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Abstract - In  this paper, we describe implementation 
aspeets and performance results of an  innovative and pub- 
licly availablie RSVP implementation. Much debate exists 
about the applieabilily of RSVP as  a signalling protocol in 
the Internet, particularly for a large number of unieast 
flows. While there has been a significant amount of work 
published on the theoretical concepts of RSVP signalling 
a n d  eonjectures about its presumed shortcomings, rather 
little attention has been paid to the implementation details 
of the core iprotocol engine. With our  work, in spite of 
being still fa'r f m m  a f i n d  judgement, we try 10 shed light 
on this issue by presenting certain design details of a new 
implementation and a stody about its performance. One 
particular n:sult is given by the observation that  a rela- 
tively cheap router based on PC hardware can sustain the 
signalling foir more than 50.000 unicast flows. * 

Much debate exists about the applicability and performance 
capahilities c~f RSVP [ I ]  as a QoS signalling protocol for the 
Internet. However, the discussion of this issue usually lacks 
solid perforniance figures fram real exprriments using n real 
implementation. Furthermore, the issues of signalling com- 
plexity (control plane) in general and packet forwarding com- 
plexity (data plane) of per-How and per-hop reserved Rows are 
often confusi-d. The goals of this paper are twofold. First. we 
aim tu provide additional insight about RSVP's performance 
capabilities by presenting central design characteristics of our 
protocol implementation. Second, we present detailed experi- 
mental data descrihing load measurements we have carried 
out using this implementation. These data cannot be used to 
draw a single major conclusion, but represent detailed hard 
facts for others to extrapolate them into their respective iniple- 
mentation c~nntext. We do however observe that, despite its 
undebatable complexity. RSVP can perform heiter than often 
assumed. Addirionally, we conclude that there is potential for 
further optiriiization, both through protocol extensions as well 
as internal optimization of the protocol engine. 

In the pa:;t, various proposals have been published, which 
describe use:ful extensions to the hasic version of RSVP (see 
Section l1.B for details). The goals of these extensions are 
mainly to complete RSVP's specification in the areas of secu- 
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rity and reliability and furthemore, to improve the state 
refreshing mechanism, which is already identified as currently 
Iimiting overall perforrnance. On the other hand, little atten- 
tion has been paid to the implementation of the core protocol 
engine itself. As a result, RSVP is often assessed as having a 
poor perfomance, however, those judgments are rarely based 
on solid data. Therefore, the internal design structure and 
algorithms. as well as the overall protocol performance. have 
been suhiect to careful investigation in this work. In this eval- 
uation, we focus on large numbers of unicnst flows. One rea- 
son is given by the prohibitively extensive infrastructure 
necessary to carry out laige-scale experiments with multicast 
communication. The second and more important reasoa is that 
the suitability of RSVP to handle large multicast groups, for 
which it was intentionally designed, is commonly undisputed. 
Rather, the handling of a large nurnher of unicast Hows is con- 
sidered as the dominant scalability problem of RSVP. 

The paper is strucrured ns follows. In Section 11, we review 
previous work related 10 RSVP perfomnnce and its evalua- 
tion. Seciion 111 presents our RSVP implrmentarion, pnrticu- 
larly certain central design concepts. In SectionIV, we 
describe the general setup for the perfomance experiments, 
while the results are reported in Section V. In Section VI, wc 
present profiling information to further back up certain find- 
ings from the performance experiments. The paper is wrapped 
up by presenting a Summary, conclusion and outlook to future 
work in Section VII. 

A. RSVP Performance 

Little work has been reported to assess the perfomance OS 
commercial RSVP implementations. A notable exception is 
given by [Z], in which a iechnical framework for carrying out 
such tests is presented. From the performance figures for a 
"commercial midrange router" given in [2]; it can be deduced 
that RSVP Row sctup scaIes significantly worse than linear. 
These results indicate that the particular version of the RSVP 
implementation under consideration may have been in a rather 
early development stage and cannot serve as a basis for judge- 
inenls about its signalling perfomance. 

Another investigation of RSVP's perforrnance is reported in 
[3]. However. this work mainly considers an existing imple- 
mentation, the ISI rsvpd (41, which we do not regard as the 
optimal choice for perlorrnance measuremenrs. This is further 



documented in the rest of this ~ a o e r .  Some oerformance num- 111. KOM RSVP ENGINE . . 
hers are listed in [3] for another commercial RSVP implemen- 
taiion. However, this irnplerncntation does nui rusidin more 
than 600 sessions and thus, can be assessed similarly to the 
implementation studied in [2]. 

Other puhlished work describes the implementarion of an 
RSVP-capable switch-router in [SI, hut the reported perform- 
ance figures are targeted towards the fundamental capahility 
of the system to deliver QoS objectives in the first place, 
rather than performance of signalling at a large scale. 

In (61, interesting pertomaiice tigures are reported for 
RSVP message processing on a commercial router platfomi. 
However, these perfomance figiires are somewhat without 
contexr. because it is not nientioned under which load condi- 
tions they were measured. Additionally, because these num- 
bcrs arr not the central focus ot the work in [6], not many 
details ahout the cxperiments are given. Consequently. these 
numhers can serve as a basic indication about RSVP's 
processing overhead, hut they cannot be considered as the 
final judgement in the discussion about RSVP. 

In Summary, althougli earlier work and published results 
have already indicated some of the conclusions shown in this 

For an overview and explanation of RSVP, see 1141. Unfor- 
iunately. the only publicly availahle routei- implementation of 
RSVP, the ISI rsvpd, turns out to he of questionahly design 
and coding quality and ~wntains hugs. Theretore, we do not 
consider it as the optimal choice for experimenting with proto- 
col extensions and perfomance assessments and we devel- 
oped a new protocol engine from scratch, termed KOM RSVP 
engine, or KOM rsvpd for shon. The miin design goals of this 
implemcn~~lion arc clarity uf codc, flexihility and exrensihil- 
ity. Additionally, we aim at providing an experimental soft- 
Ware platfomi for other researchers. Such an implemeniation 
on a regular workstation using a common UNIX Operating 
syslem can only serve as a proof ofconcept and research plat- 
fomi for futurc invcstigatioiis. TiicreTore, although we have 
tried to keep the design prepared for efficient opration, we do 
not believe that it is currently necessary to implement for out- 
most efiiciency at the coding level. We have employed an 
objeci-oriented design and the implementation is done in 
C++ It in publicly available nt 
http://www.kom.e-technik.tu-darmctadt.de/rsvp/ 

Paper, we present the tirst thorough study of RSVP's perfom- A. Gelieral Drsipri 
ance. ~ h i s s t u d ~  is based on a puhlicly available implementa- 

" 

tion and thus, verifiable by others. A detailed description about the design of this implementa- 
tion can be found in (151. Statc iiil'urmation of RSVPis stored 

B. RSI'P Extensions as objects containing relationships to other ohjects. The con- 

A number of protocol irnproi,ements have been suggestcd 
to increase the perfomiance characteristics of RSVP opera- 
iions. An initial proposal to speed up the service estahlishmenr 
tinie i i i  the presence of occasional p m h t  loss and to reduce 
steady-state refresh signalling overhead has heen made in [7]. 
One of the drawhacks of this approach is the requirrment to 
change the protocol specification and to introduce an addi- 
tional confirmation message into RSVP An improved 
approach has heen described in [SI, which also deals with the 
general issue of reliahility of RSVP rnessages, e.g.. in case a 
service invocation is torn down. Instead of refreshing all the 
state information. neighbouring RSVP nodes only need to 
exchange 'hearrbeats' denoting their IiveIiness. A slightly dif- 
ferent suggestion addrcssing thc samc issuc cvcii more srrin- 
gently is currently developed within the IETF RSVP working 
group [9]. This mechanism addresses further details. such as 
how to discovcr a very short-termed node failure. 

It is heyond the scope of this work to rate rhese differenr 
techniques. However. they cleurly bcar thc potential to diasti- 
cally reduce RSVP's processing requirements ior steady-state 
refresh signalling. This elirninates one of the major perform- 
ance limitations of the current RSVP specification. Other 
RSVP extensions, which are in the process of heing standard- 
ized, encornpass diagnostic messages [IO], inter-operatioii 
with 1P tunnels [ I  I]. cryptographic autheniication [I?] and 
User identity representation [13]. 

tents of a PATH niessage are stored i n  a Path State Block 
(PSB) whereas contents of a RESV message are stored in a 
Resen,ririon Sture Block (RSB). As an example for relation- 
ships, each PSB has a relationship to a Prrvioiis Hup Srare 
Block (PHopSB) represenling the hop from which this PATH 
message has been received. Information concerning a reserva- 
rion at an outgoing interface is stored in an Ourgoing ltirerfuce 
Srure Block (OutISB) and the relationship between reserva- 
tions and PSRs is niodelled as separate object Ourgoing hirrr- 
face ur PSB (OIatPSBj. It turns out that lhis ohject can serve 
as a crystalisation point 10 easily distinguish the operation 
~oniext  when calling the lrathc control rnodule, which is use- 
ful to collocate the respective code. Additionally, it is uscd to 
internallv reoresent an N:M relationshiri bv two I :N relation- , . . . 
ships (which simplifies implementation). Figure I shows the 
entity-relationship diagram fur the design of RSVP staie 
infotmation. Miidclling RSVP statc hy an entity-relaiionship 
diagram is deemed useful hoth for documentation as well as 
efficient implenientation rhrough object-rslationships 1141~ 

Certain detiils regarding the gencric design of the traffic 
and policy control interface are prescnred and discussed in  
[16]. A dcscription of our uverall vision of employing RSVP 
as a general service signalling protocol can be found in [I71 

By far the largest container in an RSVP irnplenieniation is 
necessary for timer handling. In this implementation, a regular 



Fig I.  Eniity-reloiionihip diaprarn ior state blocks 

oi' being sorted according to their precise expiration. During 
each time slot. timers are fired arbitrarily according to their 
location in the simple list. The result is a slight inaccuracy of 
timers compared to their expiration time. The inaccuracy is 
hounded by the length of a time slot and can be considered o 
very reasonable Irade-off. In principle, this scheme promises a 
performance gain over the plain timer wheel, because the 
access com~lexitv is reduced to OII) .  However. because of . . 
the generally small number of timers stored in one time slot, 
such performance gains are hardly visible in reality. On the 
other hand, as discussed in SectionVC, this design can he 

hash-based diita structure is used as follows. All timers of the used to improve with the 
RSVP engine are stored in a hierarchical container. The upper 
layer is implemented as an arriiy representing time slots and 
occessed through a hash. lndividual time slots in the lower 
layer are implemented as sorted lists. The iimount of time cov- 
ered by each slot is configurable. Such a container is only 
capable to foresee a limited amount of timt in the future, 
which should be sufficient for RSVP. In ordcr io accommo- 
date the rare event that timcrs exceed this time horizon, an 
additional sorted list is kept and timers from this list are 
moved into the respective slot when i t  becomes availahle. This 
concept is known as a rinier wheel (181. The access complex- 
ity of such aii implementation is O(log(n)), with n being the 
(varying) nurnber of timers in a slot. Consequently. pcrform- 
ance of this container can be traded off against memory 
requirements hy choosing the size and number of slots. This 
data structure design is shown in Figure 2. 

For RSVP messages. ihis scheme can be optimized even 
further. RSVP is designed to be robust against varying mes- 
sage transmission times and in fact, a large numher of all tim- 
crs are calculated as random numhers within a certain interval. 
As a consequence, there is no demand for outmost precision in 
the scale of a few milliseconds. lf the duration of a time slot in 
the hierarchy becomes small compared to the hasic refresh 
time (e.g. smaller than 100 microseconds when the hasic 
refresh interval is set to 30 seconds), an option to employ 
fuzzy tiniers is implemented. When enahling it, the timers 
within each time slot are stored in a simple FlFO list instead 

t: duration of slot 

s: numher of slots 

T: timer I: 
Fig 2 Desien of timer container 

C. Multi-threaded Message Protessirtg 

Employing the innovative design of the RSVP engine, it 
was possible to quite easily replace the initial sequential mes- 
sage processing by a multi-threaded protocol engine with an 
incremental implementiition effort of about 6 weeks. A fixed 
number of worker thrciids ciin he used to concurrently process 
RSVP messages. Because of a currcnt lack of system support, 
certain interactions with the operating system, e g .  thc recep- 
tion of raw IP packets, cannot be performed truly multi- 
threaded. Therefore, those operations are currently carried out 
sequentially. As a consequence, in addition to the worker 
threads, there is a dedicatcd thread to iniiially reccivc and dis- 
patch protocol messages. Furthermore, a separate ihread is 
created to handle timer events. Synchronisation points are sct 
at 

access to the central state repository (synchronisation 
point per session), 
inierfaces to traffic control (synchronisation point per 
interface), 
access to the central timer management (global synchro- 
nisation point), and 
access to certain system services (global synchronisation 
point. see above). 

The design of multi-threaded message processing is 
sketched in Figure 3. There are two options to employ this 
design, which can be chosen at compile time. The first option 
allows for an arbitrary number of worker threads, simulating 
the situation of a router possessing multiple CPUs as control 
engine. The other alternative tries to mimick operation in a 
potential high-end router, which has a dedicated CPU at each 
network interface. 

Of course, using multiple threads on a single-CPU worksta- 
tion cannot be expected to significantly increase performance 
other than potentially providing improved interaction with 
external 110 operations. 

The design could be further improved. For example, the 
global lock for the timer system could he replaced by more 
fine-grained locking for eiich slot of the timer container. On 
the othcr hand, with thc fuzzy timei- scheme, acccss to the 
timer container is not as time-consuming and critical as with a 



Fig 3. Multi-threaded rnessagc prucrrsing. 

sorted container. To this end, the purpose of this multi-thread- 
ing extension is to deinonstrate the simplicity and feasihility 
of parallelizing RSVP operationr as a proof of concept. Indic- 
ative performance tests have been carried oui and are 
descrihed in Section V.D. 

It becomes very obvious that the object-relationship design 
alleviates the task of parallelizing message processing a lot. 
The reasons are given hy the natural encapsulation of data and 
procedures in an object-oriented design. This allows for easy 
identification of synchronisation points. Because all sratc 
objects are stured and accessed through the session object, no 
additional locking is necrssary for them, besides acquiring a 
single lock for the session. 

IV. EXPER~MENT SETUP 

The performance experiments were carried out on standard 
PC-based woikstations. which serve as a router platform run- 
ning FreeBSD 3.4. These workstations are equipped as fol- 
lows: 

single Pentium 111 processor, 450 MHz. 512KB cache 
point-to-point 100 Mbitlsec Ethernet links, 3Com 
3c905C-TX interface cards 
Gigabyte GA-6BXU mainboard. standard hard disk 
128 MB RAM main memory 

The total cost of this cquipment as of Deccmher 1999 is 
approximately 600 Euros plus 50 Euros per network interface. 
For the tests. 6 nodes are connected with each other as 
depicted in Figure 4. Ns is used as dcstination host and NI  as 
source host. Multiple unicast sessions are created by specify- 
ing mulliple port numbers. Since handling of API sessions 
crcates additional ovcrhead at the respcctive end node, Nz and 
N6 are used as additional sourcc and destination hosts, if a 
large numbei- of sessions is created. The RSVP refresh interval 
is set to 30 seconds, as suggestcd in [ I  1. The RSVP daemons 
run in single-threaded mode (except for SectionVD) and 
exchange basic RSVP messages only, without policy data and 
intcgi-ity objects. However, all experiments encompass the 
gencration and transmission of confirmation messages. 

The load generator at NI  (Nz) creates sessions and path 
advertisements with a randomired tinie interval in between, 

data flow * 

" 
observation points 

until a certain numher of sessions n is reachcd. The upper 
bound of this time interval can be chosen for each experiment. 
When the target number of sessions is reached, the load gencr- 
ator creates and deletes sessions wirh the Same randomired 
time interval respectively. in a way that the number of sessions 
is kept in the interval [ r i  IO.n]. The receivei- at N5 (N6) 
responds to each path advertisement by immediately generat- 
ing reservation requests, which establish the end-to-end tlow 
rescrvalion. 

The ohservations are made at Node N, and N4. Measure- 
ments are done by periodically executing top and recording 
the highest numhers for curreni total memory consumption 
and percentage of raw CPU time that is reported for execution 
of the RSVP daemon on either node. Note that this kind uf 
measurement introduces some inaccui-acies and inherent ran- 
domness, which however should not mask the principle mes- 
sage of the results. 

In order to assess the performance of an RSVP implementa- 
tion and to address the usual concerns against its processing 
overhead, a number of performance experiments have bren 
carried out. It is important to menrion at this poinr that thc 
KOM RSVP engine has not been suhject to careful and 
detailed tuning at the coding level. No specific optimization 
has been camed out, other than the prneral design decisions 
and algorithmic improvements described earlier. 

The first series of tests compares the performance of the 
KOM rsvpd with the ISI rsvpd. The second series investigntes 
the current perfoiniance limits of the KOM rsvpd and the fol- 
lowing cxperiments analyse the effect of algorithmic improve- 
ments [hat have been implemented. Additionally, an 
experiment is reported; which investigates the influence of the 
average Row lifetimc on the pi-ocessing efforr. Finally, some 
experiments have bcen carried out to obtain additional inter- 
esting performance figures, e.g., about the cnd-to-end setup 
latency. 

A. Coniporisori with Existing Work 

For this first series of tests, no spccific optimizations have 
been lurned on in the KOM RSVP engine. l'he timer conlainei- 



has heen configured to consist of 20,000 slots covering 50 
milliseconds ieach. Both iniplementations have been compiled 
with the Same optimization and debugging Rags. The hash- 
hased sessioii container does not provide any performance 
gain for either alternative, becausr all Rows are targcted to the 
same host. 

The ISI rsvpd contains bugs, which basically prohibit test- 
ing scenarios that involve thc deletion of multiple sessions. An 
investigation of this problem revealed at least one non-trivial 
error in the miemory managemenl tobe responsible for this sit- 
uation. 1t is quite easily possihlc to fix the most prevalent 
problem, such that the software does not crash too often, but 
as a result, memory leaks prohihit reasonable operation. 

Because »I these problems, the performance figures for the 
ISI rsvpd cati be considered as valid only to a limited extent. 
We have chosen not 10 fix the nbove bug to avoid memory 
leaks. whicli otherwise rrsult in an infinite increase of 
processing eiFfort and memory consumption and thus, preclude 
to obtain realistic performance figures. As a result, the num- 
bers for the ISI rsvpd can only be considered as a lower bound 
for CPU consumption, hecause it always crashes before a sta- 
ble situation with creation and removal of sessions can be 
reached. Th t  listed results consequently show the situation 
just before the crash. With the KOM rsvpd, eich test has run 
Tor several nninutes. The listed percentage of CPU time is the 
highest number (hat has been observed during that time. The 
memory coiisumption has always stabilized at the reponed 
amount. Tht: resulls are depicted in Fable 1. 

The load generator used in these experiments first estab- 
lishes the configured number of Rows and then circulates 
through the flows and removes and re-establishes theni. In 
order t» vary the Iifetime of each flow, the interval between 
creation reslpectively removal of subsequent flows is adjusted. 
Due to space limitations. this is not shown directly in the 
tables. Instead, the average lifetime o i  a single Row is shown, 
which is ~.alculated according to the iact that the creationl 
removal interval is evenly distributed between Zero and the 
maximum interval. The maximum creationlremoval interval is 
set to 25 milliseconds tor the tests with 2000 Rows and more. 
Therefore, the average lifetime increases with an incrcasing 
number of Rows. Note [hat the interval is appropriately 
adapted Tor the tests with smaller numbers of flows, such that 
the aveiagc: lii'etime of flows is not much smallcr than the 
RSVP refresh interval. The influenee o i  the average flow life- 
time 1s i'urtlierstudied i n  Seclion VE.  

It can be: derived from these perfotmance figures, (hat the 
KOM RSVP engine performs significantly more eificiently 
than the 1.51 rsvpd. While i t  is unclear how much of this effi- 
ciency gain has to be attrihuted to a hetter coding style in gen- 
eral, it can obviously be concluded ihat the innovative objeet- 
relationship design at least does not prohibit performant 
iniplement.ition, howevei, at the expense of additional mem- 
ory consuniption. The KOM rsvpd consunies almost twiee the 
amount of memory pei- flow when compared to the 1S1 rsvpd 

TABLE 1 
PERFORMAXCE OF ISI RSVPD vs KOM RSVPD 

Expeiiment settings [SI rsvpd KOM rsvpd 

Raws AVE. lifeiime '7a CPU Mrmory '7r CPU Memory 

0 -- 0.00 1920K O W  2724K 

500 25.00 sec 2 05 2372K l l 1  3620K 

1000 25 00 src 6 I8 2856K 3.56 45MK 

1500 2850scc 1001 3296K 5.32 5472K 

2000 2500src  14 X9 3768K 7 37 6388K 

2500 31.25 sec 20.51 4244K 9 91 7308K 

1000 3750src  2597 4728K 13.38 8236K 

3500 43.75 sec 31.74 5208K 1060 9160K 

4000 50.00 sec 42.53 5692K 20.26 10084K 

J500 5 6 2 5 r c  5137 6168K 23.71 IlOORK 

5000 62.50 sec 60.45 6h56K 27.83 11928K 

5500 68 75 sec 79.69' 7140K 32.96 12848K 

nurnber of succrssful rescrvaiions: - 5400 

numhers. This can be attributed to the fine-grained implernen- 
tation of state i-elationships, but also to the fact that memory 
consumption was not the primary goal for optimization o i  our 
implementation. 

The goal of this set of tests is to find the upper limits on the 
number of reservation requests for a tuned version ol' the 
RSVP iniplementation. The experiment setup and measure- 
ments have been donc as described above. In the tuned ver- 
sion, the timer coniainer consists of 100,000 slots covering 10 
milliseconds eaeh and the code for API processing is disabled 
at intermediate nodes. Assertion checking and debug output is 
rurned off. Since these tests are carried out in a limited infra- 
structure with at most two destinations hosts, pon numbers are 
included into the hash calculation for the session container in 
the tuned version. Because doing so establishes a perfcct hash 
distribution for the test Scenario. the session hash index has 
been restricted to 4096 to simulate a realistic situation. Fur- 
thermore, the I o d  generation is distributed between all four 
end nodrs as depicted in Figure 4. The resulls are listed in 
Table 11. 

The following observations can be made in this experiment. 
Tuning the protocol implementation reveals a significant 
potential for increasing the performance. A router platform 
hased On standard PC hardware can handle the full signalling 
for 50,000 unicast flows. The Iarger amount of initially allo- 
cated memory for the tuned version can be attributed to the 
additional memory requirements ior the more fine-grained 
tirner container The memory requirements per flow remain 
unafieeted. Two addit~onal tests are listed, in which the crea- 



TABLE ll 
PERFORMANIX LIMITS OF KOM RSVPD 

busic KOM rsupd tunrd KOM rsvpd Erpenment rctlingr llmd gcn. hy ? nodcr) tload gcn hy 4 nodcs) 

Flaus Avg lifetiine % CPU Mernory % CPU Memory 

0 - 0 00 2724K 0.00 4724K 

1 5000 187 50sec .~ -- 2095 32196K 

20000 250.00 sec .. - 27 73 41632K 

30000 37500 sec .. 4067 60096K 

4 < W  SOO.iK)sec .. -- 55  17 78556K 

* load gcacrled b) J iiudrs. SR rnain irxt 

tionlrcmoval interval is sel in a way that the average lifetime 
of a now is approximately 4 minutes. Thc resulting CPU load 
numbers demonstrate that the RSVP engine is indeed able to 
handle such a large number of sessions. even when assuming a 
realistic average lifetime of calls. In fact, the impact of the 
lifetime of fluws srems to be quite low. Further details are dis- 
cussed in Section VE. 

One particular detail can he nhserved when comparing thc 
CPU load numbers for the hasic version in Table 11, depending 
on huw many nodes participate in  load generation. If four end 
nodes are used, the resulting load 1s substantially smaller and 
the performance limit is increased. The explanation of this 
behaviour is related to the implementation of thc timcr wheel 
in combination with the select sysiem call, which is used to 
query for incoming packets. If four end nodes participate in 
load generation, messages mive  at intcrmediate nodes at ihree 
network interfaces, instead of two. Each switch hetwcen timer 
management and message reception incurs a call to selrct, 
which is expensive. It takes ai least 10 milliseconds on a regu- 
lar Linux. Solaris and FreeBSD operating system to perform 
this system call when a iimeout is given. After select 
returns. exactly one message is read from each eligible inter- 
face. Now, if messages arrivc ai more iiiicrfaces, more mes- 
sages are potentially received, before the next invocation of 
timer nianagement. This leads to less context-switching 
between message reception and timer management and thus, 
reduces the total nuniber of system calls, which in turn 
decreases tlie sysicm load. 

Figure 5 shows an overall picture of ihe experimental 
results from this and the previous section. The graph depicts 

,W . l i l  r r T d  P 
ii".i, K u h *  niTd -C 

Y" iUiiCil KOM - 

Fig. 5. Pcrformaiicc curvc for 1st and KOM mvpd 

the fraction of CPU load as a function of the numher of ses- 
sions. 

C F u z y  Tinrer Handling 

While in theory only furzy timer Iiaiidling can guarantee 
the property of overall linear complexity by simplifying 
access to the timer container, the previous experiment qhows 
that, by enabling a fine-sained timer wheel, this linearity is 
already observed. In fact, a further modification of implement- 
ing fuzzy timcrs is nceded to acliieve any visible improvement 
at all. Because of the cffects of switching between timer man- 
agemcnt and interface service, which is descrihed in the previ- 
ous section, all timen from the current slot are fired whenever 
the system enters the timer management. This further reduces 
thc number of coiitrxt swiiches and calls to select and c o n ~  
sequcntly, the overall processing load. A comparison with reg- 
ular operation, which indicates the additional perfoimance 
gain, mainly at a high session Ioad, is shown in Tahle 111. At a 
load of about 58.000 flows, the system exceeds the maximum 
amouiii of rnain memoi-y [hat is availahle and starts swapping 
to disk. This prohibits nny further perfomant execution under 
this high load. 

It turns out that there is a triangular relationship between 
the kerne1 clock granularity, the minimum timeout needed for 
tlie select call and the sire ot the time slols. It might actu- 

TABLE 111 
PERFORMA~IE ub FLLLY T ~ M E R  ~MIMIIA~OX 

Expenrneni Settings tuned KOM rrvpd fuzzy KOM rsvpd 

Rows Avgliiktimc % CPU Memory BCPU Memory 

0 - 0.00 1724K 000 4724K 

20WO iOOOsrr 27.73 41632K 2612 41632K 

4WM 24000 sei 56.69 78556K 5337 7855hK 

500W 250.00src 70.56 97012K 63.96 97012K 

58WO 232.00 sec -70W >IOBM 
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F i .  6 Experimcur rctup for pn~allel procesring 

ally he possihle to increase the periuniiance liniits by increas- 
ing the rangt: of time slots or increasing the clock granularity. 
Kowever. wi: have not done an) such experiments, so far. 

This experiment is carried out to investigate the scalability 
of multi-thr<:aded message processing on a multi-processor 
platfom. This experiment uses the first alternative to empluy 
multi-threaded niessage processing as presented in 
Seciion III.<:, in that cach message processinp ihread is hound 
to a specific network intarface. The experiment setup is very 
simple and shown in Figure 6. The end-systems E i  and E2 are 
the same PCs as in the other experiments and are connected to 
a router R. Both end-systems act as sender and receiver and 
create a l age  number of flows. A SpnrcServsr 1003 with four 
6OMhz CPUs running Solaris 2.6 serves ns router. Note that 
this router hardware provides significantly less absolute 
processing power compared to the other tests. Because a sepa- 
rate thread is needed in the RSVP daemon tu receive raw IP 
packets and dispatch them to the worker threads and anorher 
thread is used for timer handling, at least four CPUs are 
needed to cany out a reasonable cxperiment for this sccnario. 

In order to test the capabilitics of this system, tests have 
been run in single-threailed mode andin multi-threaded mode 
with enabling an increasing numbers of CPUs. The goal of 
each tesi i:; to find thc highest number of flows that can be 
handled re:liably. Therefore, the RSVP daemon has been 
slightly modified to regularly check the difference between 
the number o i  PSB and RSD r>hjccts. If ihis difference 
exceeds a icertain threshold, the daemon stops and reports the 
numher of successfully established reservations. Because the 
total numher of flows that can be sustained by this router is 
rather small, the RSVP refresh time is set to 3 seconds in order 
to increase rhe effect ot established sessions compared iu the 
creation oF new ones. As well, to decrease the high influence 
of system codc, which cannot be executed triily multi- 
threaded, the software is compiled without compiler optimiza- 
tion. The iresults are listed in Table IV. Each test is executed 
ten tinies :ind both the highest and lowest result are not taken 
int« account for calculating the average result. 

It becoimes clear from the resulting perfuriiiance figurcs, 
that the potential for pnrallelization gains is indeed given, but 
certainly limited, at least on the tested platfom. Furthermore. 
when com.paring the results for single-threaded execution with 
those of nnulti-threaded execution on a single CPU. a signifi- 
cant ovei-head for synchronization mechanisms can be 

TABLE IV 
PERFORMANCE OF PARALLEL MESSAGE PROCESSING 

Number of Surnber ol flows Nurnber of flows 
CPUs (iudividual iesrs) (average) 

single- 451, 425.464. 473. 466. 467 
ihreaded 450,450,494,520,489 

1 345,389,386. 380,373, 37 1 
373,393.350.357.366 

2 552,4?8.5?l,605.5?l. 5 5 4  
532,563,556, 518.572 

3 707. 723, 693,756,731. 719 
718,711.702.729.727 

J 59?.621.711.662.652, 653 
655,648.666.655.663 

observed. These limitiitionr iiiust be partially accounted 10 the 
insufficient support of the operating system to support multi- 
threided reception of raw IP packets and other low-level serv- 
ices, but also to inherent parallelization limitations of RSVP 
processing and the improvable implementation design of the 
parallel code in the KOM protocol engine. To ihis end, ~ h e  
result of implementing mulii-threaded message processing is 
somrwhat unsatisfaciory. On the other hand, the design and 
implementation of multi-threaded mcssage processing should 
be considered as a proof of concept, rather than the final 
design of a production-level implementation. Especially, with 
proper operating sysrem support, the need for a separaie dis- 
patcher thread (which might very well form the bottleneck o i  
the current system) and its synchronisation would be elimi- 
iiated. As discusscd in Section V B  and Section V.C. the over- 
all perfomance of the RSVP daemon is to a great extent 
detcrmined by the system-Ievel task uf receiving packets from 
the network and the particular interaction with the user-level 
daemon. This assumption is further verified in Section VI. 

Another conclusion can be drciwn ironi these tcsts, which 
backs up the above considerations. Testing the efficiency gain 
of n niulti-thrraded RSVP implementation on a simple and 
small multi-processor workstation as in these tests, is proha- 
bly not sufficient to fully reveal parallel processing efficiency. 
For example, the performance drop when obseriing execution 
on 4 CPUs can be explained as follows. On this platform, up 
to 3 CPUs can be boutid to a proccss (process group) exclu- 
sively. Effectively. in the tests wiih 4 CPUs no exclusive bind- 
ing of CPUs can heen done and therefore, the RSVP daemon 
competes with other processes. Consequently, the overall 
scheduling effort increases for the operating system. This is 
reflected by the lower pertomance and indicates, that thesr 
tests cannot be regarded as real tests with 1 CPUs. 

As discussed in Scction 1II.C. there is a broad field fnr fiir- 
ther work on tuning the design and implementation of multi- 
threaded RSVP operations. Additionally. i t  would be very 
desirahle fo compare thc results obtained during these tests 
with performance tigures from different hardware und operat- 
ing system platforms. 



TABLE V 
INFLI'ENCE OF AVERAGE now L~FET~ME 

Expcnmcni seitings fuzq KOM mvpd 

Fiows Average tifeiimr % CPU Memory 

IOOOO 150.00 sec 13.Yh 21168K 

10000 12500sec 1475 23168K 
IOIXX) IOO.lK) sec 14.99 ?it68K 

10030 F 0  00 sr'c 15 77 ?3168K 
10000 25 0oSec 16.67 23168K 

I OMK) 15.00 sec 21 48 23168K 

I 0MX> 5.00 ~ e c  77.lOX 2116RK 

* nurnber ofsuccc%ful reaervations: - 9700 

The experimcnts in Section V.B and Section V C  indicatc 
thai the average lifetime of flows has only limited influence on 
thc computarional effort. In order to turther investieate this 
issue, a dedicatcd set of tests has been done to examine this 
eireci. The results are Itsted in Tahle V. 

The tigures clearly show, that rhe resuliing CPU load for a 
ceitain number of Hows is 1ar:ely unaffected by the average 
lifetime of flows, as long as it is above the RSVPrefresh inter- 
val (again set to 311 seconds here). Thereby, these numhers 
back up the coniecturc that the average lifetime of flows has 
only limiicd influence on the overall processing effoi-t. Since 
RSVP slate is refreshed periodically, the averagc flow lifetime 
basically determines the ratio of serup messages compared to 
refi-esh messages, whereas ihe overall number of niessages is 
approximately ihe same. 11 can thus he concluded that there is 
not niuch differente bctwicn thz individual processing effort 
for setup messages and for refresh messages. Consequently. 
when flow lifetimes iirz multiples of the retresh interval, a 
large fraction of processing cffort is due to refresh messages. 

Iridirccily, this result demonstrates the large potential for 
perfonnance gains by exrending RSVP with rnechanisms to 
reduce the amount of state refresh rnessages, like those 
referred to in Section 11. However, this particular behaviour 
could also be an artefaci of ihis specific iinplementation. 
Therefore, further work covei-ing different iniplcinentaiions 
would be needed to investigatc the details. Unfortunately. at 
this time. no such iniplernentatinn is available. The ISI rsvpd 
cannot reliably handle the deletion of sessions. hence, this 
kind of experimeni is currently not possiblc. 

If the lifetime of flows becomes significantly shorter than 
the refresh interval, ihis gcnci-utes an absolute increase in the 
number of RSVP inessages and resulis in a rnuch higher 
processing load. In fact. fur ihese cases, it can be noiiced in 
Tahle V that the increase of  CPU load is approxiinately 
inverse proportional to the litetime of flows. 

F Orher Experimeriis 

Some othei- experiments have been carried out tr> asscss this 
implementation undcr a variety of aspects. Becausc thcir 
results are highly hound to the specific scenario, they are 
somewhat illustraiive, hut they may not bc rcgvrded as rcle- 
vant as the above expenments Hence, they are not docu- 
mented here in ihe same lcvcl of detail. 

I J RSVP & Packet Clnss$icntion 

We have done the following expenmenl in order to measure 
the co~iibiiicd throughput of signalling and packet classifica- 
tion and scheduling. Along two adjacent FreeBSD-hased rout- 
ers reservations tor 10,000 flows are established, similar to the 
earliei- experiments. Each of these flows requests a small 
amount of bandwidth. Then, a iraffic source emits a constanr 
packet stream, which belongs to one of the reserved flows. 
Although this packet stream exceeds the reservation hy far, an 
intcnnediate node rnust still classify and schedule 311 packcts. 
We observed that in combination with HFSC scheduling from 
the ALTQ package 1191, iwo adjacenr routcrs runniiig KOM 
rsvpd can hoth sustain the signalling and tvaffic control crinfig- 
uration for 10.000 flows and at the sanie iirne, classify and 
schedule 25.000 packets per second. Note thai this result does 
not make any statcment ahout Lhe aspecl whether all flows 
actually receivc their QoS ohjective. Evaluating the ALTQ 
packagt. is heyond the scope of this paper. 

Using the setup shown in Figure 7, tests have been carried 
out tu measure the setup latency of RSVP requests. Rll and R3 
are not handling any background RSVPsession. R I  and R2 are 
loaded with up to 20,000 flows. The total end-to-end setup 
latency usually varied hetween 22 and 26 milliscconds, indc- 
pendent of the load of intermediate routers. Consequently, the 
latency of bidirectional session setup can he cstimaied to be at 
mosr 5.6 milliseconds per intermediate hop, which shows that 
even along a path with a large numhcr of hopb, ihe end-to-end 
setup latency will very likcly be acceptable. 

VI. PROFILING DETAILS 

In order to furiher investigate the perfomance of our RSVP 
implementation. we generated profiling infomati~in from an 
expcriment equivalenl to those described in Seciion V. The 
protocol engine was compiled for optimized execution as in 
Section V.C and has heen loaded with the signalling of 20.000 
unicast flows. Tahle V1 shows the execution iimcs for various 
opcrations, which represcnt complete and non- o\.erlapping 

Fig 7. Erperiinenr sctup hr end-10-end laicucy. 



TABLE V1 
RELATIVE PROCESSING EFFORT OF PROTOCOL OPERATIOIIS 

Operarion $o Exccuiion Timc 

Syrtem initialii:ationiclrunup 1.8 

Packcl iwaitinc: 9.3 

Packet reception h.8 

Packet pnning 10.7 

Meisnge procesring 531 

Tiinrr hmdling 18.3 

Toril 100.0 

partitions of the overall message processing. Because of the 
characteristics of profiling, ihe execution time hcre is relative 
io the daemon's overall accumulared processing effort. 

It can be ob:;erved from this table, that packet parsing con- 
sumes a signiticani amount of execution time. n i i s  can be 
atirihuted to ihs: fact that we have not spent effort to opiimize 
the code for parsing RSVP mcssages. In Table V1, the figures 
for packer aivaiting and packer reception dcnote pure system 
activities, i.e., interaction with ihe networking stack. The 
operation of sending out packets is encompassed in rnessuge 
processing. Thc execution time of further system activities, 
namely sendin:: out packets and looking up routing entries are 
encompassed in timer handlin*. Details aboul system opera- 
tions are illustrated in Table lX  below. In Table VII, we 
describe how tbe effort for message processing is further sub- 
divided among more fine-grained operations. 

Not surprisingly, PATH processing consumes the major 
omount of execution time, mainly due to looking up the rout- 
ing informatiori foi- the destination address (sec below). Note 
that due to their similarity, the opei-ations for processing a 
RESV and RTEAR message are implemented in the samc 
method, therefore the execution time cannot be subdivided 
between both. 

Another interesting investigation is to analyse the effort 
necessary for nianagement of the timer system. This number 

TABLE VII 
RELATIVE PRIX1;SSIVG EffORT OF MESSAGE PROCESSING OPERATIONS 

Operation Sn Exscuiion Time 

Prr- and postpro:eising 5 6  

Session lwation 

P.4TH proceshing 

P'TEAR pracessing 

RESVIRTEAR processing 

CONF rnessegc hmarding 3 4 

TABLB Vll l  
RELATIVE PROCESSING EFFoRT OS TIMER MANAGEMENT 

Opiration % Executlon Tlmr 

Tiinrr inscnion & rcnioval 7.2 

Tirrier miinbnuncr & Bring 4.1 

Total 11.3 

is somewhat dift3cult to assess, because of code inlining and 
optimized compilation. The results are listed in Tahle VIII. 
These are the raw numbcrs for timer management, i.e.. 
excluding the execution iimes for suhsequent actions. They 
explain the limitcd effect of fuzzy timer handling on top of an 
efficient timer container structure. Note that ihese numbers are 
not related tu the execution time i-eported for tirner handling in 
Tahle VI. The numbers here denote the raw effort for timer 
management, excluding for example ihe operation that is car- 
ried out when a timer is fii-ed. 

Table IX illustrates how much execution time is spent for 
carrying out System services. The opei-ations listed in this 
iabIe are only those contributing significanily. It turns out that 
the RSVP engine executes system-level code for more ihan 
70% of its time, large parts of this time interacting with the 
kernel. Considering the restrictions discussed in Section 1II.C. 
these figures explain the limited performance gains by paral- 
lelizing message processing. 

11 turns out that looking up routing entries contribuies sig- 
niiicantly to the overall execuiion time for system services. 
This effecr can be explained by the rather expensive routing 
interface an FreeBSD, which requii-es at least two interactions 
with the operating syslem's kerne1 in order to cibtain a routing 
entry. This interface might benr the potential for optimizalion, 
at least in case of unicast routing lookups, which only deliver 
a single rouling entry as result. 

Finally. memory management in gcneral can be observed as 
strongly contributing to the overall execution time. Additional 
performance gains might be possible by replacing the sys- 
tem's universal memory management algorithms by a mem- 

TABLE IX 
RELATIVE PROCESSING EFFOHT OS SYSTEM SERVICES 

Operation % Execution Time 

Routing lookup for P4TH rrirssages 16.2 

Rouiing ioakup for RCONF messages 2.5 

Packer awaiting 9.3 

Packet reception 6 8 

Packst srnding 8 8 

Systsiii time lookup 8 ?  

Memory rnanaecmenl (iotal) 20.0 
Tornl 71.8 



ory manageiiient system, which is specifically optimized for 

the type of operations needed for RSVP processing. 
In genei-al, thc data genernicd from profiling explain the 

relation between ~.ertain resulis from the perfonnance tesrs 
and hack up assumpiions about the internals of this implemen~ 

taiion. They might serve as a basis for future detailed code 

optimization of ihis or the design ofother code. 

VII. CONCLUSIONS AND FUTURE WORK 

The assessment of RSVP's technical feasibility started with 

collecting and analysing the available material. Very soon ir 
became ohvious that the puhlicly available code as well as 

previously published work were not sufficient to study the 

aspects that were deemed interesting for this work. Therefore, 

a new implementation of RSVP has been developed from 

scratch. I1 eiitploys the norion of ohjects and relationships 

between them to efficienily store atid access protocol staie. I t  
is innovative in its design and for example, allows easy inclu- 
sinn of rnulti-threaded message processing. Furthennore, cer- 

tain design and algorithmic extensions for the implementation 

of an RSVP engine have been proposed in Section 111. A high 
potential for performance gains has been demonstraled by 

tuning the implementation appropriately. 

In the performance experiments of Section V. RSVP has 

been evaluated with respect to its basic mode of operation. 

The main goal of this work is to sbow rhc performance poten- 

tial, even wiihout further changes to rhe protocol. Frorn the 

performance figures, i t  can be deduced thai thc suitahiliry of 

RSVP as a gcncral purpose signalling interfacr and protocol is 
much hetter than generalIy assumed. A standard PC router, at 

equipment cost of ahout 600 Euros (plus 50 Euros per net- 

work interface, as of December 1999), can handle the signal- 

ling for more than 50,000 sessions in a realistic Scenario. 

Essentially, the user-level RSVP implementation presented 

in this paper is not the hotrleneck for operation on a standard 

UNIX platform. Instead, ihe execution of systrm services 

largely determines the overall perfonnance. This can be con- 

cluded from the experimental results, including those ineasur- 

ing the capabilities of  mulri-threaded message processing and 

is further backed up through profiling experiments. Conse- 

quently. further work, especially on different hardware and 
operating system platforms, is needed ro better understand the 

ultimate limits of an RSVP engine. As discussed in 
Section V.C, furthcr experiments can he comed out, which 

invesrigate the efiect of lhe clock granularity and size of iimc 

slots on a FreeBSD platform. 

Implementation of a software platform for general end-to- 

end service signdling remains an ongoing effort for us. We 
are planning to investigate thr effects of RSVP extensions as 
referred to in Secrion 1I.B on its feasibility for the purpose of 
serving as a general signdling protocol. Furtheriiiore, we will 

focus our future work on inter-operation between RSVP sig- 

nalling and data-forwarding technologies, for example Diff- 

Serv, MPLS or ECN. Last hur not least, we plan to study the 

impaci of mohility and to design general solutions for the 

inclusion of rnohile i-ouiing prot»ci>ls into an overall QoS sig- 

nalling archikcture. 
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