
(:ienel.aliiiny 1ISVl''s 'linflic aiid I.'c~licy (:'ontrol rnterface
L1;irtin K:inien, .leiis Scliinitt. Kall'Steinlnetz
10 hc !>ciblistizci a(I(.'PADS '00 Wnrkahops, C'ripyiight IEEE. see Iittp:~~www.cornputer.i~r~ipolicic:s~l~tm

Generalizing RSVP's Traffic and Policy Control Interface

Martin ~ars ten ' , Jens ~chmitt ' , and Ralf ~teinrnetz ' '~
Industnal Process and System Communications, Darmstadt University of Technology, Gennany
German National Research Center for Information Technology, GMD IPSI, Darmstadt, Germany

Email: (Martin.Karsten,Jens.Schmitt,Ralf.Steinmetz)@KOM.tu-dmstadt.de
http://www.kom.e-technik.tu-darrnstadt.de/

Abstract
In this Paper. we describe our current eflorts to evaluate
and extend the trafic control interface of RSVP and to
define a usefulpolicy control interface. Theparticular goal
is to advance integration of non-broadcast multiple-access
(NBMA) subnets, such as native ATM, and furthermore, to
allow for meaningful inter-operation between trafic con-
trol and policy control. Our experience stems from imple-
menting RSVP in combination with a policy interface to
charging modules. Furthermore, we have developed a VC
management module for ATM, which enablesjlexible inter-
operation of RSVP with ATM subnets. We describe the cur-
rent status of this work with respect to multicast, atomicity
of operations and resulting challenges.

1. Introduction

RSVP (Resource Reservation Setup Protocol), initially
designed and described in [l], has been specified by the
IETF [2] to cany reservation requests for cornmunication
resources across IP networks. The initial specification of
RSVP lacks two aspects, which will be important for real
operation of integrated services networks based on IP. The
interface to traffic control modules, which eventually con-
hol and enforce resource reservations has been specified
without taking into account the specific properties of non-
broadcast multiple-access (NBMA) networks such as
native ATM. In order to fully utilize the QoS capabilities of
an ATM subnet, the original interface has to be extended.
Additionally, no interface to policy control modules has
been specified. A policy control module is needed to make
and enforce administrative authorizations to use certain
resources. As well, inter-operation with a charging system
has to be carried out by this module.

Extending the traffic control interface as well as inte-
grating an interface to policy control significantly increases
complexity of operations at this point where an RSVP pro-
tocol engine interacts with external modules. For example,
both traffic control and policy control have to admit a new
flow entering the system. This decision must be done

atomically, thus requiring a potential rollback of one opera-
tion if the other module does not admit a new flow. Such
advanced problems and the software design we have cho-
Sen to deal with them resemble the focus and main contri-
bution of this paper.

While at first glance RSVP seems to be straightfonvard
and easy to understand, the details of an implementation
are rather complex. In order to cope with this complexity,
we have developed a new design for an RSVP protocol
engine, based on object-relationships [3], and we have
implemented an RSVP protocol engine from scratch,
employing this design. The latest release of this software
package can be found at [4]. This release includes many of
the extensions described in this paper.

The rest of this paper is structured as follows. In the
next section, we briefly review previous work related to
practically dealing with traffic control and policy control
interfaces. In Section 3, we present those components that
are integrated with our RSVP implementation. The con-
cepts for integration are discussed in Section 4 while in
Section 5, we present our software design and elaborate on
certain aspects we learned from our implementation
efforts, so far. Section 6 concludes the paper with a sum-
mary and an outlook on further work items.

2. Related Work

Some work has been carried out to integrate native
ATM subnets into RSVP operations [5,6]. However, these
practical approaches do not address the problem in a gen-
eral way to find efficient and flexible solutions. Our
approach differs from earlier work in that we try to go
beyond initial ad-hoc solutions and address the whole Set
of Open issues, including for example, the impact on
RSVP's message processing d e s . We have described the
initial design of an extended traffic control interface in [7]
and have carried out a broader study of inter-operation
issues in [8].

Design and operations of the RSVP implementation
from ISI [9] are described in [10] and [ll]. Further RSVP
implementations exist [12], but other than the ISI project

[Kaschst001 Martin Karsten, Jens Schmitt, Ralf Steinmetz; Generalizing RSVP'S Traffic arid
Policy Control1nterface;Proceedings of the 17th International Conference on
Parallel and Distributed Systems (Workshon). IEEE. Jii.1~ 2000

(.icnci.aliiing I<S\!P's 'linfiic 2nd Policy (:'ontrol Intei'taci.
k1;knin Kzirsren, .lt.iis Scliiniti. Kalf'Steinmetz
io he pi~blishcci at I(.'I'.~\DS '00 LVorkshops, C'opyrighr IEEE, sec 1ittp:Y~www

and ours, they are not in the public domain. In the area of
policy control, the IETF working group RAP has published
related work describing, among other things, a framework
[13], design [14] and an RSVP interface [15] to policy con-
trol, but the specific issues discussed in the present paper
are usually not addressed by these more generic docu-
ments.

3. Components for Traffic and Policy Control

In this section, we describe the additional components
that are combined with the core of the RSVP protocol
engine. First, we describe the main features of a generic IPI
ATM adaptation module, then the charging system is
briefly presented.

3.1. IP/ATM Adaptation Module

The interface to the IPIATM adaptation module is
implemented as a User level library that allows to Set filters
into the fonvarding path from the IP-side of an edge device
to the ATM-side. Here, filters consist of a number of rules
which map data flows on a number of ATM VCs that can
each be Set up with a certain specified QoS. A User of the
library only needs to supply the logic for which data flows
there should be special treatment by the ATM subnet. The
VC management (VCM) module takes all the necessary
steps to Set up corresponding VCs by using UNI signalling,
rerouting the data path within the IPIATM edge device, and
so on. The logic is a simple restricted predicate logic,
where the predicates are based on arbitrary conditions in
the headers including and above the IP layer combined by
logical ANDs, thus constituting a filter rule. An OR'ed
concatenation of such filter rules represents afilter. Each
filter is mapped on a set of VCs, where the Sets of the VC
endpoints are disjunct. In a more formal way, filters can be
described as:

Let Ai@), i=l, ..., n, j= l , ..., k, be predicates defined on
the contents of the IP packet p,

1 ifIPdest-addr=a.b.c.d
0 othenvise

then F; = A , @) A ... A A , (~)
constitutes a filter rule forj=l,..,k,
and F = (F, V . . . V Fk; VC,, . . ., VCV)
with endpoints(VCi) n endpoints(VC/) = { } for all i j
constitutes a filter.

Since flexibility is the most important design goal for
the interface towards the VCM, different kinds of matching
actual packet header's partial fields against filters are intro-
duced, i.e., predicate definitions are very general. For
example, it is possible to do mask matches which is partic-

ularly suited to address fields that are structured as e.g. IP's
source and destination address fields, thus allowing for fil-
ter rules to be defined on whole IP subnets (e.g. "all traffic
from subnet a.b.c shall take special VC V when being for-
warded to subnet d.e.fr). This general design allows the
VCM to be employed for RSVP traffic as well as other
QoS approaches for IP, such as Differentiated Services. A
detailed description of this IPIATM adaptation module can
be found in [16]. At this point, we only briefly wrap up the
most irnportant VCM features:

N:M relationship between filter rules and VCs for
maximum flexibility of VC management strategies
easy extensible and highly expressive filter rules by
the use of predicate logic
independence of general IP convergence module:
Classical IP, ForeIP, Multi-Protocol over ATM
ease of use: user-space object-oriented class library,
yet performance-cntical parts in kerne1 space

3.2. Charging System

A motivation and overview of charging for packet-
switched networks can be found in [17]. We described an
initial charging scheme for RSVP in [18]. Since then, the
scheme has been extended to increase flexibility for addi-
tional pricing strategies (e.g. auctions) and to improve the
inter-operation with a real RSVP implementation. Our
approach mainly considers two aspects of the full chal-
lenge of creating a real-world charging system:

price cornmunication in the presence of RSVP's one-
pass with advertising (OPWA) and receiver-initiated
reservation strategy
as precise as possible accounting of actual reserved
resources to several adjacent hops with heterogeneous
QoS requests in the presence of RSVP's reservation
styles

The charging scheme consists of appropriate protocol
elements and state information to describe prices, resource
usage, etc. The policy control module offers several ser-
vices to the RSVP engine. It allows for retrieving price
information during the announcement phase of OPWA.
During the reservation phase, the policy control module
collects all merging information of reservations, extracts
the respective resource accounting and calculates current
pricing. Finally, the policy control module also decides
from its point of view about authorization, acceptance and
fonvarding of a reservation request.

State information of our RSVP engine is modeled as
objects and object-relationships, and hence, it is travers-
able. Therefore, it is sufficient to pass the Same information
to the policy control module as those passed to a traffic
control module (roughly comparable to RSB and TCSB in
[lo]; See [3] for details). The operations of policy control

(.icnci.aliiing IISVl''s 1i.iifiic and Policy C'oi~trol InterfBce
>lii:.tin Karsten, Jeix Scliinitt. KalfS(eininetz
lo bc pi~blishzd at IC'PADS '00 Workshops, Copyright IEEF,, sce Iittp:;'!www

can be separated into immediate and background tasks.
This is further discussed in Section 5.

4. Conceptual Integration

Several new aspects arise when broadening the point of
view to traffic control by NBMA networks and policy con-
trol. We describe the major challenges we encountered dur-
ing our implementation project.

4.1. Silent Next Hops

Consider the arrival of the f i s t RESV message from a
downstream RSVP hop. Suppose that a reservation is
already in place at the respective outgoing interface and
that the new request cames no new FilterSpecs and a
FlowSpec, not larger than the existing one. If NBMA sub-
nets and policy control modules are not considered at this
point, no traffic control operation is necessary, because the
new request can be served by the existing reservation.
However, in case of NBMA networks, a new reservation
request conveys a new next hop. This information must be
handed over to the traffic control module, because it might
be necessary to establish a dedicated transmission channel
(e.g. a VC or VC-endpoint in case of ATM) to it. Also, a
policy control module that calculates charges and accounts
them to next hops must be informed about such a change,
as well. Furthermore, state changes in the policy control
module might affect the policy-related content of outgoing
RESV messages.

4.2. IP Multicast

The interface to a traffic control module of RSVP is
specified in [2]. With respect to IP multicast, it is men-
tioned in this docurnent that the description "assumes that
replication can occur only at the IP layer or 'in the net-
work'". We denote this as a broadcast network. Note that a
point-to-point link can be considered as special type of
broadcast network, as well. As has been extensively dis-
cussed, e.g. in [8] and [19], there are many aspects of effi-
ciently overlaying RSVP and ATM networks, which
mainly result from the NBMA characteristics of ATM and
the fact that ATM does not directly support the highly flex-
ible IPIRSVP multicast model.

Without extensions, an RSVP protocol engine merges
all requests arriving at a single outgoing interface by calcu-
lating the least upper bound (LUB) of all FlowSpecs. In
case of NBMA networks, however, the traffic control mod-
ule itself must be able to decide how to merge reservations.
We use the concept of merging groups to express this capa-
bility. Because e.g. ATM does not support Multicast-VCs
with heterogeneous QoS parameters, the traffic control

module partitions the Set of next hops according to the sim-
ilarity of their QoS requests into merging groups. Then, a
Multicast-VC is used for transmission to each merging
group. Algorithmic aspects of efficiently building merging
groups are studied in [20].

4.3. Atomicity of Operation

Both traffic control and policy control module indepen-
dently decide about acceptance of a reservation, based on
their respective state and configuration. Each operation
must be done atornically, i.e., having an all-or-nothing
property. Furthermore, for the core RSVP protocol engine,
complete acceptance or rejection of a reservation must
appear as a single decision, because RSVP has no mecha-
nisms to deal with a reservation that is accepted by only
one of both modules. Consequently, admission of a reser-
vation request must be done in one atomic operation from
RSVP's point of view. An Open issue is to determine whch
of traffic control and policy control module decides first
about admission and which is second. That module doing
the first decision must be prepared for a full rollback if the
other decision fails. We decided to place this burden on the
policy control module for the following reasons.

It is likely to assume that policy control decisions gen-
erally consist of an authorization, a validity check and an
accounting step. Validity check and accounting might be
omitted, if the network Operator considers it unnecessary.
The validity check might be a test whether the offered pay-
ment is sufficient. This in turn requires Part of the account-
ing process to be carried out. "Raw" resource accounting
might be followed by an internal transaction, e.g., debiting
an intemal account. Interna1 transactions are periodically
cleared by extemal transaction, i.e., real payments.
Because an update of traffic control parameters immedi-
ately results in different network conditions, affecting other
flows as well, it is favorable to lower the probability of a
traffic control rollback over a policy control rollback. In
case of a policy control rollback, intemal transactions can
be reverted without influencing any external entities.

Additionally, fiom the diversity of subnet technologies
and their potential for complexity (as e.g. in ATM or when
employing a subnet bandwidth manager) we conclude that
the effort for rollback preparation and potential resource
wastage depict an argument for this design decision. Yet
another reason can be given by considering network provi-
sioning. In a well-dimensioned network, traffic control
rejections can be expected to be less likely than policy con-
trol refusals (e.g., because of overdue bills or empty pre-
paid billing cards).

The Same strategy has been chosen in the proposal for
interaction between RSVP and COPS [15]. In the follow-

(:icnc~-aiiying I<SVl"s 'l'rciflic aiid I'olicy (:'oiiirol Interlücc
Lliiriin Kiirsirn, .leiis Scliinitt. Kalt'SteinineU
io ihe piiblishcd at IC'PADS '00 Woi.lishop~, C'opyiight IEEF,, see Iittp:~~w~:w.c»r~i~~ute~~~~~rg~policics.l~ln~

ing we briefly present challenges resulting from those con- topic, but have not come to any final solutions other than
siderations. what is discussed in Section 5.

Partial Rollback of Traffic Control
The scope of a single traffic control update operation is 5. Design and Implementation

defined by the handling of a single RSVP message or tirner
expiration per interface. Perfonning such an update opera-
tion consists of several actions to be carried out. Besides
installing a new FlowSpec for a resewation, FilterSpecs to
identify eligible sender applications might be added or
removed. Although unlikely, it is possible at least for a fil-
ter adding operations to fail. Therefore, we decided to pre-
pare our traffic control modules for partial rollback by
canying out the update operation as follows:

First, the new reservation FlowSpec is installed, then
filters are added or removed. Note that the above definition
of a scope for a single operation prevents that filters are
added and removed wiihin the Same update operation. As
well, when filters are removed, the reservation FlowSpec is
never increased.

If installing a new FilterSpec fails, all previously
installed FilterSpecs from this update operation are
removed again and the FlowSpec is Set to its previous
value. Thus, ihe important all-or-nothing property of a traf-
fic control update operation is guaranteed by intemal roll-
back. By appropriately designing the respective software
interface (see Section 5), a traffic control module for
NBMA networks can easily be integrated into this process
to revert any merging group operations (as discussed in
Section 4.2).

Full Rollback of Policy Control
In order to integrate a policy control modules that has

the capability for rollback, the interface has to be split into
two Parts.

1) The preparation step consists of authentication and
validity check. As a result, the request is either
accepted or rejected and temporary state is saved
within the policy control module.

2) The commit step corresponds to accounting, i.e.,
handing over the state information for persistent stor-
ing and potential external transactions.

If a reservation is accepted and later rejected by the traf-
fic control module, it is sufficient to delete all temporary
state information.

4.4. Concurrent Execution

The main design goals of our implementation are clarity
of code, flexibility and extensibility. An RSVP implemen-
tation on a regular workstation using a normal UNIX oper-
ating System can only serve as a proof of concept and
research platform for future investigations. Therefore,
although we try to keep the design prepared for efficient
operation, we do not believe that it is currently necessary to
irnplement for outmost efficiency. We employ an object-
oriented design and try to avoid any duplication of code.
The implementation is done in C++.

5.1. RSVP Protocol Engine

State information of RSVP is stored as objects contain-
ing relationships to other objects. The contents of a PATH
message are Store in a Path State Block (PSB) whereas
contents of a RESV message are stored in a Reservation
State Block (RSB). As an example for relationships, each
PSB has a relationship to a Previous Hop State Block
(PHopSB) representing the hop from which this PATH
message has been received. Information conceming a res-
ervation at an outgoing interface is stored in an Outgoing
Interface State Block (OutISB) and the relationship
beiween resewations and PSBs is modeled as separate
object Outgoing Interface at PSB (OIatPSB) in order to
intemally represent an N:M relationship by 1:N relation-
ships (which simplifies implementation). Figure 1 shows
the entity-relationship diagram for the design of RSVP
state information.

11- M OutISB I
I +

Figure 1 : Entity-relationship diagram for state blocks

5.2. Traffic Control
Both traffic control and policy control operations might

involve a certain overhead, so that it seems desirable to We model the traffic control and corresponding mod-
exemte them concurrentl~ to the core RSVP o~erations. ules as a class hierarchy forming 4 layers of abstraction.
~ h i s however, requires to specify most of RSVP's stak CO-O~ tasks are implemented in higher layers whereas
information and 0perations such that COnCUrrent execution more specialized task are implemented in derived
is possible. To this end, we are actively investigating this ~ h i ~ design is shown in ~ ~ ~ d ~ y ~ ~ ~ d ~ ~ - ~ ~ ~ ~ ~ i ~ ~ in

(.isni:l'aliiing HS\!l"s 'li.:iflic aiid I.'olicy C'»ntrol Inlci'iace
\lurrin Kiirsien, .leiis Scliinitt. Kall'Siziii ineii
!o lbc !>ciblishcct a l I('l%\T)S '00 \Voioi.!i~hops, ('olyi ighr IEEF,, sce lit~~~::~~u:~~~w.~orr1~~utc1'.i1r~ipoIi~ic~.litr11

Figure 2 without atiributes and methods. As can be Seen in
this diagram, a cornmon base class TrafficControl exists,
which provides the following main interface to the core
RSVP engine. We restrict the interface to the most relevant
methods without showing details like arguments and retum
tYPes.
class TrafficControl {

virtual updateReservation0 = 0;
virtual redoLastReservation0 = 0;

updateFilters () ;
addFilter () ;

removeFilter();
upda t eTC () ;

1;
This base class completely implements the high-level

handling of insertion and removal of FilterSpecs. When-
ever during message processing a FilterSpec is found eligi-
ble for insertion and removal, a call to addFilter or
removeFilter respectively is made. In order to rninimize
interaction between traffic control module and the system's
resources, these actions are buffered within the TrafficCon-
trol class and executed only when updateFiIters is called.
The methods updateReservation and redoLastReservation
are realized in denved classes and implement the logic for
merging of multiple reservations. They are specialized on
broadcast or NBMA respectively, depending on the actual

TrafficControl H

type of subnet an interface is attached to. Correspondingly,
two classes are derived from OutISB: TCSBBMA and
TCSB-NBMA. Interna1 state information for a reservation
at an outgoing interface is stored in these classes. For
example, merging group information for NBMA subnets is
stored in objects of type TCSB-NBMA.

The class Scheduler acts as a base class for different fla-
vors of scheduling packages and provides a cornrnon inter-
face to them. This interface is basically the Same as the
traffic control interface in [10].
class Scheduler {

addFlowspec () ;
modFlowspec (;

delFlowspec () ;
addFilter0 ;
delFilter () ;

1 ;
The public methods of class Scheduler are eventually

realized by calling intemal virtual methods, which in turn
are implemented in derived classes. Furthermore, this class
provides some cornrnon mechanisms like logging of events
and high-level admission control. Class SchedulerNBMA
adds some methods to this interface, which are needed for
NBMA subnets only.
class SchedulerNBMA : Scheduler {

addDestination () ;
delDestination () ;

1;
To this end, we have integrated scheduling packages for

CBQ scheduling on Solaris and FreeBSD &d t h e - v ~ ~
package on Solaris. Additionally, we have integrated
HFSC scheduling on FreeBSD.

I I

TrafficControlBMA afficControlNBM 5.3. Policy Control

The interface to policy control includes the necessary - -
methods to perform policy control in two steps with a
potential rollback after the first one. Given that our general
design for the protocol engine allows to traverse object-
relationships, it is suitable for those methods to take similar
arguments as the traffic control interface. All operations
that are carried out when commit is called, can be executed
concurrently to further RSVP operations.
class PolicyControl {

checkAndPrepare0;
commit () ;

rollback () ;

1 ;

5.4. Structure of Operation

In order to glue the pieces together, we present as
pseudo code, how updateTC from class TrafjicControl uti-

Figure 2: Class design for traffic control modules lizes the services of other objects.

(.isns:.:iliiing I<.S\!li'a 'linfiic ancl I'c~licy (:'«iitrol Itilei'tace
M~I-t in Kiirsttn, .leiis Scliinitt. Kal l ' Sleiiiineti
io !>C !>iiblishc<l at I ('l':\DS '00 \Voi~!ishops, (.'nl)yiigtit (FEF,. scc Iittp::'~www.coriiputci..i)r~policizs.litni

PolicyControl::check~nd~repareO;
if (success) {

update~eservationo;
if (success) {

updatefilters () ;

if (success) {
PolicyControl::commitO;
return;

redoLastReservation () ;

1
PolicyControl::rollback();

1
As can be Seen from this pseudo-code, the appropriate

design of traffic control and policy control modules and
interfaces leads to a very concise and elegant expression of
high-level concepts.

6. Summary and Future Work

In this Paper, we have presented some intermediate
results from an ongoing evaluation and implementation
project conceming policy control for RSVP and RSVP's
operation over ATM subnets. We have described our
implementation components, consisting of a new RSVP
implementation, a flexible ATMAP adaptation module, and
a charging scheme that is currently being built.

We have identified challenges resulting from appropri-
ate extensions of RSVP compared to its initial specifica-
tion Then, we have discussed our approaches and
solutions, as far as they are available. Finally, we have pre-
sented the Software design for our implementation, which
allows us and potentially others to further study those
issues.

Future work items can be clearly identified. The theo-
retical work of finding appropriate merging groups over an
ATM cloud should be backed up by Simulation andior real
experiments. The charging System has to be completed to
show its feasibility. The Open issues about concurrency are
yet to be investigated. Last not least, insights into overall
efficiency and usability remain to be the primary goal in
order to allow for real-world deployment of such mecha-
nisms.

References
[I] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.

RSVP: A New Resource ReSerVation Protocol. IEEE Net-
work Magazine, 7(5):8-18, September 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
RFC 2205 - Resource ReSerVation Protocol (RSVP) - Ver-
sion 1 Functional Specification. Standards Track RFC, Sep-
tember 1997.

[3] M. Karsten. Design and lmplementation of RSVP based on
Object-Relationships. In Proceedings of Networking 2000,
Paris, France, May 2000.

[4] M. Karsten. KOM-RSVP Protocol Engine, 2000. Work in
Progress. Software available from
http://www.kom.e-technik.tu-darmstadt.de/rsvp/.

[5] T. Braun and S. Giorcelli. Quality of Service Support for IP
Flows over ATM. In Proceedings of KIVS '97, February
1997.

[6] L. Salgarelli, M. DeMarco, G. Meroni, and V. Trecordi. Ef-
ficient Transport of IP Flows Across ATM Nehvorks. In
IEEE ATM Workshop Proceedings, May 1997.

[7] J. Schmitt and J. Antich. Extended Traffic Control Interface
for RSVP. Technical Report TR-KOM-1998-04, Darmstadt
University of Technology, July 1998.

[8] J. Schmitt and J. Antich. Issues in Overlaying RSVP and IP
Multicast on ATM Networks. Technical Report TR-KOM-
1998-03, Darmstadt University of Technology, July 1998.

[9] USC Information Sciences Institute. RSVP Software, 1999.
http://www.isi.edu/div7/rsvp/release. html.

[I01 R. Braden and L. Zhang. RFC 2209 - Resource ReSerVation
Protocol (RSVP) - Version 1 Message Processing Rules. In-
formational RFC, September 1997.

[I I] B. Lindell, R. Braden, and L. Zhang. Resource ReSerVation
Protocol (RSVP) - Version 1 Message Processing Rules. In-
ternet Draft, February 1999. Work in Progress.

[I21 G. Gaines and M. Festa. RSVP-QoS Implementation Sur-
vey, July 1998. Available at
http://www.iit.nrc.ca/IETF/RSVP-survey/.

[I31 R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework
for Policy-based Admission Control. Internet Draft, April
1999. Work in Progress.

[I41 D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and
A. Sastry. RFC 2748 - The COPS (Cornrnon Open Policy
Service) Protocol. Standards Track RFC, January 2000.

[I 51 S. Herzog. RFC 2750 - RSVP Extensions for Policy Control.
Standards Track RFC, January 2000.

[I61 J. Schmitt, M. Karsten, and R. Steinmetz. Design and Imple-
mentation of a Flexible, QoS-Aware IPIATM Adaptation
Module. In Proceedings ofATM 2000, Heidelberg, Gernra-
ny, June 2000.

[I71 M. Karsten, J. Schmitt, B. Stiller, and L. Wolf. Charging for
packet-switched network communication - motivation and
overview -. Computer Cornmttnications, 23(3):290-302,
February 2000.

[I 81 M. Karsten, J. Schmitt, L. Wolf, and R. Steinmetz. An Em-
bedded Charging Approach for RSVP. In Proceedings ofthe
Sixth International Workshop on Quality of Service
(IWQoS'98). Napa, CA, USA, pages 9 1-1 00. IEEEIIFIP,
May 1998.

[I91 E. S. Crawley, L. Berger, S. Berson, F. Baker, M. Borden,
and J. J. Krawczyk. RFC 2382 - A Framework for Integrated
Services and RSVP over ATM. Informational RFC, August
1998.

[20] J. Schmitt, L. Wolf, M. Karsten, and R. Steinmetz. VC Man-
agement for Heterogeneous QoS Multicast Transmissions.
In Proceedings oJthe 7th International Conference on Tele-
communicaiions Systems. Analysis and Modellirig, Nasli-
vifle, Tennessee, pages 105- 125, March 1999.

