
!%.ir:!r~ /;,.trstcn: Design aiid irnpieinentation of RSVi' b ~ s e d)b,jeci
Relationships: Ne!workin-. 200!) i t

Design and Implementation of RSVP based on
Object-Relationships

Martin Karsten '
lndustrial Process and System Communicationr

Darmstadt University of Technology
Merckstr. 25 ' H283 Darmstadt ' Germany

phone: +49-6151.166156- fax: +49-6151-166152
email: Martin.Karsten@KOM.tu-darmstadt.de

http://www.kom.e-technjktu-darinstadt.de

Abstract RSVP has been proposed by the lETF as a signalling protocoi for res-
ervation-based aualitv-of-service enabled communication in IP networks. While 1 .
RSVP's concepts are very sophisticated, further research efforts and potential
modificarions might be necessaiy 10 accomplish additional requircments before
general deployment and commercial usage. Currently, only one freely available
implementation exists and even some af the commercial implemenlations are
based on it. In this Paper, an alternative approach to describe RSVP protocol op-
erations is presented, employing relationai specification of state blocks and ob-
ject-relaiionships between them. The result appears to be more cancise and
comprehensible than existing processing mies, yet not giving up efficiency. An
iinplementation design based on this methodology, as well as specific details and
optimirations are denved and explained. The iinplementation is designed to be
poriable across different Operating system platfonns and even to simulation envi-
ronments. The primary purpose is to carry out research on modifications of
RSVP, being able ro examine those by siinulation, emulation and real tests. Ap-
piying these considerations, an experimental protocol engine has been imple-
mented, which is publicly availabie.

1 Introduction
RSVP (Resource Reservation Protocol), initially designed and descnbed in [I], has
been specified by the IETF [2] to carry reservation requests for communication re-
sources across IP networks. Because RSVP is designed to handle requests for arbitrary
service classes, an even more general point of view can be adopted by regarding it a s a
universal signalling protocol 10 camy quality of service requests.

F o r a variety of reasons 131, I believe that further research is needed to deiennine
the best design of such a signalling protocol. l h i s resevrch can be grounded on the ex-
isling specificalion of RSVP, because of both its basic existente and its sophisticated
design. The only existing freely available implementation [4] is not considered well-
suiled for such research (See [3] for details). An attempt to create a more suitable test
environment should adhere to the following design objectives:

structured (object-oriented) design and implementation
portability for niultiple platfonns, including simulators
clear representation of RSVP's concepts in the code

While at a first glance RSVP seems to be straightforward and easy to understand, the
details of an implementation are rather complex. The goals of this project are twofold.
The first goal is to specify protocol operaiions more comprehensible than existing doc-

* This work is spoi,rared in pari by: Volkswagen-Stiftung. Hannover, Cemany.

umentarion does. The second goal is 10 create and publish an experimental platform
which allows researchers to test and examine modificaiions wiih reasonahle effort. The
context and initial motivation of this implementation project are in the areas of charg-
ing for QoS in network communication [5,6.7] and interoperability of heterogeneous
QoS architectures [8,9].

The rest of this paper is organized as follows. In ihe next secrion, a brief overview
of RSVP is given, adopting the terminology of [2]. A specification of RSVP niessage
processing, based on object-relationships, is pi-esented in Section 3. In Section 4, an ap-
propriate Software design approach is derived from this specification. The current sta-
tus of the implementation with respect to the RSVP specification is described in
Section 5 . Section 6 concludes the paper with a Summary and an outlook on further
work items. Note that this paper is shortened in order to accomplish the space limiiation
for its publication here. A more detailed version is available as [3].

2 RSVP Ovewiew
RSVP is designed to carry reservation requests for packet-based, stateless network pro-
tocols such as IP (Intemet Protocol). In essence, it is aimed at combining the robustness
of connectionless network technology wiih flow-based reservations by following a so-
called soft state approach. State is created to manage routing information and reserva-
tion requests, but it times out automatically, if it is not refreshed periodically. In the
RSVP model, senders inform RSVP-capable routers and receivers about the possibility
for reservation-based communication by advertising their services via PATH messag-
es. These messages carry the sender's trafJir vpecificarion (TSpec) and iollow exactly
the Same path towards rcceivers as data packets, establishtng soft state in routers. Re-
ceivers initiate reservations hy replying with RESV messages. They contain a TSpec
and a resematiori specification (RSpec) and also establish soft state representing the
reservation. RESV messages are transmitted hop-by-hop and follow exactly the reverse
path that is fomed by PATH messages.

RSVP ireats reservation requests (e.g. TSpec and RSpecj as opaque data and
hands them to complementary local modules, which are able to process them appropri-
ately. Being tuned to support large multicast groups, RSVP uses logic from these mod-
ules to nierge reservation requests that share parts of the transmission path. Merging
takes place at outgoing interfaces by merging requests from different next hops that can
be satisfied by a single reservation ai the same interface. As well, reservation requests
thai are transmitted towards a common previous hop are candidates for merging. The
amouni of merging possible is determined by the filter style, which is requested by re-
ceivers. For shared filter style, all reservations for the same interface and all reserva-
tions towards ihe same previous hops are merged, respectively. When distinct filter
style is requested, only reservations that specify the Same sender are being merged. Fur-
thermore, filter styles are classified hy whethei- applicahle senders are wildcarded or
listed explicitly. The (potentially empty) list of senders is called FilterSpec. The fol-
lowing filter styles are currently defined:

F F (fixed filter): single sender, distinct reservation
SE (shared explicii): multiple senders. shared reservation
WF (wildcard filter): all senders, shared reservation

All these filter styles are mutually exclusive and a session's filter style is determined
from the first arriving RESV message. The combination of TSpec and RSpec is called
j'iow specificatioo (FlowSpec). The combination of FlowSpec and FilterSpec is referred
to asj'iow descriptor.

3 Specification of RSVP Message Processing
In this section, a specification of RSVP message processing is presented, based on re-
lational design and object-relationships between state blocks. A rigorous approach for
modelling RSVP would begin by representing state information as relations and identi-
fying functional dependencies between them. Then, well-known normalisation algo-
rithms could be applied to create the highest possible normal form and message
processing could be expressed using relational algebra. Intuitively, this is often done to
some extent by software designers and programmers.

In this work, while not following the strict method, state information is explicitly
modelled as relations which in turn are considered as state blocks to create object-rela-
tionships between them. The initial relational model is deduced from the relevant
standardization documents [2,10,1 I] and personal reasoning about the protocol. Addi-
tionally, experiences made during design and implementation of the software have
been a source of insight into protocol operations. We omit the details of relational rep-
resentation here for reasons of brevity and refer to [3].

A significant part of RSVP message processing consists of finding appropriate
state blocks for certain operations. For normal implementation (i.e. without using a re-
lational database). state blocks and object-relationships are considered to be more ex-
pressive and efficient than directly implementing the relational model. The relation-
ships between objects are explicitly stored when knowledge is available, instead of re-
calculating them through relational rules whenever they are needed. The algorithmic
description in [10,1 I] exhibits a relational style, but without being rigorous. Opposite
to that approach, the processing mles in this paper are based on object-relationships be-
tween state blocks. A subset of state blocks is similar to those dcscnbed in [10,1 I], but
semantics and lifetime are occasionally modified. Additional relations are designed to
express useful state information. Eventually, these are represented as state block ob-
jects as well, to efficiently accomplish certain operations.

3.1 State Blocks and Relationships

From the initial rela.
tions, corresponding
state block objects and
state block relationships
are deduced. Although
this is not done rigor- n n n n
ously (i.e. by using nor-
malisation algorithms), -
certain optimizations
are ~oss ib le to avoid re- Figure 1: EntiQ-Relationship Diagram for Stare Blocks

dundancy of informa

tion and suit an efficient implementation. The result can be expressed as an Entity-
Relationship Model (ER-Model) and is shown as diagram in Figure 1.

3.1.1 State Blocks

Session For each RSVP session, the Session state block bundles all relevant informa-
tion and the session's destination address and port is saved there. Relationships ai-e kepi
tu those state blocks that are needed to fully access all information. All Session objects
are bound to a single RSVP object, representing an RSVP router.

Path State Block (PSB) A PSB holds all relevant information from a PATH mes-
sage, i.e., the sender's address and traffic specification, routing information, etc.

Reservation State Block (RSB) An RSB i-epresents a reservation requested from a
next hop, particularly by holding the i-eservation specification, i.e., the FlowSpec,
which determines the amount of resources [hat are requested, depending on the service
class. It identified by its owning OutISB and the next hop's address.

Outgoing Interface State Block (OutISB) Tbis state block represents the merged
reservations from multiple RSBs applying at a certain outgoing interface. It is roughly
comparable to the TCSB in [10,1 I]. However, different from those processing rules,
the TCSB is split into a general (OutISB) and a specific part. The nature of the specific
part depends on the particular traffic control implementation, which in turn depends on
the corresponding link layer mcdium behind the interface [2,12,8]. An instance of
OutISB is constructed immediately upon creation of the first contributing RSB.

Outgoing Interface a t PSB (OIatPSB) For each outgoing intertace [hat is part of the
routing result for a PATH message, an instance of OIatPSB is created. A rrlationship
to an OutISB object expresses thar an actual reservation is acrive at this inteiface. Tbe
introduction of this state block allows to split the N:M relationship between PSB and
OutISB into two l : N relationships, which simplifies implementation.

Previous Hop State Block (PHopSB) The concept of an explicit PHopSB is new to
an RSVP description. I< is used to hold information about reservations that are merged
at a certain incoming interface towards a previous hop, as well as the rrsulting reserva-
tion request that is sent to this hop. A PHopSB is identified by the prrvious hop's IP ad-
dress and the incoming interface, at which traffic from this hop arrives for the
destination address of a session. Again. an object is creaied as soon as the first PATH
message arrives from a certain previous hop.

In the rest of the Paper, the terms srare hlock and srare hlock ohjecr are used syn-
onymously. In Figure 1; all entities except Session are weak entities. i.e., they cannot
uniquely be identified without the respective session key. Funhermore. OutISB is indi-
rectly identified through an OlatPSB ai any of the PSBs it applies to, although the car-
dinality ratio implies ihe opposiie direciion. In RSB there is no information about the
outgoing interface stored and the lisi of senders is not used for identification. Thereby,
it is a weak entity depending on the key of OuilSB. For both RSB and OutlSB, instead
of stoi-ing the set of applicable senders, a relationship to PSB is maintained (indirectly
in case of OutlSB). The cardinality ratio of each rclationship is shown in rhe diagram
in Figure 1.

3.1.2 Relatinnships

Each relaiionship is presented. including the necessary key to traverse it, if it is a multi-
objeci relationship. The respective keys applying to these relaiionships are often small-
er than the full key of each state block. This is due to inherent identification through the
relationships. However, the implementaiion of this niodel is done by directly storing

! the relationships. Futthemore, all Session objects are bundled into a global container.
This could be considered as a Special relaiionship to a unique object representing the
RSVP router.

Session PSB key for PSB: Sender, Incoming Interface and Previous Hop (I)
In a PSB object, infomation about incoming interface and previous hop are not stored
direcily, instead this information can be exiracted from the corresponding PHopSB (see
Relationship (7) below).

Session W PHopSB key for PHopSB: Incoming Interface andhevious Hop (2)

OutISB W RSB key for RSB: Next Hop (3)
Each OutISB is related to those RSBs that aremerged together at an outgoing interface.
Because an RSB only contributes to one specific OutlSB, pattitioning the sei of RSBs
along their OutlSBs creates a complete and disjunct decomposition of all RSBs. Thei-e-
fore, a relation between Session and RSB is not necessary to access RSBs from a Ses-
sion object.

RSB -0n, PSB key for PSB: Sender (4)
A reservation applies to a Set of senders, either by expIicit selection (SE or FF filter
style) or implicit association (WF filter style). Instead of storing a list of alI sender ad-
dresses. a relationship to the respective PSBs is maintained from the RSB

OIatPSB PSB key for OIatPSB: Outgoing Interface (5)
A merged reservation, installed at an outgoing interface, applies to a Set of senders. As
with RSBs, this is expressed by storing relationships to the respective OIatPSBs, in-
stead of their addresslport pairs.

OIatPSB OutISB key for OIatPSB: Sender (6)
This relationship expresses the reservation at a cettain ouigoing interface ihat is applied
to traffic from a sender.

PHopSB fiOn PSB key for PSB: Sender (7)
Each PSB is logically connected to ihc PHopSB representing its previous hop. This re-
lationship is niainly used when reservation requesis ure created for previous hops. In-
formation from the PHopSB (hop address and incoming interface) is used to distinguish
PSB objects (see Relationship (1) and Path State reIation).

3.2 Operations

In this section, the core operations of the RSVP protocoI engine are expIained with re-
spect to the relationships between state blocks. The presentation is divided into 4 Parts,
which together form the ceniral RSVP operations:

State Maintenance

- Outgoing Interface Merging
Incoming Interface Merging
Timeout Processing

In general, if a mcssage or tinieout triggers a modification of iniernal state, all relation-
ships are updated immediately during State Maintenance or Timeout Proccssing, ex-
cept the ielationship between PSB and OutISB. For Outgoing Interface Merging, the
"old" state of this relationship has to be available to appropriately modify the filter set-
ting at the underlying traffic control module. Aftenvards, this relationship is updated,
as well. If the contents of an RSB change. Outgoing Interface Merging is invoked. If
during Outgoing Interface Merging, the contents of an OutISB are chanpd. Incoming
Interface Merging is triggered. Only if the resuliing reservation request (stored in
PHopSB) changes, a new RESV message is created and sent to the previous hop.

The basic claim of this work is that maintaining relationships imposes no signifi-
Cant additional overhead during analysing an incoming message and updating state
from it. However, when it Comes to merging reservations and rimeout processing. ex-
isting relationships can be used instead of recomputing them every time, especially un-
der stable condirions. In this section, only the basic operations are described. Whenever
the term interjace is used in the following subsecrions, it might also denote the API (ap-
plication programming interface). Again, additional details about message pre- and
post-processing can be found in [2,10,11].

3.2.1 State Maintenance

Arriving RSVP messages are decomposed into components and processed depending
on the type of message. During processing, appropnate state blocks have to be located,
created andlor modified. In the following, a pseudo-algorithmic description of the
processing rules are given for each message type. Although it is not mrntioned explic-
itly for most of the message types, usually the appropriate Session oblect has to be de-
termined first.

PATH Find a Session and check for contlicting destination ports. If no Session exists.
create one. Find a PSB for this sender through Relationship (1) and check for conflict-
ing source ports. If none exisls, create a new PSB. When creating a PSB object, create
the relationship to the corresponding Session object. If the PSB is new and no appropn-
ate PHopSB can be found, create a new PHopSB. Set a relationship between PSB and
PHopSB. If the session address is niulticast and the incoming interface differs from the
routing lookup result, mark this PSB as local to an API session. Update all information
in the PSB and in case of relevant changes, trigger an immediate generation of a PATH
message and potentially invoke Outgoing Interface Merging (Section 32.2).

RESV Process each flow descriptor separately, i.e., each pair of FilterSpec and
FlowSpec. Find or create an appropriate OutISB through Relationship (5) and (6) and
find or create an RSB using Relationship (3). When creating new objccrs, set the corre-
sponding relationships. Match (i.e. consider the intrrsection) rhe filter specification (in
case of FE' or SE) or the address list determining the scope (WF) against all existing
PSBs that route to the outgoing interface through Relationship (I). Update the RSB and
invoke Outgoing lnterface Merging, if relevant content has changed, e.g., FilierSpec or
FlowSpec.

PTEAR Find a PSB through Relationship (1). If found, forward the message to the
PSB's outgoing interfaces, remove the PSB, clear its relationships and invoke Outgo-
ing Interface Merging.

RTEAR Process each flow descriptor separately. Find an RSB through
Relationship (5) and (6) and Relationship (3). If found, remove the filters that are listed
in the message and invoke Ouigoing lnterface Merging. If the RSB's filter list is empty.
remove Ihe RSB and clear irs relationship to OutISB.

PERR Find a PSB through Relationship (I) . If found, forward the message through
the PSB's incoming interface.

RERR Find a PHopSB for the previous hop address from the message. If found and
the error code indicates an admission control failure, sei a blockade FlowSpec at those
PSBs from the PHopSB that match a filter from the message. Find all OutISBs that
match a filter from the message and do not belong to the incoming interface. Forward
the message to all RSBs that have a relationship to these OutISBs. In case of admission
control failure, forward the message to only those RSBs that do not have a FlowSpec
strictly smaller than that of the message.

RCONF Forward the message to the outgoing interface that results from a routing
lookup for the message's destination address.

3.2.2 Outgoing Interface Merging

During the merge operation at an outgoing interface, all applicable PSBs and RSBs
have to be collected io access their TSpecs and FlowSpecs. Precise operation depends
on the nature of the underlying link layer and appropriate algorithmic descriptions can
be found for point-10-point or broadcast media in [10,11] and for non-broadcast multi-
access media (e.g. ATM) in [13,12,8]. Outgoing Interface Merging operaies on a cer-
tain OutISB. Relationships to those PSBs that are relevant and route 10 this interface as
well as RSBs that contribute to the merged reservation state are known and can be tra-
versed directly. instead of recomputing them. Therefore, no Special (filter style depend-
ent) rules have to be given on how to find those state hlocks. but instead only rules 10

process them appropriately are necessary. The result is stored in the OutISB and, if the
merged FlowSpec or the FilterSpec has changed, the appropriate PSBs and PHopSBs
(accessible through Relationship (S), (6) and (7)) are marked for Incoming Interface
Merging. Certain policing flags have to be passed to traffic control, which can be de-
rived from accessible infonnation, as welI. To detemine whether this reservation is
merged with any other reservation that is not less or equal, tbe LUB (least upper bound)
of all merged FlowSpecs from all OutISBs (at different interfaces) for all PSBs can be
calculated by traversing Relationship (5) and (6). If afterwards the OutISB's filter list
is empty (which must coincide with having no relations to RSBs), remove the OutISB
and cIear its relationship to Session.

3.2.3 Incoming Interface Merging
After a Single or multiple (in case of RESV message processing) invocations of Outgo-
ing Interface Merging, all PHopSBs that are marked for update are subject to Incoming
Interface Merging. During this sequence. it is again possible to traverse relationships,
instead of collecting state blocks. The details of this merging operation depend on the

filter style for the session. In case of distinct reservations (FF), each PSB that relates to
the PHopSB is considered separately. All OutlSBs accessible through this PSB are
merged and a flow descriptor is created, containing the PSB's sendei- address and the
merged FlowSpec. For shared reservations, all OutlSBs having a relationship to any of
the PSBs are merged and the resulting flow descriptor contains the Set of all sender ad-
dresses and the Single merged FlowSpec.

3.2.4 Timeout Processing
According to the soft state paradigm, each state block is associated with a timer and de-
leted upon timeout. Periodic refresh niessages restart the tinier. Timers are directly con-
nected to the object they apply to and the actions resulting from a timeout are similar to
those when receiving a PTEAR or RTEAR message. The only differente is that the re-
spective PTEARIRTEAR message has to be created instead of just forwarding it.

4 Software Design
Given the objectives of the project, these goals have been Set for an implenientation:

Message handling (creationlinterpretation) should be clear, simple and extensible. - Message pi-ocessing should be clear and comprehensible. yet efficient.
The iniplementation should be poitable, but also nicely integrate with System level
interfaces.

The design that has been chosen is a hybrid form of object orientation and procediiral
design. Object orientation does not seem tobe fully appropriate for implementing state
machines like network protocol engines, howevei-, many aspects of an iniplementation
can benefit from data encapsiilation, inheritance and polymorphism. C++ has been se-
lected as the programniing language of choice to implement such a hybrid design under
the given objectives. In the following, identifiers stemming from the implementation
areprinted in italic, when they are introduced. Figure 2 gives an overview of the design.
In this picture, the main
coniponents, which togeth-
er form the contents of a
global RSVP object, are
shown. An RSVP object
represents an RSVP-capa-
ble router and interacts
through abstract interfaces
with system-dependent
Services like routing, net-
work VO. traffic control

RSVP

1 Global S e 1 1 4 Server

Session RA+/$
and others. MuItiple Ses-
sion objects exist, repre-
senting currently active m m
RSVP sessions. A number
of Logicallnterface objects T: Timer Traffic Control

encapsulate phy sical and L: Logical Interface n
viltual interfaces of the un- Figure 2: Design of RSVP lmplementation (Ove~iew)

derlying system. Logical interfaces are numbered and the number is used as LIH (Log-
ical Interface Handle, see 121 for details). The API is modelled as a dedicated object,
called AP/-Sen'et-, containing a special instance of class LogicalInterface, and all infor-
mation about currently active API clients. RSVP messages are encapsulated in a Mes-
sage class and passed between LogicalInterface and Session objects. potentially
involving APILServer. Global state is kept in the RSVP object. for example, the current
message, a PHopSB refresh list. etc.

4.1 Message Processing

Each incoming message arrives at the main RSVP object. After preprocessing and up-
dating global state, the message is dispaiched to the appropriate Session object for fur-
ther processing. Some of the message processing mles from Section 3.2.1 are carried
out in the RSVP object (e.g. finding or creating a Session object), but the majority is
implemented in class Session.

The sequence Outgoing Interface Merging is link-layer dependent and conse-
quently, functionality is split up. Common merging logic is implemented in class
OutISB. A base class TraficControl provides basic Services and a uniform calling in-
terface for the link-layer specific part. This calling interface takes an instance of
OutISB and poteniially a list of newly arrived filters as input Parameters. All state that
is needed for admission control and updating of the underlying scheduling system is
then accessible through OutISB. Both classes TrafficControl and OutISB are inherited
by link-layer specific classes.

Incorning Interface Merging takes place when reservation state has changed, that
is. if FlowSpec or FilterSpec of an OutlSB has been modified. It is implemented in
class RSVP. so that it can directly access all relevant global state information.

4.2 Implementation Details

Relationship Representation Relationships are implemented as dedicated classes,
which are used as base classes for those classes they apply to. The relationship classes
automatically maintain referential integrity. A single-object relationship is internally
represented by a pointer or reference, whereas a multi-object relationship is internally
represented by a sorted list of pointers to the respective objects. Relationship (5) is in-
ternally stored as an array of pointers, because at most one OutISB exists at each inter-
face and can be accessed directly by using the interface's unique LIH as index.

Timers Timer management is logically separated from the rest of the implementation,
such that it can be independently optimized without considering other parts of the code.
A base class BaseTimer exists, from which refresh and timeout timers are derived.
They are controlled by their owners, but handled commonIy through BaseTimer. Cur-
rently, all timers are kept in a container, ordered by their expiration time. This design
completely hides implernentation details between timer management and timer clients.

Container Classes A simple container library for lists and sorted lists has been imple-
mented, in a style similar to theC++ STL (Standard Template Library). While ii is con-
ceptually very advantageous to use common container classes, it seems not necessary
to provide the most efficient implementation for them. It is left to the User of this imple-
rnentation to decide whether outmost efficiency is required when accessing certain con-

tainers or not. Because of the encapsulated design, testing of different algorithms and
data layouts for containers is possible with relatively low effort.

4.3 Lessnns Learned

It seems clear that introducing PHopSB and OutlSB as importanl central state blocks
representing merging state provides advantages due to rheir naturally given relations to
RSBs and PSBs. The notion of recalculating relationships at every stage of message
processing seems sub-optimal compared to maintaining and traversing these relation-
ships. Some additional details arc listed in [3].

5 Implementation Status
In this section, the current implementation status is descrihed in comparison to the
RSVP specification. This implementation is a full implementation of RSVP operations,
except certain limitations given below. I t is developed and tested to automatically com-
pile on Solaris 2.6, FreeBSD 3.X 2nd Linux 2.X operating systems. using GNU C++
2.95 and higher. The complete source package consists of approximately 19,M)O lines
of code. System-dependent code is cleanly separated and consists of about 2.000 lines
of code with at most 150 lines dedicared to each System. The software is publicly avail-
able from http://www.kom.e-technik.tu-dmsladt.delrsvpl.

5.1 Features

The implementation already provides some features that ai-e new to an RSVP imple-
menwtion and rather rare foi- experimental signalling protocols in general.

RSVP can be run in an emulation mode, in which multiple daemons execute on
the same or differing machines and use a configurable virtual network between them,
including shared link medio and static multicast routing. Without such a feature, exam-
inations of RSVP protocol behaviour in non-trivial network topologies are only possi-
ble by using a simulator or by using real systems. In the second case, it is necessary to
start multiple processes on multiple machines needing super-user privileges and a suit-
able infrastructure. The emulation mode allows to experiment without the need for ad-
ditional software nor hardware. A test-suite can be created hy writing high-level
configuration files, from which detailed configuration files are built with a special tool.
A preconfigured test-suite consisting of 16 virtual nodes and including test Scenarios al-
ready exisls. Furthermore, the emulation niode can be combined with real operation,
for example, to test interoperability with other iniplemenrations.

Communication between RSVP daemon and API clients uses soft state. This is
deemed useful in cases when RSVP operates on a router on behalf of an API client at a
different host. There is no need for complicated connection management and tbe API
can be treated similar to an ordinary RSVP hop. It is configurable at compile time to
have asynchronous API upcalls realized by signals or by using threads. Many other op-
tions devised for resting purposes are configurable at compile time, as well.

5.2 Limitatinns

Some of the propenies of a full compliant RSVP implementation Ure currently missing.
The main reason for them tobe missing is their relative importance with respect to the
project goals, compared t« the effort necessary to develop and tesi these features.

1Pv6 is currently not supported. Due to the modular and portable design of the soft-
Ware, this rhould not create too much effort, yet it has to be tested then.
UDP encapsulation as described in [2] is not supported. It is not planned to support
this in the future, because it does not belong to the core of the specification and it is
already discussed in the IETF to drop this requirement (141.

5.3 Traffic Control Interiace

.An interface to real packet scheduling is provided for ihe CBQ package on Solaris and
for HFSC and CBQ scheduling using the ALTQ package on FreeBSD (see [3] for ap-
propriate references). In the absence of real scheduling packages, the total amount of
available bandwidth can he configured per interface. For each reservation. the neces-
sary resource requirements are calculated in terms of service rate and buffer. The re-
sults are checked against the available capacity and logged.

6 Summary and Future Work
In this paper I have presented an implementation of RSVP that is based on different de-
sign and implementation paradigms than existing work. The description of RSVP oper-
ations becomes more comprehensible when using object-relationships as principle
method of descrihing state blocks and message processing. Furthermore, a high-level
description of processing mles can be translated into implementation details and vice
versa with less semantic deprivation. A brief specification of RSVP processing mles is
presented to dernonstrate the capabilities of this approach. Certain optimizations have
been carried out and additional tuning seerns possible, if an irnplementation is based on
maintaining object-relationships inslead of recornputing them when needed. Design
objeciives for an experimental RSVP platform have been formulated and a design for
an RSVP implernentation is presented, following these objectives and being based on
object-relationships. To a large extent, the design objectives have been met by the pro-
totype. It is shown in this paper. how an experimenial research platform can benefit
from the application of modern software principles. The implementation described in
this paper will be publicly available to the research cornmunity.

There is still a lot of research work to he canied out in the area of signalling re-
source requirements. A formal specification of RSVP in terms of relational algebra
could be derived frorn the results of this work. This in turn could be used for formal ver-
ification of protocol implernentations and modifications. Many potential protocol re-
finements remain Open for exarnination. For this projeci, it is planned to further extend
and tune the irnplementation as well as completing to port it to a Simulation environ-
rnent, which is already under way. Additionally, the research issues and existing pro-
posals that are rnentioned in Section 1 are going to be explored based on this
implernentation. Finally, results from this project might be useful when new proposals
for new signalling protocols are being discussed, irnplernented and tested.

Acknowledgments

Jens Schmitt implemented the initial integration of the CBQ and ALTQ packages. 1
also acknowledge the help of Jens Schmitt and especially Nicole Berikr during prepa-
ration of this paper.

References

[I] L. Zhang. S. Deering, D. Estrin, S. Shenker. and D. Zappala. RSVP: A New Re-
source ReSerVation Protocol. IEEE Nemork Magazine, 7(5):8-18, September
1993.

[2] R. Braden. L. Zhang, S Berson, S. Herzog, and S. Jamin. RFC 2205 - Resource
ReSerVation Protocol (RSVP) -Version 1 Functional Specification. Standards
Track RFC, September 1997.

[3] M. Karsten. Design and Implementation of RSVP based on Object-Relation-
ships. Technical Report TR-KOM-2000-01, Damstadt University of Technolo-
gy, February 2000. Avalaible at ftp://ftp.kom.e-technik.tu-darmstadt.de1publ
TRRR-KOM-2000-01 .ps.gz.

(41 USC Information Sciences Institute. RSVP Software, 1999. http:llwww.isi.edul
div7/rsvp/release.html.

[5] M. Karsten. J. Schmitt, L. Wolf, and R. Steinmetz. An Embedded Charging Ap-
proach for RSVP. In Proceedirigs of the Sixrlr Internariorul Workshop orr Qality
of Service (IWQoS'98). Napa. CA, USA, pages 91-100. IEEWIFIP, May 1998.

[61 iM. Karsten, J. Schmitt, L. WoIf, and R. Steinmetz. Provider-Oriented Linear
Price Calculation for Integrated Services. In Proceedings of rlir Seventh IEEW
IFIP Iriterriatior~al LVorkshop on Qriaiity of Service (IWQoS'99). London, UK,
pages 174-183. IEEEIIFIP. June 1999.

[71 M. Karsten, N. Berier, L Wolf. and R. Steinmetz. A Policy-Based Service
Specification for Resource Reservation in Advance. In Proreedings of the Inter-
riational Confererrce on Compriter Cornniiinirafions (ICCC'99), Tokyo, Japan,
September 1999.

181 J. Schmitt, L. Wolf, M. Karsten. and R. Steinmetz. VC Management for Heter-
ogeneous QoS Multicast Transmissions. In Proceedirrgs of the 7th Irrterriational
Corflerence on Telecornmrinications Svstems, Arialyxis and Modellirrg, Nash-
ville, Tennessee, March 1999.

191 J. Schmitt. M. Karsten, L. Wolf. and R. Steinmetz. Aggregation of Guaranteed
Service Flows. In In Proceedirrgs ufthe Severith Irrternarional Workshop orr Qai-
ity of Service (IWQoS'99). iorrdon, UK, pages 117-155. IEEEIIFIP, June 1999.

[I01 R. Braden and L. Zhang. RFC 2209 - Resource Reservation Protocol (RSVP) -
Version I Message Processing Rules. Infomational RFC, September 1997.

[I 11 B. Lindell, R. Braden, and L. Zhang. Resource ReSerVation Protocol (RSVP) -
Version 1 Message Processing Rules. lnternet Draft, February 1999. Work in
Progress.

(121 J. Schmitt. Extended Traffic Control Interface for RSVP. Technical Report TR-
KOM-1998-04, Damstadt University of Technology. JuIy 1998. Avalaible at
ftp://ftp.kom.e-technik.tu-darmstadt.delpubTR-KOM-1998-04.ps.gz.

[I31 E. S. Crawley, L. Berger, S. Berson, F. Baker, M. Borden. and J. J. Krawczyk.
RFC 2382 - A Framework for lntegrated Services and RSVP over ATM. Infor- : mational RFC, August 1998.

1141 R. Braden. RSVPAntServ MIB issues, June 23rd 1998. Contribution to rsvp
mailing lisi. Available from ftp://ftp.isi.edulrsvplrsvp-199X.mail.

