[KS5101]

Martin Karsten, Ja}:s sahmm Ralf Stelnmetz; implémentation and Evaluation of the KOM

RSVP Engine; 20th Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM 2001)

Implementation and Evaluation of the KOM RSVP Engine

Martin Karsten, Jens Schmitt
Darmstadt University of Technology, Darmstadt, Germany
http://www.kom.e-technik. tu-darmstadt.de/

Ralf Steinmetz
Darmstadt University of Technology, Darmstadt, Germany
GMD IPSI, Darmstadt, Germany
http://wwwp.ipsi.gmd.de

Email: {Martin.Karsten,Jens. Schmitt,Ralf Steinmetz] @ KOM.tu-darmstadt.de

Abstract - In this paper, we describe implementation
aspeets and performance results of an innovative and pub-
licly available RSVP implementation. Much debate exists
about the applicability of RSVP as a signalling protocol in
the Internet, particularly for a large number of unieast
flows. While there has been a significant amount of work
published on the theoretical concepts of RSVP signalling
and eonjectures about its presumed shortcomings, rather
little attention has been paid to the implementation details
of the core protocol engine. With our work, in spite of
being still far from a final judgement, we try to shed light
on this issue by presenting certain design details of a new
implementation and a study about its performance, One
particular result is given by the observation that a rela-
tively cheap router based on PC hardware can sustain the
signalling for more than 50,000 unicast flows. ~

I. INTRODUCTION

Much debate exists about the applicability and performance
capabilittes of RSVP [1] as a QoS signalling protocol for the
Internet. However, the discussion of this issue usvally lacks
salid performance figures from real experiments using a real
implementation. Furthermore, the issues of signalling com-
plexity (control plane) in general and packet forwarding com-
plexity (data plane) of per-flow and per-hop reserved Rows are
often confused. The goals of this paper are twofold. First, we
aim to provide additional insight about RSVP’s performance
capabilities by presenting central design characteristics of our
protoco! implementation. Second, we present detailed experi-
mental data describing load measurements we have carried
out using this implementation. These data cannot be used to
draw a single major conclusion, but represent detailed hard
facts for others to extrapolate them into their respective imple-
mentation context. We do however observe that, despite its
undebatable complexity, RSVP can perform better than often
assumed. Additionally, we conclude that there is potential for
further optimization, both through protocol extensions as well
as internal optimization of the prolocol engine.

In the past, various proposals have been published, which
describe useful extensions to the basic version of RSVP (see
Section II.B for details). The goals of these extensions are
mainly to complete RSVP’s specification in the areas of secu-

* This work s partially funded by the European Coimimission
under the 5th Framework Programme IST. Project M31¢11429).

rity and reliability and furthermore, to improve the state
refreshing mechanism, which is already identified as currently
limiting overall performance. On the other hand, little atten-
tion has been paid to the implementation of the core protoccl
engine itself. As a result, RSVP is often assessed as having a
poor performance, however, those judgments are rarely based
on solid data. Therefore, the internal design structure and
algorithms, as well as the overall protocol performance, have
been subject to careful investigation in this work. In this eval-
uation, we focus on large numbers of unicast lows. One rea-
son is given by the prohibitively extensive infrastructure
necessary to carry out large-scale experiments with multicast
communication. The second and more important reason is that
the suitzbility of RSVP to handle large multicast groups, for
which it was intentionally designed, is commonly undisputed.
Rather, the handling of a large number of unicast flows is con-
sidered as the dominant scalability problem of RSVP.

The paper is structured as follows. In Seclion II, we review
previous work related 10 RSVYP performance and its evalua-
tion. Section III presents our RSYP implementation, particu-
larly certain central design concepts. In SectionIV, we
describe the general setup for the performance experiments,
while the results are reported in Section V. In Section VI, we
present profiling information to further back up certain find-
ings from the performance experiments. The paper is wrapped
up by presenting a summary, conclusion and outlook to future
work in Section VII. :

II. RELATED WORK

A. RSVP Performance

Little work has been reported 1o assess the performance of
commercial RSVP implementations. A notable exception is
given by [2], in which a technical framework for carrying out
such tests is presented. From the performance figures for a
“commercial midrange router” given in [2], it can be deduced
that RSVP Row setup scales significantly worse than linear.
These results indicate that the particular version of the RSVP
implementation under consideration may have been in a rather
carly development stage and cannot serve as a basis for judge-
ments about ils signalling performance.

Another investigation of RSVP’s performance is reported in
[3]. However, this work mainly considers an existing imple-
mentation, the ST rsvpd [4], which we do not regard as the
optimal choice for performance measurements. This is further

documented in the rest of this paper. Some performance num-
bers are listed in [3] for another commercial RSVP implemen-
tation. However, this implementation does not sustuin maore
than 600 sessions and thus, can be assessed similarly to the
implementation studied in [2].

Other published work describes the implementation of an
RSVP-capable switch-router in [3], but the reported perform-
ance figures are targeted towards the fundamental capability
of the system to deliver QoS objectives in the first place,
rather than performance of signalling at a large scale.

In |6], interesting performance figures are reported for
RSVP message processing on a commercial router platform,
However, these performance figures are somewhat without
context, because it 1s not mentioned under which load condi-
tions they were measured. Additionally, because these num-
bers are not the central focus of the work in [6], not many
details about the cxperiments are given. Consequently, these
numbers can serve as a basic indication about RSVP’s
processing overhead, but they cannot be considered as the
final judgement in the discussion about RSVP.

In summary, although earlier work and published resuits
have already indicated some of the conclusions shown in this
paper, we present the first thorough study of RSVP's perform-
ance. This study is based on a publicly available implementa-
tion and thus, verifiable by others.

B. RSVP Extensions

A number of protocol improvements have been suggested
to increase the performance characteristics of RSVP opera-
Lions. An iniiial proposal to speed up the service establishment
time In the presence of occasional packet loss and to reduce
steady-state refresh signalling overhead has been made in (7].
One of the drawbacks of this approach is the requirement to
change the protocol specification and to introduce an addi-
tional confirmalion message into RSVP. An improved
approach has been described in [8], which also deals with the
general issue of reliability of RSVP messages, ¢.g.. in case a
service invocation is torn down, Instead of refreshing all the
state information, neighbouring RSVP nodes only need to
exchange ‘heartbeats” denoting their hiveliness. A slightly dif-
ferent suggestion addressing the same issue even more sirin-
gently is currently developed within the IETF RSVP working
group [9]. This mechanism addresses further details, such as
how to discover a very short-termed node failure.

It is beyond the scope of this work to rate these different
techniques. However, they clearly bear the potential to drasti-
cally reduce RSVP’s processing requirements for sieady-state
refresh signalling. This eliminates one of the major perform-
ance limitations of the current RSVP specitication. Other
RSVP extensions, which are in the process of being standard-
ized, encompass diagnostic messages [10], inter-operation
with IP tunnels [11], cryptographic authenucation [12] and
user identity representation [13].

III. KOM RSVP ENGINE

For an overview and explanation of RSVP, sze {14]. Unfor-
wnately. the only publicly available router implemenration of
RSVP, the ISI rsvpd, turns out to be of questionably design
and coding quality and contains bugs. Therefore, we do not
consider it as the optimal choice for experimenting with proto-
col extensions and performance assessments and we devel-
oped a new protocao! engine from scratch, termed KOM RSVP
engine, or KOM rsvpd for short. The main design goals of this
implementation are clarity of code, flexibility and extensibil-
ity. Additionally, we aim at providing an experimental soft-
ware platform for other researchers. Such an implementation
on a regular workstation using a common UNIX operating
syslem can only serve as a proof of concept and research plat-
form for future investigations. Therefore, although we have
tried to keep the design prepared for efficient operation, we do
not believe that it 1s currently necessary to implement for out-
most efficiency at the coding level. We have employed an
object-oriented design and the implementation s done in
C++. It is publicly available at
http://www.kem. e-technik. tu-darmstadt.de/rsvp/

A. General Design

A detmled description about the design of this implementa-
tion can be found in [13]. State information of RSVP is stored
as objects containing relationships to other objects. The con-
tents of a PATH message are stored in a Path State Block
(PSB) whereas contents of a RESV message are stored in a
Reservation State Block (RSB). As an example for relation-
ships, each P5B has a relationship to a Previous Hop State
Block (PHopSB) representing the hop from which this PATH
message has been received. Information concerning a reserva-
tion at an outgoing interface is stored in an Qutgeing Inrerface
State Block (OutlSB) and the relationship between reserva-
tions and PSRBs is modelled as separate object Outgoing Inter-
Jace at PSB (OlatPSB). It turns out that this object can serve
as a crystalisation point to casily distinguish the operation
context when calling the traffic control module, which 1s use-
ful to collocate the respective code. Additionally, it 1s uscd to
internally represent an N:M relationship by two 1:N relation-
ships (which simplifies implementation). Figure 1 shows the
entity-relationship diagram for the design of RSVP stale
information. Modelling RSVP state by an entity-relationship
diagram is deemed useful both for documeniation as well as
efficient implementation through object-relationships [15].

Certain delails regarding the generic design of the traffic
and policy control interface are presented and discussed in
[16]. A description of our overall vision of employing RSVP
as a general service signalling protocol can be found in [17].

B. Fuzzy Timers

By far the largest container in an RSVP implementation is
necessary for timer handling. In this implementation, a regular

Session e<<>—1> OutISB
n

! 1 !

n n 5 E n n

Fig. 1. Entity-relationship diagram for state blocks

PSB @

1 n

?
:

hash-based data structure is used as follows. All timers of the
RSVP engine are stored in a hterarchical container. The upper
layer is implemented as an array represeanting time slots and
accessed through a hash. Individual time slots in the lower
layer are implemented as sorted lists. The amount of time cov-
ered by each slot is configurable. Such a container is only
capable to foresee a limited amount of time in the future,
which should be sufficient for RSVF. In ordcr to accommo-
date the rare event that timers exceed this time horizon, an
additional sorted list is kept and timers from this list are
moved into the respective slot when it becomes available. This
concept is known as a timer wheel [18]. The access complex-
ity of such an implementation is Oflog{n}), with n being the
(varying) nurnber of timers in a slot. Consequently, pcrform-
ance of this container can be wraded off against memory
requirementis by choosing the size and number of slots. This
data structure design is shown in Figure 2.

For RSVP messapes, this scheme can be optimized even
further. RSVP is designed 1o be robust against varying mes-
sage transmission times and in fact, a large number of all tim-
crs are calculated as random numbers within a certain interval.
As a consequence, there is no demand for outmost precision in
the scale of a few milliseconds. 1f the duration of a time slot in
the hierarchy becomes small compared to the basic refresh
time {(e.g. smaller than 100 microseconds when the basic
refresh interval is set to 30 seconds), an option to employ
Juzzy timers is implemented. When enabling it, the umers
within each time slot are stored in a simple FIFO list instead

t 2t 3t 4t _ (s-1)t st

t: duration of slot

s: number of slots

T: timer

Fig 2 Design of timer container.

of being sorted according to their precise expiration. During
each tme slot, timers are fired arbitrarily according to their
location in the simple list. The result is a slight inaccuracy of
timers compared 1o their expiration time. The inaccuracy is
bounded by the length of a time slot and can be considered a
very reasonable trade-off. In principle, this scheme promises a
performance gain over the plain timer wheel, because the
access complexity is reduced to Off). However, because of
the generally small number of timers stored in one time slot,
such performance gains are hardly visible in reality. On the
other hand, as discussed in Section V.C, this design can be
used to improve interaction with the operating system.

C. Multi-threaded Message Processing

Employing the innovative design of the RSVP engine, it
was possible 1o quite easily replace the initial sequential mes-
sage processing by a multi-threaded protocol engine with an
incremental implementation effort of about 6 weeks. A fixed
number of worker thrcads can be used to concurrently process
RSVP messages. Because ot a current lack of system support,
certain interactions with the operating system, e.g. thc recep-
tion of raw IP packets, cannot be performed truly multi-
threaded. Therefore, those operations are currently carried out
sequentially. As a consequence, in addition to the worker
threads, there is a dedicated thread to imtially reccive and dis-
patch protocol messages. Furthermore, a separate thread is
created to handle timer events. Synchronisation points are sct
at

* access to the central state repository (synchronisation

point per session),

* interfaces to wratfic control (synchronisation point per

interface),

* access Lo the central imer management (global synchro-

nisation point), and

= access fo certain system services (global synchronisation

point, see above).

The design of mulii-threaded message processing is
sketched in Figure 3. There are iwo options to employ this
design, which can be chosen at compile time. The first option
allows for an arbitrary number of worker threads, simulating
the situation of a router possessing multiple CPUs as control
engine. The other alternative tries to mimick operation in a
potential high-end router, which has a dedicated CPU at each
network interface.

Of course, using multiple threads on a single-CPU worksta-
tion cannot be expected to significantly increase performance
other than potentially providing improved interaction with
external I/0 operations.

The design could be further improved. For example, the
global lock for the timer system could be replaced by more
fine-grained locking for each slot of the timer container. On
the other hand, with the fuzzy timer scheme, access to the
timer container is not as lime-consuming and critical as with a

data flow

Session Trmer Sydem
Contiiner Management Services L
Lock i c
B S e N N
Msg Massugre Processor | f—=— >| Session } 3| oire N-{ N4
L R ;
.
L »
[Mage broessor [r=te=—t 3{ sewim | "\ Af{orrc
- “ N, h 3 b 4 Ng
1 .
Message Processor | F—=f== = - | o ~ e

L, Lock' access hwk Mg, inconmig messape I, outg(!iﬂfl lmertace

TC: trafiw conurol

[

Thread

Fig. 3. Multi-threaded message processing.

sorted container. To this end, the purpose of this multi-thread-
ing extension is 1o demonstrate the simplicity and feasibihity
of parallelizing RSVP operations as a proof of concept, Indic-
ative performance tests have been carried out and are
described in Section V.D.

1t becomes very obvious that the object-relationship design
alleviates the task of parallelizing message processing a lot.
The reasons are given by the natural encapsulation of data and
procedures in an object-oriented design. This allows for easy
identification of synchronisation points. Because all staic
objects are stored and accessed through the session object, no
additional Jocking is necessary for them, besides acquiring a
single lock for the session.

1V. EXPERIMENT SETUP

The performance experiments were carried out on standard
PC-based workstations. which serve as a router platform run-
ning FreeBSD 3.4. These workstations are equipped as fol-
lows:

* single Pentium III processor, 450 MHz, 512KB cache

» point-to-point 100 Mbit/sec Ethernet links, 3Com

3c905C-TX interface cards

« Gigabyle GA-6BXU mainboard, standard hard disk

« 128 MB RAM main memory

The total cost of this equipment as of December 1999 is
approximately 600 Euros plus 50 Euros per network interface.
For the tests. 6 nodes are connected with each other as
depicted in Figure 4. Ns is used as destination host and Ny as
source host. Multiple unicast sessions are created by specify-
ing multiple port numbers. Since handling of API sessions
creates additienal overhead at the respective end node, Ny and
Ng are used as additional source and destination hosts, if a
large number of sessions is created. The RSVP refresh interval
is set to 30 seconds, as suggested in [1]. The RSVP daemons
run in single-threaded mode (except for Section V.D) and
exchange basic RSVP messages only, without policy data and
integrity objects. However, all experiments encompass the
generation and transmission of confirmation messages.

The load generator at Nj (N;) creates sessions and path
advertisements with a randomized time interval in between,

S
observation points

Fig 4. Setup for performanee measurements.

until a certain number of sessions n is reachcd. The upper
bound of this time interval can be chosen for each experiment.
When the target number of sessions is reached, the load gener-
ator creates and deletes sessions with the same randomzed
time interval respectively, in a way thal the number of sessions
is kept in the interval [n— L0,n]). The receiver at N5 (Ng)
responds (o each path advertisement by immediately generat-
ing reservation requests, which establish the end-t¢-end flow
reservation.

The observations are made at Node Ny and N, Measure-
ments are done by periodically executing top and recording
the highest numbers for current total memory consumption
and percentage of raw CPU time that is reported for execution
of the RSVP daemon on either node. Note that this kind of
measurement introduces some inaccuracies and inherent ran-
domness, which however should not mask the principle mes-
sage of the results.

V. EXPERIMENTAL RESULTS

In order to assess the performance of an RSV P implementa-
tion and to address the usual concerns against its processing
overhead, a number of performance experiments have been
carried oul. It is important 1o mention at this point that the
KOM RSVP engine has not been subject to careful and
detailed tuning at the coding level. No specific optimization
has been carried out, other than the general design decisions
and algorithmic improvements described earlier.

The first series of tests compares the performance of the
KOM rsvpd with the 1S1 rsvpd. The second series investigates
the current performance limits of the KOM rsvpd and the fol-
lowing cxperiments analyse the effect of algorithmic improve-
ments that have been implemented. Additionally, an
experiment is reported, which investigates the influgnce of the
average flow lifetime on the processing effort. Finally, some
experiments have been carried out to obtain addiuonal mter-
esting performance figures, e.g., about the cnd-to-end setup
latency.

A. Comparison with Existing Work

For this first series of tests, no specific oplimizations have
been tumed on in the KOM RSVP engine. The timer container

has been configured to consist of 20,000 slots covering 50
milliseconds zach. Both implementations have been compiled
with the same optimization and debugging flags. The hash-
based session container does not provide any performance
gain for either alternative, because all fows are targeted to the
same host.

The ISI rsvpd contains bugs, which basically prohibit 1est-
ing scenarios that involve the deletion of multiple sessions. An
investigation of this problem revealed at least one non-trivial
error in the memory management to be responsible for this sit-
uation. It is quite easily possible to fix the most prevalent
problem, such that the software does not crash too often, but
as a result, memory leaks prohibit reasonable operation.

Because of these problems, the performance figures for the
181 rsvpd can be considered as valid only 10 a limited extent.
We have chosen not to fix the above bug to avoid memory
leaks, which otherwise result in an infinite increase of
processing effort and memory consumption and thus, preciude
to obtain rezlistic performance figures. As a result, the num-
bers for the 151 rsvpd can only be considered as a lower bound
for CPU consumption, because it always crashes before a sta-
ble situation with creation and removal of sessions can be
reached. The listed results consequently show the situation
just before the crash. With the KOM rsvpd, each test has run
for several minutes. The listed percentage of CPU time is the
highest number that has been observed during that time. The
memory consumption has always stabilized at the reported
amount. The results are depicted in Table 1.

The load generator used in these experiments first estab-
lishes the configured number of Aows and then circulates
through the flows and removes and re-establishes them. In
order to vary the lifetime of each fiow, the interval between
creation respectively removal of subsequent flows is adjusted.
Due to space limitations, this is not shown directly in the
tables. Instead, the average lifetime of a single flow is shown,
which is calculated according to the fact that the creation/
removal interval is evenly distributed between zero and the
maximum interval. The maximum creation/removal interval is
set to 25 milliseconds for the tests with 2000 flows and more.
Therefore, the average lifctime increases with an increasing
number of flows. Note that the interval is appropriately
adapted for the tests with smaller numbers of flows, such that
the average lifetime of flows is not much smallcr than the
RSVP refresh interval, The influenee of the average flow life-
time is {urther studied in Section V.E.

It can be derived from these performance figures, that the
KOM RSVP engine performs significantly more efficienily
than the ISI rsypd. While it is unclear how much of this effi-
ciency gain has to be attributed to a better coding style in gen-
eral, it can obviously be concluded that the irnovative objeet-
relationship design at least dees not prohibit performant
implementation, however, at the expense of additional mem-
ory consumption. The KOM rsvpd consumes almost twice the
amount of memory per flow when compared to the 151 rsvpd

TABLE
PERFORMANCE OF ISI RSYPD VS KOM RSYPD
Expenment settings 1S rsvpd KOM rsvpd
Flows Avg lifetime % CPU Memory % CPU Memory

0 - 0.00 1926K .00 2724K
500 25.00 sec 2035 2372K 1.13 3620K
1000 2500 sec 6.18 2856K 3.56 4544K
1560 28.50 sec 10.01 3296K 532 5472K
2000 25 00 sec 14,89 3768K 1.37 6388K
2500 31.25 sec 20.51 4244K 961 7308K
3000 37.50 sec 2593 4728K 13.38 8236K
3500 4375 sec 3374 5208K 16.60 S160K
4000 50.00 sec 42.53 5692K 20.26 10084K
4500 56.23 sec 51137 6168K 2373 HOOSK
5000 62.50 sec 6045 6656K 27 .83 11928K
5500 68 75 sec 79.69 7140K 32.96 [2848K

* nuinber of successful reservations: ~ 5400

numbers. This can be attributed to the fine-grained implemen-
tation of state relationships, but also to the fact that memory
consumption was not the pnimary goal for optimization of our
implementation.

B. Performance Limits

The goal of this set of tests is to find the upper limits on the
number of reservation requests for a tuned version ol the
RSVP implementation. The experiment setup and measure-
menls have been done as described above. In the tuned ver-
sion, the timer container consists of 100,000 slots covering 10
milliseconds each and the code for AP1 processing is disabled
ar intermediate nodes. Assertion checking and debug output is
turned off, Since these tests are carried out in a limited infra-
structure with at most two destinations hosts, port numbers are
included into the hash calculation for the session container in
the tuned version. Because doing so establishes a perfect hash
distribution for the test scenario, the session hash index has
been restricted to 4096 to simulate a realistic situation. Fur-
thermore, the Joad generation is distributed between all four
end nodes as depicted in Figure 4. The results are listed in
Table 1I.

The following observations ¢an be made in this experiment.
Tuning the protocol implementation reveals a significant
potential for increasing the performance. A router platform
based on standard PC hardware can handle the full signalling
for 50,000 unicast flows. The larger amount of initially allo-
cated memory for the tuned version can be attributed to the
additional memory requirements for the more fine-grained
timer container. The memory requirements per flow remain
unafleeted. Two additional tests are listed, in which the crea-

TABLE Il
PERFORMANCE LIMITS OF KOM RSVPD

basic KOM rsvpd
(load gen. by 2 nodes)

tuned KOM rsvpd

Expenment setfings (load gen. by 4 nodes)

Flows Avg lifetime % CPU Memory % CPU Memory

0 - 000 2724K 0.00 4724K
2500 31 25 sec 9.91] 7308K 439 9124K
5000 62 50 sec 2743 11928K 8.50 £3940K
7500 93.75 sec 5811 [6548K 11.38 18560K
9800 122.50 sec 93.12 20788K - --
10000 125.00sec 65.007 21156K 1475 23168K
15000 187 50 sec - - 2095 32396K
20000 250.00 sec - - 2173 41632K
30000 37500 sec - -- 40.67 60056K
40000 50000 sec - - 3507 78556K
50000 625.00 sec - - 6799 97012K
40000 240.00 sec -- -- 56.69 78556K
30000 250.00 sec -- -- 7056 Q7012K

* load gencrated by -4 nodes. see main 1ext

tion/removal interval is set in a way that the average lifetirne
of a flow is approximately 4 minutes. The resulting CPU load
numbers demonstrate that the RSVP engine is indeed able to
handle such a large number of sessions, even when assuming a
realistic average lifetime of calls. In fact, the impact of the
lifetime of {lows seems to be quite low. Further details are dis-
cussed in Section VE.

One particular detail can be observed when comparing the
CPU load numbers for the basic version in Table IL, depending
on how many nodes participate in load generation. 1f four end
nodes are used, the resulting load 1s substantially smaller and
the performance limit is ipcreased. The explanation of this
behaviour is related to the implementation of the timer wheel
in combination with the select system call, which is used to
query for incoming packets. If four end nodes participate in
load generation, messages arrive at intermediate nodes at three
network interfaces, instead of two. Each switch between timer
management and message reception incurs a call to select,
which is expensive. 1t takes at least 10 milhseconds on a regu-
lar Linux, Salaris and FreeBSD operating system (o perform
this system call when a limeout is given. After select
retumns, exactly one message is read from each eligible inter-
face. Now, if messages arrive at more inlerfaces, more mes-
sages are potentially received, before the next invocation of
timer management. This leads to less coniext-switching
between message reception and timer management and thus,
reduces the total number of systern calls, which in turn
decreases the sysiem load.

Figure 5 shows an overall picture of the experimental
results from this and the previous section. The graph depicts

[
t basic KOM v —nem
wncd KOM rsypnl g

Pereennage of CPU Lind

30000 ASO00 40000

25000

0 M "
0 SO0 10000 13000 20000

Numper of Cuncurrzny Sessions

43000 50000
Fig. 5. Pedformance curve for 1S and KOM rsvpd.

the fraction of CPU load as a function of the number of ses-
sions.

C. Fuzzy Timer Handling

While in theory only fuzzy timer handling can guarantee
the property of overall linear complexity by simplifying
access to the timer container, the previous experiment shows
that, by enabling a fine-grained timer wheel, this linearity is
already observed. In fact, a further modification of irnplement-
ing fuzzy timers 1s nceded to achieve any visible improvement
at all. Because of the effects of switching between timer man-
agement and interface service, which is described in the previ-
ous section, all timers from the current slot are fired whenever
the systern enters the timer management. This further reduces
the number of context switches and calls to select and con-
sequently, the overall processing load. A comparison with reg-
ular operation, which indicates the additional performance
gain, mainly at a high session load, is shown in Table 1II. Ata
load of about 58,000 flows, the system exceeds the maximum
amounlt of main memory that is available and starts swapping
to disk. This prohibits any further performant execution under
this high Toad.

It turns out that there is a trianguolar relationship between
the kernel clock granularity, the minirnum timeout needed for
the select call and the size ot the time slols. It might actu-

TABLE Il
PERFORMANCE OF FUZZY TIMER OPTIMIZATION

Experiment settings tuned KOM rsvpd fuzzy KOM rsvpd

Flows Avg litetime % CPU Memory % CPU Memory
0 -- 0.00 724K 000 4724K
20000 250.00 see 2753 41632K 2612 41632K
40000 2440 00 sec 56.69 78556K RERY) 78356K
50000 250.00 sec 70.56 97012K 63.96 97012K
38000 232.00 sec - -- ~70.00 >108M

F;_’E

observation point

Fiz. 6 Experimcut sctup for parallel processing

ally be possible to increase the performance limits by increas-
ing the range of time slots or increasing the clock granularity.
However, we have not done any such experiments, so far,

D. Parallel Message Processing

This experiment is carried out to investigale the scalability
of multi-threaded message processing on a multi-processor
platform. This experiment uses the first alternative (0 employ
mulid-threaded message processing as presented in
Section HI.C, in that cach message processing thread is bound
to a specific network interface. The experiment setup is very
simple and shown in Figure 6. The end-systems E| and E, are
the same PCs as in the other experiments and are connected to
a router R, Both end-systems act as sender and receiver and
create a large number of Hows. A SparcServer 1000 with four
60Mhz CPUs runnjng Solaris 2.6 serves as router. Note that
this router hardware provides significantly less absolute
processing power compared to the other tests. Because a sepa-
raie thread is needed in the RSVP daemon to receive raw 1P
packets and dispatch them to the worker threads and another
thread is used for timer handling, ar least four CPUs are
needed to carry out a reasonable experiment for this scenario.

In order to test the capabilities of this system, tests have
been run in single-threaded mode and in multi-threaded mode
with enabling an increasing numbers of CPUs. The goal of
each test is to find the highest number of flows that can be
handled reliably. Therefore, the RSVP daemon has been
slightly modified to regularly check the difference between
the number of PSB and RSB objects. If this difference
exceeds a certain threshold, the daemon stops and reports the
number of successfully estabtished reservations. Because the
total number of flows that can be sustained by this router is
rather small, the RSVP refresh time is set to 3 seconds in order
to increase the effect of established sessions compared o the
creation of new ones. As well, to decrease the high influence
of system code, which cannot be executed truly mult-
threaded, the software is compiled without compiler optimiza-
tion. The results are listed in Table IV, Each test is executed
ten times and both the highest and lowest result are not taken
into account for calculating the average result.

It becomes clear from the resulting performance figures,
that the potential for parallelization gains is indeed given, but
certainly limited, at least on the tested platform. Furthermore.
when comparing the results for single-threaded execution with
those of multi-threaded execution on 2 single CPLI a signifi-
cant overhead for synchronization mechanisms can be

TABLE IV
PERFORMANCE OF PARALLEL MESSAGE PROCESSING

Number of Mumber of Aows Number of flows
CPUs {tadividual tests) (average)
single- 431, 425, 464, 473, 466, 467
threaded 450, 450, 494, 520, 489
[345, 389, 386, 380, 373, 371
373, 393350, 357,366
2 532,478, 571,605,571, 454
532, 563, 556,318,572
3 707,723, 693, 756,731, 719
TI8, 711,702, 729, 727
4 502,621,711, 662,652, 653

655, 648, 666, 655, 663

observed. These limitations must be partially accounted to the
insufficient support of the operating system to support multi-
threaded reception of raw IP packets and other low-level serv-
ices, but also to inherent parallelization limitations of RSVP
processing and the improvable implementation design of the
parallel code in the KOM protocoel engine. To this end, the
result of implementing mulii-threaded message processing is
sumewhat unsatisfactory. On the other hand. the design and
implementation of multi-threaded message processing should
be considered as a proof of concept, rather than the final
design of a production-level implementation. Especially, with
proper operating system support, the need for a separale dis-
patcher thread (which might very well form the botileneck of
the curent system) and its synchronisation would be elimi-
nated. As discussed in Section V.B and Section V.C, the over-
all performance of the RSVP daemon 1s to a great extent
determined by the system-level task of receiving packets from
the network and the particular interaction with the user-level
daemon. This assurnption is further verified in Section VL

Another conclusion can be drawn from these tests, which
backs up the above considerations. Testing the efficiency gain
of a multi-threaded RSVP implementation on a simple and
small multi-processor workstation as in these lests, is proba-
bly not sufficient to fully reveal parallel processing efficiency.
For example, the performuance drop when observing execution
on 4 CPUs can be explained as follows. On this platform, up
to 3 CPUs can be buund to a process (process group) exclu-
sively. Effectively, in the tests with 4 CPUs no exclustve bind-
ing of CPUIs can been done and therefore, the RSVP daemon
competes with other processes. Consequently, the overall
scheduling effort increases for the operating system. This is
reflected by the lower performance and indicates, that these
tests cannot be regarded as real tests with 4 CPUs,

As discussed in Section IIL.C, there is a broad field for fur-
ther work on tuning the design and implementation of multi-
threaded RSVP operations. Additionally, it would be very
desirable to compare the results obtained during these tests
with performance figures from different hardware and operat-
Ing system platforms.

TABLE V
[NFLUENCE OF AVERAGE FLOW LIFETIME

Expenment settings fuzzy KOM rsvpd

Flows Average lifetime % CPU Memory
10060 150.00 sec 13.96 23168K
10000 125.00 see 14.75 23168K
10000 100.00 sec 1499 23168K
10000 50 00 sec 1577 23163K
10000 25010 sec 16.65 23168K
LOOK) 15.00 sec 2148 23168K
10000 5.00 sec 77.10° 23168K

* number of successful reservations: - 9700

E. Liferime of Flows

The experiments tn Section V.B and Section V.C indicatc
that the average lifetime of flows has only limited influence on
the computational effort. In order to turther investigate Lhis
issue, a dedicated set of tests has been done 1o examine this
¢llect. The results are listed in Table V.

The figures clearly show, that the resuling CPU load for a
certain number of Hows is largely wnaftected by the average
lifetime of flows, as long as it 1s above the RSVP refresh inter-
val {again set to 30 seconds here). Thereby, these numbers
back up the conjecture that the average lifetime of flows has
only limited influence on the overall processing effort. Since
RSVP state is refreshed periodically, the average flow lifetime
basically determines the ratio of setp messages compared to
refresh messages, whereas the overall number of messages is
approximately the same. It can thus be concluded that there is
not much difference between the individual processing effort
for setup messages and for refresh messages. Consequently,
when flow lifetimes arc multiples of the refresh interval, a
large fraction of processing effort is due to refresh messages.

Indirectly, this result demonstrates the large potential for
performance gains by extending RSVP with mechanisms to
reduce the amount of state refresh messages, like those
referred to 1n Section 1I. However, this particular behaviour
could also be an artefact of this specific nnplementation.
“Therefore, further work coveving different implementations
would be needed to investigate the details. Unfortunately, at
this time, no such implementation is available. The ISI rsvpd
cannot reliably handle the deletion of sessions, hence, this
kind of experiment is currently not possible.

If the lifetime of Alows becomes significantly shorter than
the refresh interval, this generates an absolute increase in the
number of RSVP messages and results in a much higher
processing load. In factl. for these cases, il can be noticed in
Table V that the increase of CPU load is approximately
tnverse proportional to the lifetime of flows.

E Other Experiments

Some other expermments have been carried out 1o assess this
implementation under a variety of aspects. Becausc their
results are highly bound to the specific scenario, they are
somewhat illustrative, but they may not be regarded as rele-
vant as the above experiments. Hence, they are not docu-
mented here in the same lcvel of detall.

1) RSVP & Packet Classification

We have done the following experiment in order to measure
the combined throughput of signalling and packet classifica-
tion and scheduling. Along two adjacent FreeBSD-based rout-
ers reservations for 10,000 flows are established, similar to the
earlier experiments. Each of these flows requests a small
amount of bandwidth. Then, a traffic source emits a constant
packet stream, which belongs to one of the reserved flows.
Although this packet stream exceeds the reservation by far, an
intermediate node must still classify and schedule all packets.
We observed that in combination with HESC scheduling from
the ALTQ package [19], two adjacent routers running KOM
ssvpd can both sustain the signalling and traffic control config-
uratton for 10,000 flows and at the same tune, classify and
schedule 25,000 packets per second. Note that this result does
not make any statement aboul the aspect whether ali flows
actually receive their QoS objective. Evaluating the ALTQ
package is beyond the scope of this paper.

2) End-to-End Setup Latency

Using the setup shown in Figure 7, tests have been carried
out to measure the setup latency of RSVP requests. R, and R,
are not handling any background RSVP session. R and R, are
loaded with up to 20,000 flows. The total end-to-end setup
latency wsuvally varied between 22 and 26 milliseconds, inde-
pendent of the load of intermediate routers. Consequently, the
latency of bidirectional session setup can be estimaled to be at
most 5-6 milliseconds per intermediate hop, which shows that
gven along a path with a large number of hops, the end-to-end
setup latency will very likely be acceptable.

VI. PROFILING DETAILS

In order to turther investigate the performance of our RSVP
mmplementation, we generated profiling information from an
experiment equivalent 1o those described in Section V. The
protocol engine was compiled for opttmized execution as in
Section V.C and has been loaded with the signalling of 20,000
unicast flows. Table V1 shows the execution times for various
operations, which represent complete and non- overlapping

Send Ry R, —‘? —-'? \——r Reuy

Fig. 7. Experiment setup for end-1o-end lateucy.

TABLE VI
RELATIVE PROCESSING EFFORT OF PROTOCOL OPERATIONS

CGperation % Execution Time
System initialization/cleanup 1.3
Packet awaiting 93
Packet reception 6.8
Packet parsing 10.7
Message processing 53.1
Timer handling 18.3

Total

100.0

partitions of the overall message processing. Because of the
characteristics of profiling, the execution time hcre is relative
to the daemon’s overall accumulated processing effort.

It can be observed from this table, that packet parsing con-
sumes a significant amount of execution time. This can be
attributed 1o the fact that we have not spent effort to oplimize
the code tor parsing RSVP messages. In Table VI, the figures
for packer awaiting and packer reception denote pure system
activities, 1.¢., interaction with the networking stack. The
operation of sending out packets is encompassed in message
processing. The execution time of further system activities,
namely sending out packets and looking up routing entries are
encompassed in timer handling. Details about system opera-
tions are illustrated in Table X below. In Tahle VII, we
describe how the effort for message processing is further sub-
divided among more fine-grained operations.

Not surprisingly, PATH processing consumes the major
amount of execution lime, mainly due to looking up the rout-
ing information for the destination address (see below). Nole
that due to their similarity, the operations for processing a
RESV and RTEAR message are implemented in the same
method, therefore the execution time cannot be subdivided
between both.

Another interesting investigation is to analyse the effort
necessary for management of the timer system. This number

TABLE VII
RELATIVE PROCIESSING EFFCRT OF MESSAGE PROCESSING OPERATIONS

TABLE VI
RELATIVE PROCESSING EFFORT OF TIMER MANAGEMENT

Operation % Execution Time
Tuner insertion & removal 1.2
Timer maintenance & fiting 4.1
Total 11.3

is somewhat difficult to assess, because of code inlining and
optimized compilation. The results are listed in Table VIIL
These are the raw numbers for timer management, ie.,
excluding the execution times for subsequent actions. They
explain the limited cffect of fuzzy timer handling on top of an
efficient timer container siructure. Note that these numbers are
not related to the execution time reported for timer handling in
Table VI. The numbers here denote the raw effort for timer
management, excluding for example the operation that is car-
ried out when a timer is fired.

Table IX illustrates how much execution time is spent for
carrying out sysiem services, The operations listed in this
table are only those contributing significantly. It turns out that
the RSVP engine executes system-level code for more than
70% of its time, large parts of this time interacting with the
kernel. Considering the restrictions discussed in Section II1.C,
these figures explain the limited performance gains by paral-
lelizing message processing.

1t wrns out that looking up routing entries contribuies sig-
nificantly o the overall execution time for systermn services.
This effect can be explained by the rather expensive routing
interface on FreeBSD, which requires at least two interactions
with the operaling syslem’s kernel in order to obtain a routing
entry. This interface might bear the potential for optimization,
at least in case of unicast routing lookups, which only deliver
a single routing eniry as result

Finally. memory management in general can be observed as
strongly contributing to the overall execution time. Additional
performance gains might be possible by replacing the sys-
tem’s universal memory management algorithms by a mem-

TABLE IX
RELATIVE PROCESSING EFFORT OF SYSTEM SERVICES

Operation % Execution Time Operation % Execution Time
Pre- and postprocessing 36 Routing lookup for PATH messages 16.2
Session location L6 Routing lookup for RCONF messages 25
PATH processing 283 Packet awaiting S.3
PTEAR processing 08 Packet reception 68
RESV/RTEAR processing 10.6 Packet sending 88
CONF message forwarding 3.4 System time lookup 8.2
Refresh reservations 28 Memory management (otal) 200
“Total 531 Total 71.8

ory management system, which is specifically optimized for
the type of operations needed for RSVP processing.

In general, thc data generaicd from profiling explain the
relation between certain results from the performance tests
and back up assumptions about the internals of this implemen-
tation. They might serve as a basis for future detailed code
optimization of this or the design of other code.

VII. CONCLUSIONS AND FUTURE WORK

The assessment of RSVP’s technical feasibility started with
collecting and analysing the available material, Very soon it
became obvious that the publicly available code as well as
previously published work were not sufficient to study the
aspects that were deemed interesting for this work. Therefore,
a new implementation of RSVP has been developed from
scratch. It employs the notion of objects and relationships
between them to efficiently store and access protocol state. It
15 innovative in its design and for example, allows easy inclu-
s1on of multi-threaded message processing. Furthermore, cer-
tain design and algorithmic extensions for the implementation
of an RSVP engine have been proposed in Section II1. A high
potential for performance gains has been demonstrated by
tuning the implementation appropriately.

In the performance experiments of Section V, RSVP has
been evaluated with respect to its basic mode of operation.
The main goal of this work is to sbow the performance poten-
tial, even without further changes to the protocol. From the
performance figures, it can be deduced that the suitability of
RSVP as a gencral purpose signalling interface and protocol is
much better than generally assumed. A standard PC router, at
equipment cost of about 600 Euros (plus 50 Euros per net-
work interface, as of December 1999), can handle the signal-
ling for more than 50,000 sessions in a realistic scenario.

Essentially, the user-leve]l RSVP implementation presented
in this paper 1s not the bottleneck for operation on a standard
UNIX platform. Instead, the execution of system services
largely determines the overall performance. This can be con-
cluded from the experimental results, including those measur-
ing the capabilities of mulii-threaded message processing and
is further backed up through profiling experiments. Conse-
quently, further work, especially on different hardware and
operating system platforms, is needed to better understand the
aitimate limits of an RSVP engine. As discussed in
Section V.C, furthcr experiments can be carried out, which
investigate the effect of the clock granularity and size of time
slots on a FreeBSD platform.

Implementation of a software platform for general end-to-
end service signalling remains an ongoing effort for us. We
are planning to investigate the effects of RSVP extensions as
referred to in Section II.B on its feasibility for the purpose of
serving as a general signalling protocol. Furthermore, we will
focus our future work on inter-operation between RSVP sig-
nalling and data-forwarding technologies, for example Diff-

Serv, MPLS or ECN. Last but not least, we plan to study the
impact of mobility and to design general solutions for the
inclusion of mobile routing protocols into an overall QoS sig-
nalling architecture.

REFERENCES

{11 R.Braden, L. Zhang, S. Berson, 8. Herzog, and S. Jamin, RFC 2205 -
Resource ReSerVation Protocol (RSVP) — version | functional specifi-
caton. Standards Track RFC, September 1997.

(2] A.Ncogi, T. Chiueh, and P. Stirpe. Performance analysis of an RSVP-
capahle router. IEEE Nenvork Magazine, 13(5):36-63, Septeinber 1499,

[3] 1. Cselenyi, G. Feher, and K. Nemeth. Benchmarking of signaling basced
resource reservation in the Internet. In Proceedings of Nebvarking 2000,
pp. 643-654. Springer LNCS 1815, May 2000

[4] USC Information Scicnves Institute. RSVP Software. hip:/f
www.1si.edu/divi/rsvp/rclease hrmt.
|3] E.Baswrk, A Birman, G.Delp, R.Guerin, R. Hags. 8. Kamat,

D. Kandlur, P. Pan, D. Pendarakis, V. Peris, R. Rajan, D. Saha, and
D. Williarns. Design and implementation of a QoS8 capahle switch-rout-
er. Camprpter Nerwarks. 11¢1-2):19-32, January (999.

[6] P.Pan and H. Schulzrinne. Yessir. A simple reservation mechanism for
the Internet. ACM Computer Communication Review, 29(2):89-101,
April 1999,

[?1 P.Panand H. Scholzrinne. S1aged refresh timers for RSVP. In Proceed-
ings of Global Ipternet’ 97, Phoenix, Arizond. USA. November 1997. also
IBM Research Techrical Repont TC20966.

[8§] L. Mathy, D. Huichison, 8. Schmnid. and 8. Simpson. REDO RSVP: Ef-
ficient signalling for multimedia in the Internet. In fnreractive Distribul-
ed Multimedia Systems and Telecommunication Services. Springer
LNCS 1718, October 1999,

[3) L.Berger, D-H. Gan. G Swallow, P.Pan, F. Tommasi, and
S. Molendini. RSVP Refresh overhead reduction extensions Internet
Draft draft-ictf-rsyp-refresh-reduct-05.txt. June 2000. Work in Progress.

[101 A. Teris, R. Braden, 8. Vincent, and L. Zhang. RFC 2745 -~ RSVP Di-
agnoslic messages. Stardards Track RFC, January 2000,

V1] A. Terzis, J. Krawczyk,). Wroclawski. and L. Zhang. RFC 2746 - RSVP
Opcration over [P tunnels. Standards Track RFC, Janvary 2000.

(12} F. Baker, B. Lindcll, and M. Taiwar. RFC 2747 - RSVP Cryptographic
authentication. Standards Track RFC, January 2000.

[13) 5. Yadav, R. Yavatkar, R. Pabbad, P. Ford. T. Moore, and §. Herzog.
RFC 2752 - ldentity represcmiation for RSVP. Standards Track RFC,
January 2000,

[14) P. Whilcand). Crowcroft. Integrated services in the Internet: State of the
an. Proceedings of [EEE, §5(12):1934-1946, December 1997.

[15] M. Karsten. Dcsign and iinplementation of RSVP based on objcct-tela-
tionships. In Proceedings of Nenworking 2000, Paris, France, pp. 325~
336. Springer LNCS 1815, May 2000

[16] M. Karstcn, J. Schimitt, and R. Steinunetz. Generalizing RSVP’s traffic
and policy control interface. In Proceedings vf the 7th International Con-
Jerence on Purallel and Distributed Svstems Wuorkshops (ICPADS 00),
Iwate, Japun. pp. 249-254. 1EEE, Piscatay Way, NJ, USA, July 2000.

[17] M. Karsten, J. Schmit, N. Berier, and R. Steinmetz. On the feasibility of
RSVPas general signalling interface. In Proceedings of Qualiry of future
Interner Services Workshop (QofIS 2000). Berlin, Genmany. pp. 105-
L16. Springer LNCS 1922, September 2000.

(18] G. Varghese and A. Lauck. Hashed and hierarchical timing wheels Data
structures for the efficient implementation of a timer facility. Operating
Svsiems Review Special Issue: Proceedings of the Eleventh Syniposiun
on Operating Systems Principles, Austin. TX, USA, 21(5):25-38, No-
vember 1987

{19] K.Cho. A framework for alternate qucueing- Towards irafiic manage-
ment by PC-UNIX based romers In Proceedings of USENIX 1998 An-
nuol Technical Conference, New Orleans, LA, USA, June 1998

