have
ed to keep the design prepared for efficient operation, we do
St believe that it is currently necessary to implement for out-
ost efficiency at the coding level. We have employed an
ect-oriented design and the implementation is done in

tions they were measured. Additionally, because these nu
bers are not the central focus of the work in [6], not many..
details about the experiments are given. Consequently, th
numbers can serve as a basic indication about RSVP
processing overhead, but they cannot be considered as
final judgement in the discussion about RSVP. C++. Itis publicly available at

In summary, although earlier work and published reSUItﬁttp://WWW.kom.e-technik.tu-darmstadt.de/rsvp/
have already indicated some of the conclusions shown in this
paper, we present the first thorough study of RSVP’s perfornx. General Design
ance. This study is based on a publicly available implementa-

tion and thus, verifiable by others. A detailed description about the design of this implementa-

tion can be found in [15]. State information of RSVP is stored
B. RSVP Extensions as objects containing relationships to ojther objects. The con-
, tents of a PATH message are stored in a Path State Block
A number of protocol improvements have been suggesiglsg) whereas contents of a RESV message are stored in a
to increase the performance characteristics of RSVP opeigggeryation State BlodiRSB). As an example for relation-
tions. An initial proposal to speed up the service establishmegf.”pS each PSB has a relationship t®ravious Hop State
time in the presence Qf occ;asional packet loss and to r‘?duﬁﬁ)ck(PHopSB) representing the hop from which this PATH
steady-state refresh signalling overhead has been made in [fl.ssage has been received. Information concerning a reserva-
One of the drawbacks of this approach is the requirement {oy, ot an outgoing interface is stored in@atgoing Interface
change the protocol specification and to introduce an addiyate Block(OUtISB) and the relationship between reserva-
tional confirmation message into RSVP. An improveqjong and pSBs is modelled as separate olgetgoing Inter-
approach has been described in [8], which also deals with thg e ot pSROIatPSB). It turns out that this object can serve
general issue of reliability of RSVP messages, e.g., in case,;a 5 crystalisation point to easily distinguish the operation
service invocation is torn down. Instead of refreshing all theytext when calling the traffic control module, which is use-

state information, neighbouring RSVP nodes only need Q{5 collocate the respective code. Additionally, it is used to

exchange ‘heartbeats’ denoting their liveliness. A slightly difinternally represent an N:M relationship by two 1:N relation-

ferent suggestion addressing the same issue even more sti,s (which simplifies implementation). Figure 1 shows the
gently is currently developed within the IETF RSVP workinGg ity relationship diagram for the design of RSVP state
group [91' This mechanism addresses furthgr details, such @gormation. Modelling RSVP state by an entity-relationship
how to discover a very short-termed node failure. _ diagram is deemed useful both for documentation as well as
It is beyond the scope of this work to rate these differentsicient implementation through object-relationships [15].
techniques. However, they clgarly bear the potential to drasti- cartain details regarding the generic design of the traffic
cally reduce RSVP's processing requirements for steady-staffq policy control interface are presented and discussed in
refresh s!gnglllng. This eliminates one of the major perform[16]. A description of our overall vision of employing RSVP
ance limitations of the current RSVP specification. Othefs 3 general service signalling protocol can be found in [17].
RSVP extensions, which are in the process of being standard-
ized, encompass diagnostic messages [10], inter-operatign Fuzzy Timers
with IP tunnels [11], cryptographic authentication [12] and

user identity representation [13]. By far the largest container in an RSVP implementation is

necessary for timer handling. In this implementation, a regular

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

of being sorted according to their precise expiration. During

Session e@e OutiSB each time slot, timers are fired arbitrarily according to their
n 1 location in the simple list. The result is a slight inaccuracy of

1 1 1 timers compared to their expiration time. The inaccuracy is

n n n n bounded by the length of a time slot and can be considered a

very reasonable trade-off. In principle, this scheme promises a
6@* PSB 6@* performance gain over the plain timer wheel, because the
1 n 1 n access complexity is reduced @(1). However, because of
the generally small number of timers stored in one time slot,
such performance gains are hardly visible in reality. On the

) i other hand, as discussed in Section V.C, this design can be
hash-based data structure is used as follows. All timers of t'ﬂfsed to improve interaction with the operating system.

RSVP engine are stored in a hierarchical container. The upper
layer is implemented as an array representing time slots agd Multi-threaded Message Processing
accessed through a hash. Individual time slots in the lower

layer are implemented as sorted lists. The amount of time cov- :) . L ?
ered by each slot is configurable. Such a container is on s possible to quite easily replace the initial sequential mes-

capable to foresee a limited amount of time in the futur >age processing by a multi-threaded protocol engine with an

which should be sufficient for RSVP. In order to accommolncremental implementation effort of about 6 weeks. A fixed

date the rare event that timers exceed this time horizon, gHmber of worker threads can be used to concurrently process
additional sorted list is kept and timers from this list aré?SVP messages. Because of a current lack of system support,

moved into the respective slot when it becomes available. Th?grtam interactions with the operating system, e.g. the recep-

concept is known as amer wheel[18]. The access complex- t'r?n cc)jf (rjathP Eackelgs, cannot _be performed tlruly mucljt"
ity of such an implementation ©(log(n)), with n being the threaded. Therefore, those operations are currently carried out

varying) number of timers in a slot. Consequently, erformgequentially. ’A_‘S a consequence, in alld_d.ition to t.he Work(_ar
(varying) q ¥, P reads, there is a dedicated thread to initially receive and dis-

ance of this container can be traded off against memo"?

requirements by choosing the size and number of slots. T g\tch protocol messages. Furthermore, a separate thread is
data structure design is shown in Figure 2 created to handle timer events. Synchronisation points are set

For RSVP messages, this scheme can be optimized evéh . o
further. RSVP is designed to be robust against varying mes-" access to the f:entral state repository (synchronisation
sage transmission times and in fact, a large number of all tim- point per sessmn.), L .
ers are calculated as random numbers within a certain interval.’ !nterfaces to traffic control (synchronisation point per
As a consequence, there is no demand for outmost precision in interface), .
the scale of a few milliseconds. If the duration of a time slotin °* &CC€sS 0 the central timer management (global synchro-

the hierarchy becomes small compared to the basic refresh hisation point), _and . L

time (e.g. smaller than 100 microseconds when the basic’ access to certain system services (global synchronisation
refresh interval is set to 30 seconds), an option to employ ﬁo'né’ See ab?(ve). lti-threaded . .
fuzzy timersis implemented. When enabling it, the timers The design of multi-threaded message processing Is

within each time slot are stored in a simple FIFO list insteagket_Ched n Figure 3. There are two _opt!ons to en_1p|oy th|s
esign, which can be chosen at compile time. The first option

allows for an arbitrary number of worker threads, simulating
t 2t 3t 4t (s-1t st the situation of a router possessing multiple CPUs as control
. . L engine. The other alternative tries to mimick operation in a
: | : ' ' potential high-end router, which has a dedicated CPU at each
f f network interface.
Of course, using multiple threads on a single-CPU worksta-
t: duration of slot
s: number of slots
T: timer

Fig. 1. Entity-relationship diagram for state blocks.

Employing the innovative design of the RSVP engine, it

tion cannot be expected to significantly increase performance
other than potentially providing improved interaction with
external 1/0 operations.

The design could be further improved. For example, the
global lock for the timer system could be replaced by more
fine-grained locking for each slot of the timer container. On
the other hand, with the fuzzy timer scheme, access to the
timer container is not as time-consuming and critical as with a

Fig. 2. Design of timer container.

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

Session Timer System data ﬂOW
Container Management Services »
N o — Y
o] o Ny Ng
\ al >
et > |- N, - v Ng
Msg [Wessage Processr=— \t[orrc] N

N
observation points

L, Lock: access lock Msg: incoming message Ol: outgoing interface

TC: traffic control
[C—] hreau

Fig. 3. Multi-threaded message processing.

Fig. 4. Setup for performance measurements.

until a certain number of sessiomsis reached. The upper
sorted container. To this end, the purpose of this multi-threagiound of this time interval can be chosen for each experiment.
ing extension is to demonstrate the simplicity and feasibilityyhen the target number of sessions is reached, the load gener-
of parallelizing RSVP operations as a proof of concept. Indicator creates and deletes sessions with the same randomized
ative performance tests have been carried out and affhe interval respectively, in a way that the number of sessions
described in Section V.D. is kept in the interval[n—10n] . The receiver atsNNg)

It becomes very obvious that the object-relationship desigsponds to each path advertisement by immediately generat-
alleviates the task of parallelizing message processing a Ifig reservation requests, which establish the end-to-end flow
The reasons are given by the natural encapsulation of data gadervation.
procedures in an object-oriented design. This allows for easy The observations are made at Nodg &hd N,. Measure-
identification of Synchronisation points. Because all Statﬁ]ents are done by periodica”y executm and recording
objects are stored and accessed through the session objecti{0 highest numbers for current total memory consumption
additional locking is necessary for them, besides acquiring#hd percentage of raw CPU time that is reported for execution
single lock for the session. of the RSVP daemon on either node. Note that this kind of
measurement introduces some inaccuracies and inherent ran-
domness, which however should not mask the principle mes-

The performance experiments were carried out on standagége of the results.

PC-based workstations, which serve as a router platform run-

IV. EXPERIMENT SETUP

ning FreeBSD 3.4. These workstations are equipped as fol- V. EXPERIMENTAL RESULTS
lows: In order to assess the performance of an RSVP implementa-
* single Pentium Il processor, 450 MHz, 512KB cache tjon and to address the usual concerns against its processing
* point-to-point 100 Mbit/sec Ethernet links, 3Com overhead, a number of performance experiments have been
3c905C-TX interface cards carried out. It is important to mention at this point that the
* Gigabyte GA-6BXU mainboard, standard hard disk ~ KOM RSVP engine has not been subject to careful and
* 128 MB RAM main memory detailed tuning at the coding level. No specific optimization

The total cost of this equipment as of December 1999 igas been carried out, other than the general design decisions
approximately 600 Euros plus 50 Euros per network interfac@ind algorithmic improvements described earlier.
For the tests, 6 nodes are connected with each other asthe first series of tests compares the performance of the
depicted in Figure 4. Nis used as destination host and & KOM rsvpd with the ISI rsvpd. The second series investigates
source host. Multiple unicast sessions are created by specifife current performance limits of the KOM rsvpd and the fol-
ing multiple port numbers. Since handling of API sessiongwing experiments analyse the effect of algorithmic improve-
creates additional overhead at the respective end nog@n®\ ments that have been implemented. Additionally, an
Ng are used as additional source and destination hosts, ifeRperiment is reported, which investigates the influence of the
large number of sessions is created. The RSVP refresh interg@lerage flow lifetime on the processing effort. Finally, some
is set to 30 seconds, as suggested in [1]. The RSVP daemeigeriments have been carried out to obtain additional inter-

run in single-threaded mode (except for Section V.D) angsting performance figures, e.g., about the end-to-end setup
exchange basic RSVP messages only, without policy data a[gﬂency_

integrity objects. However, all experiments encompass the
generation and transmission of confirmation messages. A. Comparison with Existing Work
The load generator at {N(N,) creates sessions and path

. . 4 : . . For this first series of tests, no specific optimizations have
advertisements with a randomized time interval in betweerB,e

en turned on in the KOM RSVP engine. The timer container

I

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

has been configured to consist of 20,000 slots covering 50 TABLE |

milliseconds each. Both implementations have been compiled PERFORMANCE OFISI RSVPD VS KOM RsvPD
with the same optimization and debugging flags. The hash-
based session container does not provide any performance
gain for either alternative, because all flows are targeted to theFlows Avg. lifetime % CPU ~ Memory % CPU Memory

same host. _ _ N 0 ~ 000 1920K 000 2724K
The ISI rsvpd contains bugs, which basically prohibit test-

Experiment settings ISl rsvpd KOM rsvpd

. . X _ !) 500 25.00 sec 2.05 2372K 1.13 3620K
ing scenarios that involve the deletion of multiple sessions. An

investigation of this problem revealed at least one non-trivial 1000 25.00 sec 6.18 2856K 3.56 544K
error in the memory management to be responsible for this sit- 1500 28.50sec 10.01 3296K 532 547K
uation. It is quite easily possible to fix the most prevalent 2000 25.00sec 14.89 3768K 7.37 6388K
problem, such that the software does not crash too often, but 2500 31.25sec 20.51 4244K 9.91 7308K
as a result, memory leaks prohibit reasonable operation. 3000 3750sec 25.93 4728K 13.38 8236K

Because of these problems, the performance figures for the 3
ISI rsvpd can be considered as valid only to a limited extent. 000
We have chosen not to fix the above bug to avoid memory 4

43.75 sec 33.74 5208K 16.60 9160K
50.00 sec 42.53 5692K 20.26 10084K

leaks, which otherwise result in an infinite increase of 4500 56.25sec 51.37 6168K 2373 11008K
processing effort and memory consumption and thus, preclude 5000 62.50sec 60.45 6656K 27.83 11928K
to obtain realistic performance figures. As a result, the num- 5500 68.75sec 79.69 7140K 3296 12848K

bers for the ISI rsvpd can only be considered as a lower bound
for CPU consumption, because it always crashes before a sta-
ble situation with creation and removal of sessions can be] _)
reached. The listed results consequently show the situatiBmbers. This can be attributed to the fine-grained implemen-
just before the crash. With the KOM rsvpd, each test has ration of state relationships, but also to the fact that memory
for several minutes. The listed percentage of CPU time is tH@nsumption was not the primary goal for optimization of our
highest number that has been observed during that time. TifaPlementation.

memory consumption has always stabilized at the report
amount. The results are depicted in Table I.

The load generator used in these experiments first estab-The goal of this set of tests is to find the upper limits on the
lishes the configured number of flows and then circulatesumber of reservation requests for a tuned version of the
through the flows and removes and re-establishes them. REVP implementation. The experiment setup and measure-
order to vary the lifetime of each flow, the interval betweements have been done as described above. In the tuned ver-
creation respectively removal of subsequent flows is adjustesion, the timer container consists of 100,000 slots covering 10
Due to space limitations, this is not shown directly in themilliseconds each and the code for API processing is disabled
tables. Instead, the average lifetime of a single flow is showaf intermediate nodes. Assertion checking and debug output is
which is calculated according to the fact that the creatioriirned off. Since these tests are carried out in a limited infra-
removal interval is evenly distributed between zero and th&tructure with at most two destinations hosts, port numbers are
maximum interval. The maximum creation/removal interval isncluded into the hash calculation for the session container in
set to 25 milliseconds for the tests with 2000 flows and morghe tuned version. Because doing so establishes a perfect hash
Therefore, the average lifetime increases with an increasimistribution for the test scenario, the session hash index has
number of flows. Note that the interval is appropriateljbeen restricted to 4096 to simulate a realistic situation. Fur-
adapted for the tests with smaller numbers of flows, such thdtermore, the load generation is distributed between all four
the average lifetime of flows is not much smaller than thend nodes as depicted in Figure 4. The results are listed in
RSVP refresh interval. The influence of the average flow lifeTable II.
time is further studied in Section V.E. The following observations can be made in this experiment.

It can be derived from these performance figures, that theuning the protocol implementation reveals a significant
KOM RSVP engine performs significantly more efficientlypotential for increasing the performance. A router platform
than the ISI rsvpd. While it is unclear how much of this effi-based on standard PC hardware can handle the full signalling
ciency gain has to be attributed to a better coding style in gefor 50,000 unicast flows. The larger amount of initially allo-
eral, it can obviously be concluded that the innovative objectated memory for the tuned version can be attributed to the
relationship design at least does not prohibit performarsdditional memory requirements for the more fine-grained
implementation, however, at the expense of additional mentimer container. The memory requirements per flow remain
ory consumption. The KOM rsvpd consumes almost twice thenaffected. Two additional tests are listed, in which the crea-
amount of memory per flow when compared to the ISI rsvpd

* number of successful reservations: ~ 5400

d
E'IB. Performance Limits

o

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

100

TABLE Il oo K(IJSI\IIIrSVpdd-EI—-g_
asic rsvpt
PERFORMANCEL IMITS OF KOM RSVPD %0 tuned KOM rsvpCrma—

basic KOM rsvpd tuned KOM rsvpd

Experiment settings (load gen. by 2 nodes)(load gen. by 4 nodes)

Flows Avg. lifetime % CPU Memory % CPU Memory

Percentage of CPU Load

0 - 0.00 2724K 0.00 4724K
2500 31.25 sec 9.91 7308K 4.39 9324K
5000 62.50 sec 27.83 11928K 850 13940K
7500 93.75sec 58.11 16548K 11.38 18560K
9800 12250 sec 93.12 20788K - -
10000 125.00sec 6500 21156K 14.75 23168K olE
15000 18750 sec . B 2095 32396K 0 5000 10000 15000 Nu2n(:(t))(::)0f éi:gsrreniilosogsﬂsmniijooo 40000 45000 50000
20000 250.00 sec - - 21.73 41632K Fig. 5. Performance curve for ISI and KOM rsvpd.
30000 375.00 sec - - 40.67 60096K
40000 500.00 sec - - 55.17 78556K the fraction of CPU load as a function of the number of ses-
50000 625.00 sec - - 67.99 97012K Sions.
40000 240.00 sec - - 56.69 78556K _ i
50000 250.00 sec - - 7056 97012K C. Fuzzy Timer Handling

While in theory only fuzzy timer handling can guarantee
the property of overall linear complexity by simplifying
access to the timer container, the previous experiment shows
tion/removal interval is set in a way that the average lifetim¢hat, by enabling a fine-grained timer wheel, this linearity is
of a flow is approximately 4 minutes. The resulting CPU loadlready observed. In fact, a further modification of implement-
numbers demonstrate that the RSVP engine is indeed ableing fuzzy timers is needed to achieve any visible improvement
handle such a large number of sessions, even when assumiraj all. Because of the effects of switching between timer man-
realistic average lifetime of calls. In fact, the impact of theagement and interface service, which is described in the previ-
lifetime of flows seems to be quite low. Further details are dissus section, all timers from the current slot are fired whenever
cussed in Section V.E. the system enters the timer management. This further reduces

One particular detail can be observed when comparing thilee number of context switches and calls&ect and con-
CPU load numbers for the basic version in Table II, dependirnggquently, the overall processing load. A comparison with reg-
on how many nodes patrticipate in load generation. If four endlar operation, which indicates the additional performance
nodes are used, the resulting load is substantially smaller agdin, mainly at a high session load, is shown in Table Ill. At a
the performance limit is increased. The explanation of thiad of about 58,000 flows, the system exceeds the maximum
behaviour is related to the implementation of the timer wheelmount of main memory that is available and starts swapping
in combination with theselect system call, which is used to to disk. This prohibits any further performant execution under
query for incoming packets. If four end nodes participate ithis high load.
load generation, messages arrive at intermediate nodes at threl turns out that there is a triangular relationship between
network interfaces, instead of two. Each switch between timéhe kernel clock granularity, the minimum timeout needed for
management and message reception incurs a cadllext , theselect call and the size of the time slots. It might actu-
which is expensive. It takes at least 10 milliseconds on a regu-
lar Linux, Solaris and FreeBSD operating system to perform
this system call when a timeout is given. Aftselect
returns, exactly one message is read from each eligible inter- Experiment settings tuned KOM rsvpd fuzzy KOM rsvpd
face. Now, if messages arrive at more interfaces, more mesg, o
sages are potentially received, before the next invocation of

* load generated by 4 nodes, see main text

TABLE Il
PERFORMANCE OFFUZZY TIMER OPTIMIZATION

Avg. lifetime % CPU Memory % CPU Memory

timer management. This leads to less context-switching 0 - 0.00 4724K 0.00 4724K

between message reception and timer management and thus20000 250.00sec 27.73 41632K 26.12 41632K
reduces the total number of system calls, which in turn 40000 240.00 sec 56.69 78556K 53.37 78556K
decreases the system load. 50000 250.00sec 70.56 97012K 63.96 97012K

Figure 5 shows an overall picture of the experimental

:) _ ' 58000 232.00 sec - - =70.00 >108M
results from this and the previous section. The graph depicts

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

TABLE IV
E R E PERFORMANCE OFPARALLEL MESSAGEPROCESSING
1 2
Number of Number of flows Number of flows
T_) CPUs (individual tests) (average)
observation point :
single- 451, 425, 464, 473, 466, 467
Fig. 6. Experiment setup for parallel processing. threaded 450, 450, 494, 520, 489
1 345, 389, 386, 380, 373, 371
. . - . 373, 393, 350, 357, 366
ally be possible to increase the performance limits by increas- 5 55 478 571 605. 571 554
ing the range of time slots or increasing the clock granularity. £32 563 556, 518 572
However, we have not done any such experiments, so far. o
3 707, 723, 693, 756, 731, 719
. 718, 711, 702, 729, 727
D. Parallel Message Processing
_) i))) . 4 592, 621, 711, 662, 652, 653
This experiment is carried out to investigate the scalability 655, 648, 666, 655, 663

of multi-threaded message processing on a multi-processor

platform. This experiment uses the first alternative to employbserved. These limitations must be partially accounted to the
multi-threaded message processing as presented jfBufficient support of the operating system to support multi-
Section l1.C, in that each message processing thread is bouipgleaded reception of raw IP packets and other low-level serv-
to a specific network interface. The experiment setup is vef¢es, but also to inherent parallelization limitations of RSVP
simple and shown in Figure 6. The end-systemsiid & are processing and the improvable implementation design of the
the same PCs as in the other experiments and are connectegdgallel code in the KOM protocol engine. To this end, the
a router R. Both end-systems act as sender and receiver 8gult of implementing multi-threaded message processing is
create a large number of flows. A SparcServer 1000 with folomewhat unsatisfactory. On the other hand, the design and
60Mhz CPUs running Solaris 2.6 serves as router. Note thfiplementation of multi-threaded message processing should
this router hardware provides significantly less absolutge considered as a proof of concept, rather than the final
processing power compared to the other tests. Because a sefign of a production-level implementation. Especially, with
rate thread is needed in the RSVP daemon to receive raw lﬂ?oper operating system support, the need for a separate dis-
packets and dispatch them to the worker threads and anotipgitcher thread (which might very well form the bottleneck of
thread is used for timer handling, at least four CPUs arge current system) and its synchronisation would be elimi-
needed to carry out a reasonable experiment for this scenafigited. As discussed in Section V.B and Section V.C, the over-

In order to test the Capabilities of this system, tests ha\g@u performance of the RSVP daemon is to a great extent
been run in single-threaded mode and in multi-threaded modetermined by the system-level task of receiving packets from
with enabling an increasing numbers of CPUs. The goal @he network and the particular interaction with the user-level
each test is to find the highest number of flows that can kgaemon. This assumption is further verified in Section VI.
handled reliably. Therefore, the RSVP daemon has beenanother conclusion can be drawn from these tests, which
slightly modified to regularly check the difference betweemacks up the above considerations. Testing the efficiency gain
the number of PSB and RSB objects. If this differencef a multi-threaded RSVP implementation on a simple and
exceeds a certain threshold, the daemon stops and reportshfall multi-processor workstation as in these tests, is proba-
number of successfully established reservations. Because Hig not sufficient to fully reveal parallel processing efficiency.
total number of flows that can be sustained by this router iSor examp|e, the performance drop when observing execution
rather small, the RSVP refresh time is set to 3 seconds in ordg 4 CPUs can be explained as follows. On this platform, up
to increase the effect of established sessions Compared to tbe3 CPUs can be bound to a process (process group) exclu-
creation of new ones. As well, to decrease the high influenegyely. Effectively, in the tests with 4 CPUs no exclusive bind-
of system code, which cannot be executed truly multing of CPUs can been done and therefore, the RSVP daemon
threaded, the software is compiled without compiler optimizacompetes with other processes. Consequently, the overall
tion. The results are listed in Table IV. Each test is eXGCUt@bhedu”ng effort increases for the operating System_ This is
ten times and both the highest and lowest result are not tak%’ﬂected by the lower performance and indicates, that these
into account for calculating the average result. tests cannot be regarded as real tests with 4 CPUs.

It becomes clear from the resulting performance figures, As discussed in Section I1I.C, there is a broad field for fur-
that the potential for parallelization gains is indeed given, bther work on tuning the design and imp|ementation of multi-
certainly limited, at least on the tested platform. Furthermorgareaded RSVP operations. Additionally, it would be very
when comparing the results for single-threaded execution witiesirable to compare the results obtained during these tests

those of multi-threaded execution on a single CPU, a signifiyith performance figures from different hardware and operat-
cant overhead for synchronization mechanisms can hgg system platforms.

N

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

TABLE V F. Other Experiments
INFLUENCE OFAVERAGE FLOW LIFETIME . . .
Some other experiments have been carried out to assess this

Experiment settings fuzzy KOM rsvpd implementation under a variety of aspects. Because their
results are highly bound to the specific scenario, they are

Flows Average lifetime % CPU Memory . .
somewhat illustrative, but they may not be regarded as rele-
10000 150.00 sec 13.96 23168K vant as the above experiments. Hence, they are not docu-
10000 125.00 sec 14.75 23168K mented here in the same level of detail.
10000 100.00 sec 14.99 23168K L
10000 £0.00 sec 1577 23168K 1) RSVP & Packet Classflflcatlon_ _
10000 25.00 sec 16.65 23168K We hav_e done the following gxper_lment in order to measure
10000 15.00 sec 0148 23168K t_he combined th_roughput of S|gne_1lllng and packet classifica-
tion and scheduling. Along two adjacent FreeBSD-based rout-
10000 500 sec 7710 23168K ers reservations for 10,000 flows are established, similar to the
* number of successful reservations: ~ 9700 earlier experiments. Each of these flows requests a small

amount of bandwidth. Then, a traffic source emits a constant
packet stream, which belongs to one of the reserved flows.
Although this packet stream exceeds the reservation by far, an
intermediate node must still classify and schedule all packets.
The experiments in Section V.B and Section V.C indicatgve observed that in combination with HFSC scheduling from
that the average lifetime of flows has Ol’l|y limited influence Olfhe ALTQ package [19], two adjacent routers running KOM
the computational effort. In order to further investigate thigsvpd can both sustain the signalling and traffic control config-
issue, a dedicated set of tests has been done to examine tlyigtion for 10,000 flows and at the same time, classify and
effect. The results are listed in Table V. schedule 25,000 packets per second. Note that this result does
The figures clearly show, that the resulting CPU load for fot make any statement about the aspect whether all flows
certain number of flows is largely unaffected by the averaggctually receive their QoS objective. Evaluating the ALTQ
lifetime of flows, as long as it is above the RSVP refresh intel’package is beyond the scope of this paper.
val (again set to 30 seconds here). Thereby, these numbers
back up the conjecture that the average lifetime of flows ha®) End-to-End Setup Latency
only limited influence on the overall processing effort. Since Using the setup shown in Figure 7, tests have been carried
RSVP state is refreshed periodically, the average flow |ifetim@ut to measure the setup |atency of RSVP reque%tanﬂ R3
basically determines the ratio of setup messages comparedsie not handling any background RSVP sessigraitl R, are
refresh messages, whereas the overall number of messagégsasled with up to 20,000 flows. The total end-to-end setup
approximately the same. It can thus be concluded that therejdgency usually varied between 22 and 26 milliseconds, inde-
not much difference between the individual processing effofendent of the load of intermediate routers. Consequently, the
for setup messages and for refresh messages. Consequepiténcy of bidirectional session setup can be estimated to be at
when flow lifetimes are multiples of the refresh interval, amost 5-6 milliseconds per intermediate hop, which shows that
large fraction of processing effort is due to refresh messagegven along a path with a large number of hops, the end-to-end
Indirectly, this result demonstrates the large potential fosetup latency will very likely be acceptable.
performance gains by extending RSVP with mechanisms to
reduce the amount of state refresh messages, like those VI. PROFILING DETAILS
referred to in Section Il. However, this particular behaviour
could also be an artefact of this specific implementatioq
Therefore, further wqu coyering different implementation xperiment equivalent to those described in Section V. The
W‘,’“"?' be needed FO mves'ugatg th_e detayls. Unfortunately, fotocol engine was compiled for optimized execution as in
this time, no such implementation is available. The ISI rsvp ection V.C and has been loaded with the signalling of 20,000

cannot reliably handle the deletion of sessions, hence, ﬂ‘lﬁ?ﬁicast flows. Table VI shows the execution times for various

kind of experiment is currently not possible. : - :
e o operations, which represent complete and non- overlappin
If the lifetime of flows becomes significantly shorter than P P P bping

the refresh interval, this generates an absolute increase in the
number of RSVP messages and results in a much higher| send Ry Ry R, Rs Recv
processing load. In fact, for these cases, it can be noticed in
Table V that the increase of CPU load is approximately
inverse proportional to the lifetime of flows.

E. Lifetime of Flows

In order to further investigate the performance of our RSVP
mplementation, we generated profiling information from an

Fig. 7. Experiment setup for end-to-end latency.

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

TABLE VI TABLE VIII
RELATIVE PROCESSINGEFFORT OFPROTOCOL OPERATIONS RELATIVE PROCESSINGEFFORT OFTIMER MANAGEMENT

Operation % Execution Time Operation % Execution Time
System initialization/cleanup 1.8 Timer insertion & removal 7.2
Packet awaiting 9.3 Timer maintenance & firing 4.1
Packet reception 6.8 Total 11.3
Packet parsing 10.7
Message processing 53.1 is somewhat difficult to assess, because of code inlining and
Timer handling 18.3 optimized compilation. The results are listed in Table VIII.
Total 100.0 These are the raw numbers for timer management, i.e.,

excluding the execution times for subsequent actions. They

N) explain the limited effect of fuzzy timer handling on top of an
partitions of the overall message processing. Because of thgicient timer container structure. Note that these numbers are

characteristics of profiling, the execution time here is relativge related to the execution time reportedtiorer handlingin
to the daemon’s overall accumulated processing effort. Tapje vi. The numbers here denote the raw effort for timer

It can be observed from this table, that packet parsing cofsanagement, excluding for example the operation that is car-
sumes a significant amount of execution time. This can Besq out when a timer is fired.

attributed to the fact that we have not spent effort to optimize T5pje X illustrates how much execution time is spent for
the code for parsing RSVP messages. In Table VI, the figurggrying out system services. The operations listed in this
for packet awaitingand packet receptionlenote pure system tapje are only those contributing significantly. It turns out that
actmtu_es, ie., mtgractlon with th_e networking sta}ck. Thepe RSVP engine executes system-level code for more than
operation of sending out packets is encompassetdssage 709 of its time, large parts of this time interacting with the
processing The execution time of further system activities,yernel. Considering the restrictions discussed in Section 111.C,
namely sending out packets and looking up routing entries afgese figures explain the limited performance gains by paral-
encompassed itimer handling Details about system opera- lelizing message processing.
tions are illustrated in Table IX below. In Table VIl, we i yrns out that looking up routing entries contributes sig-
describe how the effort for message processing is further suficantly to the overall execution time for system services.
divided among more fine-grained operations. _This effect can be explained by the rather expensive routing
Not surprisingly, PATH processing consumes the majdhterface on FreeBSD, which requires at least two interactions
amount of execution time, mainly due to looking up the routyih the operating system’s kernel in order to obtain a routing
ing information for the destination address (see below). Noigiry. This interface might bear the potential for optimization,
that due to their similarity, the operations for processing g jeast in case of unicast routing lookups, which only deliver
RESV and RTEAR message are implemented in the SaM&single routing entry as result.
method, therefore the execution time cannot be subdivided Finally, memory management in general can be observed as
between both. strongly contributing to the overall execution time. Additional
Another interesting investigation is to analyse the efforberformance gains might be possible by replacing the sys-
necessary for management of the timer system. This numkg¢y's universal memory management algorithms by a mem-

TABLE VII TABLE IX

RELATIVE PROCESSINGEFFORT OFMESSAGEPROCESSINGOPERATIONS RELATIVE PROCESSINGEFFORT OFSYSTEM SERVICES

Operation % Execution Time Operation % Execution Time
Pre- and postprocessing 5.6 Routing lookup for PATH messages 16.2
Session location 1.6 Routing lookup for RCONF messages 25
PATH processing 28.3 Packet awaiting 9.3
PTEAR processing 0.8 Packet reception 6.8
RESV/RTEAR processing 10.6 Packet sending 8.8
CONF message forwarding 3.4 System time lookup 8.2
Refresh reservations 2.8 Memory management (total) 20.0
Total 53.1 Total 71.8

Implementation and Evaluation of th©KI RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Guight (C) IEEE

ory management system, which is specifically optimized foserv, MPLS or ECN. Last but not least, we plan to study the

the type of operations needed for RSVP processing.

impact of mobility and to design general solutions for the

In general, the data generated from profiling explain thanclusion of mobile routing protocols into an overall QoS sig-
relation between certain results from the performance testslling architecture.

and back up assumptions about the internals of this implemen-
tation. They might serve as a basis for future detailed code
optimization of this or the design of other code. [

VIl. CONCLUSIONS ANDFUTURE WORK

The assessment of RSVP’s technical feasibility started wit[ﬁ]
collecting and analysing the available material. Very soon fg]
became obvious that the publicly available code as well as
previously published work were not sufficient to study the
aspects that were deemed interesting for this work. Therefor[é],
a new implementation of RSVP has been developed fro
scratch. It employs the notion of objects and relationships
between them to efficiently store and access protocol state. It
is innovative in its design and for example, allows easy inclu-
sion of multi-threaded message processing. Furthermore, -
tain design and algorithmic extensions for the implementation
of an RSVP engine have been proposed in Section Ill. A hig
potential for performance gains has been demonstrated by
tuning the implementation appropriately.

In the performance experiments of SectionV, RSVP had!
been evaluated with respect to its basic mode of operation.
The main goal of this work is to show the performance poten-
tial, even without further changes to the protocol. From thél]
performance figures, it can be deduced that the suitability of
RSVP as a general purpose signalling interface and protocol E)
much better than generally assumed. A standard PC router, ag
equipment cost of about 600 Euros (plus 50 Euros per net]
work interface, as of December 1999), can handle the signal-
ling for more than 50,000 sessions in a realistic scenario. [12]

Essentially, the user-level RSVP implementation present?%]
in this paper is not the bottleneck for operation on a standar
UNIX platform. Instead, the execution of system services
largely determines the overall performance. This can be coli4]
cluded from the experimental results, including those measur-
ing the capabilities of multi-threaded message processing al
is further backed up through profiling experiments. Conse-
quently, further work, especially on different hardware anghis;
operating system platforms, is needed to better understand the
ultimate limits of an RSVP engine. As discussed in
Section V.C, further experiments can be carried out, Whicﬁ?]
investigate the effect of the clock granularity and size of time
slots on a FreeBSD platform.

Implementation of a software platform for general end-to-
end service signalling remains an ongoing effort for us. WE®
are planning to investigate the effects of RSVP extensions as
referred to in Section 11.B on its feasibility for the purpose of
serving as a general signalling protocol. Furthermore, we will
focus our future work on inter-operation between RSVP sig19]
nalling and data-forwarding technologies, for example Diff-

REFERENCES

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205 -
Resource ReSerVation Protocol (RSVP) — version 1 functional specifi-
cation. Standards Track RFC, September 1997.

A. Neogi, T. Chiueh, and P. Stirpe. Performance analysis of an RSVP-
capable routelEEE Network Magazinel3(5):56—63, September 1999.

I. Cselenyi, G. Feher, and K. Nemeth. Benchmarking of signaling based
resource reservation in the InternetHroceedings of Networking 2000

pp. 643—654. Springer LNCS 1815, May 2000.

USC Information Sciences Institute. RSVP Software. http://
www.isi.edu/div7/rsvp/release.html.
E. Basturk, A.Birman, G.Delp, R.Guerin, R.Haas, S.Kamat,

D. Kandlur, P.Pan, D.Pendarakis, V. Peris, R. Rajan, D. Saha, and
D. Williams. Design and implementation of a QoS capable switch-rout-
er.Computer Networksl1(1-2):19-32, January 1999.

P. Pan and H. Schulzrinne. Yessir: A simple reservation mechanism for
the Internet. ACM Computer Communication Revie29(2):89-101,
April 1999.

P. Pan and H. Schulzrinne. Staged refresh timers for RSVPtdoeed-

ings of Global Internet'97, Phoenix, Arizona, USMovember 1997. also
IBM Research Technical Report TC20966.

L. Mathy, D. Hutchison, S. Schmid, and S. Simpson. REDO RSVP: Ef-
ficient signalling for multimedia in the Internet. Interactive Distribut-

ed Multimedia Systems and Telecommunication ServiSpsinger
LNCS 1718, October 1999.

L. Berger, D.-H. Gan, G.Swallow, P.Pan, F.Tommasi, and
S. Molendini. RSVP Refresh overhead reduction extensions. Internet
Draft draft-ietf-rsvp-refresh-reduct-05.txt, June 2000. Work in Progress.
A. Terzis, R. Braden, S. Vincent, and L. Zhang. RFC 2745 - RSVP Di-
agnostic messages. Standards Track RFC, January 2000.

A. Terzis, J. Krawczyk, J. Wroclawski, and L. Zhang. RFC 2746 - RSVP
Operation over IP tunnels. Standards Track RFC, January 2000.

F. Baker, B. Lindell, and M. Talwar. RFC 2747 - RSVP Cryptographic
authentication. Standards Track RFC, January 2000.

S. Yadav, R. Yavatkar, R. Pabbati, P. Ford, T. Moore, and S. Herzog.
RFC 2752 - Identity representation for RSVP. Standards Track RFC,
January 2000.

P. White and J. Crowcroft. Integrated services in the Internet: State of the
art. Proceedings of IEEEB5(12):1934-1946, December 1997.

] M. Karsten. Design and implementation of RSVP based on object-rela-

tionships. InProceedings of Networking 2000, Paris, Franpg. 325—
336. Springer LNCS 1815, May 2000.

M. Karsten, J. Schmitt, and R. Steinmetz. Generalizing RSVP’s traffic
and policy control interface. IRroceedings of the 7th International Con-
ference on Parallel and Distributed Systems Workshops (ICPADS’00),
Ilwate, Japanpp. 249-254. |IEEE, Piscatay Way, NJ, USA, July 2000.
M. Karsten, J. Schmitt, N. Berier, and R. Steinmetz. On the feasibility of
RSVP as general signalling interface Rroceedings of Quality of future
Internet Services Workshop (QoflS 2000), Berlin, Germapy 105—

116. Springer LNCS 1922, September 2000.

G. Varghese and A. Lauck. Hashed and hierarchical timing wheels: Data
structures for the efficient implementation of a timer facili®perating
Systems Review Special Issue: Proceedings of the Eleventh Symposium
on Operating Systems Principles, Austin, TX, U8&(5):25-38, No-
vember 1987.

K. Cho. A framework for alternate queueing: Towards traffic manage-
ment by PC-UNIX based routers. Proceedings of USENIX 1998 An-
nual Technical Conference, New Orleans, LA, [UBfke 1998.

	I. Introduction
	II. Related Work
	A. RSVP Performance
	B. RSVP Extensions

	III. KOM RSVP Engine
	A. General Design
	Fig. 1. Entity-relationship diagram for state blocks.

	B. Fuzzy Timers
	Fig. 2. Design of timer container.

	C. Multi-threaded Message Processing
	Fig. 3. Multi-threaded message processing.

	IV. Experiment Setup
	Fig. 4. Setup for performance measurements.

	V. Experimental Results
	A. Comparison with Existing Work
	TABLE I Performance of ISI rsvpd vs. KOM rsvpd

	B. Performance Limits
	TABLE II Performance Limits of KOM rsvpd
	Fig. 5. Performance curve for ISI and KOM rsvpd.

	C. Fuzzy Timer Handling
	TABLE III Performance of Fuzzy Timer Optimization

	D. Parallel Message Processing
	Fig. 6. Experiment setup for parallel processing.
	TABLE IV Performance of Parallel Message Processing

	E. Lifetime of Flows
	TABLE V Influence of Average Flow Lifetime

	F. Other Experiments

	1) RSVP & Packet Classification
	2) End-to-End Setup Latency
	Fig. 7. Experiment setup for end-to-end latency.
	VI. Profiling Details
	TABLE VI Relative Processing Effort of Protocol Operations
	TABLE VII Relative Processing Effort of Message Processing Operations
	TABLE VIII Relative Processing Effort of Timer Management
	TABLE IX Relative Processing Effort of System Services

	VII. Conclusions and Future Work

	References

