
Tiiomas Käppner, Lars C. Wolf:

Media Scahq in Distributed Multimedia Obiect Services. In: 2nd International

Workshop on Advanced Teleservices und High-Speed Communication
[I<W94] Architectures (IWACA), Heidelberg, Germany, p. 34--43, Springer-Verlag,

September 1994.

fip://ftp.kom.e-technik.tu-darmstadt.de/pub/papers/ibm-enc/iwaca94-

dmos.ps.gz.

Media Scaling in Distributed Multimedia Object Services

Thomas Käppner and Lars C. Wolf

IBM European Networking Center, Vangerowstr. 18, D-69 11 5 Heidelberg
Mail: {kaeppner, Iwolf)@vnet.ibm.com

Abstract: Real-time support for multimedia streams in currently installed work-
station environments has been based on resource management systems that pro-
vide mechanisms for streams with guaranteed or statistical quality of sewice
(QoS) by admission control and resource resewation. In conmst, media scaling
is a technique that dynamically adapts the load of media streams to the current
availability of resources. Scaling can keep media streams meaningful to the User
which would break dunng overload situations. instead of intempting the service
for a stream when an overload situation is encountered, the quality of the stream
is gracefully d e p d e d when the resource load situation reaches a critical state.
Since media scaling is a technique that dynamically takes actual resource load
into account it can easily adapt to changing situations and has the potential to
keep the system in a range of optimal load. in this article we show how media
scaling can be integrated in a general system support for multimedia in order to
sirnplify the implementation of scalable applications and support their concw-
rent utilization of scarce resources.

1 Introduction

Due to recent advances in computer technology, high performance workstations with
digital audio and video capabilities are becorning available which leads to the integra-
tion of multimedia data with computing. This integration allows for scenarios in whch
computer systems support services such as video conferencing, news distribution,
advertisement, and entertainment.

Due to its special nature the processing of multimedia data demands real-time sup
port from the underlying computing platform in order to continuously transmit, syn-
chronize, and present audio and video data streams within a distributed system.

Real-time support for multimedia streams in currently installed workstation envi-
ronments has been based on resource management systems such as [7] that provide
mechanisms for streams with guaranteed or statistical quality of service (QoS). After a
strict admission control for the establishment of new streams, provision of guaranteed
QoS is based on worst-case assumptions for resource usage, which results in resource
underutilization in case of streams with variable bit rates. Statistical streams may expe-
rience breaks due to lack of resources.

In contrast, media scaling is a technique that continuously adapts the load of
streams to the current availability of resources. In the case of resource overload the
graceful degradation of stream quality leads to the situation where resources are shared
so to allow the continuous flow of all streams. Media scaling is not depending on the
upper bound of the bit rate for a given stream, thus it has the potential to support more

streams than traditional resource management that offers only hard guarantees for a
stream.

1.1 Related Work

Previous work on media scaling concentrated mostly on communication aspects of
mdtimedia data. Its utilization has rnainly been reponed to avoid congestion in net-
works that can not properly be supported by resource management [4]. Jeffay et al.
have developed a Special queuing mechanism to adapt the bandwidth taken by video
sent across packet-switched networks [4]. Fluent Technology has based a product for
networked multimedia on a proprietary scaling scheme [6]. Tokuda et al. have imple-
mented a dynamic QOS management for local area networks [l, 51, whereas our work
focuses on the end-system. In principle, the scaling operations to adapt to changed sys-
tem load can be implemented within the application, which forces programmers to
construct their own mechanisms and leads to interworking problems between applica-
tions. In this article we show how media scaling can be integrated in a general system
support for multimedia in order to simplify the implementation of scalable applica-
tions. Delgrossi et al. [2] have shown how to integrate media scaling and resource
management into a multimedia transport system. In turn, the system we describe can
utiiize scaling-capable transport systems in order to accelerate scaling operations but
does not depend on their availability.

1.2 Our Contributions

We enhance the meaning of media scaling from the network to the end-system level
and show its significant value for the user. Media scaling provides two kinds of bene-
fit. First, scaling has the potential to increase the number of streams a system can sup-
port simdtaneously in comparison to Systems using hard guarantees. This is due to its
ability to handle and resolve a system's overload situation. Second, scaling keeps
media streams meaningful to the User which would break during overload situations.
Instead of intenupting the service for a stream when an overload situation is encoun-
tered, the quality of the stream is degraded when the resource load situation reaches a
cntical state.

Since media scaling is a technique that dynamicaiiy takes actual resource load into
account it can easiiy adapt to changing situations and can keep the system in a range of
optimal load.

Whereas end-system-transparent scaling within transport systems is constrained to
scaling on a per-packet basis, scaling that involves changing the encoding of transmit-
ted media at the sender can be based on a much finer granularity. In general changing
the quality of transmitted video can relieve the congestion on resources without signif-
icantly being perceived by users. We show that distinguishing types of resources for
scaling of media can be used in oder to optimize the qualitylload ratio.

Previous work on scaling of media streams has not considered the behavior of the
system in case of several streams being scaled simultaneously, which raises the ques-
tion of faimess and balancing between streams. We show how to coordinate down- and

upscale operations of aU scalable streams and guarantee the balanced shanng of
resources.

We show how scaling can be integrated in a layer that provides system Support for
muitimedia applications during development and tun-time. The Distributed Multime-
dia Object Services offer an abstract interface to real-time multimedia objects. Multi-
media applications create and combine multimedia objects such as audio and video
streams, which can form an acyclic graph spanning several machines. Realization of
multirnedia objects happens in Distnbuted Multimedia Object Servers, which are
responsible for the handling of continuous media data at a Single site. Cross-site
streams can be realized transparently for the client, automatically establishing real-
time connections between sites via a muitimedia transport system [3,8].

This paper describes the principle methods of media scaling on end-systems and its
integration into the Distributed Multimedia Object Services.

2 Scaling Mechanisms

Scaling, the ability to adapt to Situations in which resource demand is larger than
resource availabiiity, requires mechanisms which observe resource usage and detect
resource shortages as weli as later 'recovered' resource avaiiability - the resources
have to be monitored.

2.1 Resource Monitoring

A resource monitor (RM) observes resource usage and resource load. If the RM
detects that the resource load state (RLS) changes in such a way that a reaction is nec-
essary, it provides an indication about the RLS and how cntical the current Situation is.
We distinguish the following types of RLS:

1. a resource is in a state of stable and acceptable load,
2. the load of a resource is increasing and reaches a critical state,
3. a resource is overloaded, and
4. the load of a resource is decreasing and left an overloaded state.

This classification not only leads to indications of 'stable' states, but also allows, by
the dynamicity of state 2, for a proactive generation of indications which yields earlier
and faster reaction to resource shortages and prevents the system from reaching state 3.
Similarly, indications for recovered resource availability should not be generated too
early to inhibit permanent oscillation between different RLS.

Detecting the dynamicity of states 2 and 4 can be approximated by using a finer
granularity for load regions. In addition to the definitely overloaded state 3, several
load regions of increasingly high resource load are distinguished by dividing the base
load states 1 and 3 into smaller regions So...S„ So being the stable and Sn the over-
loaded state arid state transitions reflecting the dynamicity (See Figure 1). The indica-
tions generated by the RMs inform the resource Users to reduce the load faster (and
strenger) as the load region enters higher load regions.

Resource Load

100%

Time

Fig. 1. Resource Load and Resource Load States

In principle resource monitonng is necessary for all resources that are concerned with
the processing and transmission of multimedia data. These include resources like CPU,
buffer space, and network, but also disks and the system bus. This paper concentrates
on the former because they are important for all types of multimedia applications.
Other resources, not being considered in this work are U0 related resources, especially
file system resources, i.e., disks and their controllers, and the system bus.

2.2 Load Dimensions

In general, we distinguish two dimensions for resource usage:

throughput and
processing time requirements.

While they are not completely orthogonal (the time needed to copy data of some
amount from one buffer to another depends on the size) they are also not completely
correlated (if more time is spent for compression, the resulting space requirements
may become smaller). Treating these two dimensions independently produces faster
and more exact decisions than using only one measure reflecting the total acceptable
load. Additionally, data stream properties can be adapted to available resources along
these two dimensions. Two-dimensional scaling matches quality of streams and cur-
rent load more accurately, yielding higher utilization and better overall quality of
streams. Overload with regard to network or buffer resources is resolved by reducing
throughput of streams, while CPU problems are tackled by decreasing processing time
requirements.

As shown in Figure 2, the resource monitors for CPU, network, and b a e r space
provide the mechanisms for resource overload detection (in general, for resource state
indication) and deliver the respective indications. Based on these indicaiions a policy
agent decides which stream, or set of streams, is affected by the resource overload. The

policy agent informs the stream about the necessity to adapt to the changed resource
availability.

Streams Information

@ Resource State lndication
@ Choose a Stream for Scaling
@ lnform Stream about Scaling Dimension (Throughput 11 Processing Time)

Fig. 2. Resource Monitors and Resource Policy Agents

The information provided by the policy agent indicates whether throughput or process-
ing time usage must be adapted. The reaction of the stream depends on the particular
stream handling thread and is determined by its capabilities as well as the data types.
For instance, for a motion JPEG stream subsampling and quantization table Parameters
can be varied in order to adapt the load to either or both dimensions.

This is illustrated in Figure 3 where time and space requirements for the compres-
sion of a single JPEG picture are depicted over a range of quantization tables and 4 dif-
ferent settings of subsampling. If the throughput requirements of a stream have to be
reduced, the quantization may be changed to a coarser degree or subsampling may be
switched to a larger level. As can be seen from the measurements, if a stream operates
at high quality with respect to quantization, reducing the quantization decreases frarne
size considerably. In lower quantization areas (below 801, switching to a difTerent
subsampling level yields better buffer space requirement reductions.

23 QoS Class for Scaling

The resource policy agent needs the information which streams to take into account
when making scaling decisions. We have introduced the service class 'scalable QoS'
as an extension to our resource management System [7] that already offered guaranteed
and statistical QoS.

All streams belonging to this class may be affected by the decisions of the policy
agent to ensure fairness to streams and properly balancing of resources. Membership
to this class is voluntary, the stream creator decides to request the QoS class 'scalable'
for a stream, mostly because the charged costs are lower than the costs for using a
guaranteed service.

For streams in the 'scalable' QoS class, the policy agent and the stream agree on a
certain behavior. The resource policy agent is responsible to deliver scaling indications
to the strearns and a stream has to adapt its load accordingly. Streams that are not
members of the QoS class 'scalable' do not participate in the adaptation process.

Due to its knowledge about membership to this class, a policy agent can decide
which streams should adapt their resource usage and how much. If an agent detects a
local problem, e.g., CPU overload, all streams belonging to the scalable QoS class will
be informed to reduce their processing time usage. This way, each single stream has to
reduce its usage only a bit, to reach the overall savings. If a shortage in network
throughput is detected, only the stream for which the problem arises will be asked to
reduce its load, since it is likely that other streams are not affected. For instance, if the
problem occurs at an overloaded router, other streams that are local or use a different
path do not experience any quality degradation.

- no subsampling - venical subsampling

I
-c horizontal subsampling horizontal and vertical subsampling

I

Fig. 3. JPEG Compression Time and Frame Size for different Quantization Tables

3 Scaling in Distributed Multimedia Object Services

Multimedia applications handle several kinds of media including continuous media
such as audio and video. Due to its special nature the processing of these data demands
real-time support from the underlying computing platform in order to continuously
transmit, synchronize, and present audio and video data streams within a distributed
system.

Multimedia strearns are flowing through the system based on software and special
hardware. Offering access to proper abstractions for hardware and data can make
exclusive resources sharable between applications and allows easy application devel-
opment and portability across supporting platforms.

The Distributed Multimedia Object Services (DMOS) support multimedia applica-
tions effectively during development and run-time by offering an abstract interface to

real-time supported multimedia objects. Applications, as clients of DMOS, can create
and combine multimedia objects such as audio and video strearns to acyclic graphs
potentially spanning several machines. Realization of multimedia objects happens in
Distnbuted Multimedia Object Servers, which are responsible for the handling of con-
tinuous-media data at a single site. Cross-site streams can be reaiized transparently for
the client, automatically establishing real-time connections between sites with the sup-
port of a multimedia transport System [3, 81.

3.1 Important Classes of Distributed Multimedia Object Services

The LogicalDevice class abstracts from hardware and Software realizing a specific
fimctionality of input, output, or filtering of multimedia data. Subclasses include
Speaker, Camera, and Microphone each of which encapsulates all details of the under-
lying implementation.

The Stream class aiiows to combine a Set of LogicalDevice objects in order to con-
trol the flow of data through the devices via a single interface. Control operations
include start and stop operations and the acquisition and release of all resources neces-
sary to process the data.

The QualityOfSemMce class represents the kind of service the client is requesting.
An instance of this class can be associated with a Stream in order to express the service
class as guaranteed, statistical, or scalable, and the fiow specification in terms of delay,
throughput, and loss. The service class scalable is chosen when the type of application
aliows a temporary service degradation. However, the application itself is not involved
in the process of scaling at all but relies on DMO Servers. See Figure 4 for the client
view of multimedia objects in a remote surveillance application.

Fig. 4. View of Multimedia Objects for a Remote Surveillance Application

3.2 Scaling in Distributed Multimedia Object Servers

Every object that is created by a multimedia application is realized in a DMO server.
However, other objects exist within a server that can not be accessed by clients. In

order to provide real-time services the client-visible objects utilize a layer of stream
handlers and management threads (see also Figure 5).

d Events
Data

RM: ResourceMonitor
RPA: ResourcePolicyAgent

Fig. 5. implementing Scaling in DMO Servers

Logical devices are mapped to stream handlers, i.e., a stream handier is a real-time
thread that perforrns a specific task with regard to the processing of multimedia data.
Stream handiers pass data packets along the stream and can exchange events or pass
them to client-visible objects.

A ResourceMonitor is responsible for the status of a single resource. If the load
reaches a defined critical value the ResourceMonitor notfies a ResourcePolicyAgent.

The ResourcePolicyAgent determines which stream handlers affect the resource
and which of them belong to the Service class 'scaiable'. Scaling of streams is orga-
nized along the two dimensions throughput Tand CPU requirements C, i.e., the scaling
status of a stream Scan be Seen as a point in the coordinate System of these dirnensions
that have scaies from 0 to 100 percent of the stream's respective requirements:

S = (T, C), (0 2 T,C 5 1 00}

Depending on the resource that is overloaded the ResourcePolicyAgent may decide to
reduce the load with regard to either or both of these dimensions which adds signifi-
Cant flexibility to adapting the quality of streams to available resources. Since scaling
states of all streams are known to the ResourcePolicyAgent it can equally balance
quality degradation for all streams. Taking current scaling state into account a new
scaiing status is derived and passed as a message to each affected stream handler.

If its scaling status is changed by the scaling message a stream handler receiving
such a message sends an event to the next stream handler upstream in order to propa-
gate the scaling status to the source of the stream. Note that there are two principle
sources for the change of a scaling status: An event received from a stream handler
residing down-stream containing the new sub status S, = (Ts, C,) or a message from

the ResourcePolicyAgent with Sp = (Tp. Cp). A minimum status has to be derived in
both cases from the most recently updated sub states as

This filtering of scaling messages ensures that different perceptions of resource load
for stream handlers, potentially being on different machines are properly resolved on
their propagation path to the source of the stream.

When the source of a stream changes its scaling status the quality of the stream is
adapted according to the new state S such that the stream's new specifications T and C
with regard to throughput and CPU are met. Every stream handler that can serve as a
source within a scalable stream has a built-in strategy to adapt the stream it generates.
For instance the stream handler generating JPEG images from a camera has a consider-
able flexibility using a combination of subsampling and quantization table Parameters
(See Figure 3). This gracefully degraded quality is much more acceptable than a sud-
den drop of the frarne rate or even break of the stream in case of packet losses.

4 Conclusion

Media scaling is a technique to adapt the amount of audio and video flowing through a
system to available resources. Its usage has been reported to avoid congestion in net-
works that can not properly be supported by resource management. We have enhanced
the meaning of media scaiing from the network to the end-system level and have
shown its value for the User. Media scaling not only has the potential to increase the
number of streams a system can support simultaneously but it also keeps media
streams meaningfd to the User that would break during overload Situations. Scaling of
media strearns in dependence of actual resource utilization can keep the system in a
range of optimal load. The distinction of different load dimensions caused by a stream
helps to adapt to available resource capacity more precisely.

Whereas end-system-transparent scaling within transport systems is constrained to
scaling on a per packet basis, scaling that involves changing the encoding of transmit-
ted media at the sender can be based on a much finer granularity.

If scaling is not supported by a system layer, applications have to duplicate the
effort of implementing scaling mechanisms. Additionally, due to the lack of coordina-
tion, scaling mechanisms working concurrently in different applications would rather
compete than cooperate. By coordinating down- and upscale operations of all streams
on a given system, the balanced sharing of resources can be guaranteed.

We have shown how to integrate scaling in a layer that provides system support for
multimedia applications during development and run-time. The Distributed Multime-
dia Object Services offer an abstract interface to real-time multimedia objects. Scal-
ability of streams can be Set by multimedia applications using a QuaiityOfService
object that is associated with a stream. Realizations of streams and actual scaling oper-
ations across machines are handled by DMO Servers.

