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QoS Signalling and Charging in a Multi-service Internet using RSVP

Abstract

Because of the high level of uncertainty about the future traffic mix and the heterogeneous na-
ture ofQuality of Servic€QoS) technologies and service contracts, it is very likely that a future
commercial multi-service Internet requires a general service signalling architecture to reliably
deliver end-to-end QoS. In this thesis, the suitability of Besource Reservation Protocol
(RSVP) for this purpose is investigated and assessed. The thesis presents the following contri-
butions: A flexible QoS signalling architecture is described, based on an extended version of
RSVP. A new protocol engine has been designed and implemented, containing a number of de-
sign and algorithmic improvements over previous work. This implementation has been used to
experimentally verify the technical suitability of RSVP. Additionally, new protocol elements
have been developed to allow for flexible charging mechanisms of service invocations. Based
on several calculation models for service invocations, these protocol elements are assessed to
cover a variety of potential usage cases, namely cost-based pricing, auction-based pricing and
advance service invocations. As a result, it is concluded that an extended version of RSVP is
indeed a good candidate to form the basic building block for an overall commercial QoS signal-

ling architecture.
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Chapter 1: Introduction

The relevant technology that is used to run the Internet is developed and defined witimn the
ternet Engineering Task ForddETF) working groups. The standardization process oiRke

source Reservation ProtocolRSVP [BZB*97] and the Integrated ServiceqIntServ)
architecture [Wro97a] has created significant expectations about the migration of the Internet
towards an integrated multi-service network. Afterwards, objections against the resulting sig-
nalling and data forwarding complexity have led to the establishment of a new working area,
called Differentiated Service¢DiffServ) [BBC*98], in which much simpler solutions are
sought. Furthermore, numerous other proposals (see Chapter 3) have been made to deliver pre-
dictableQuality of ServicdQoS) in packet-switched networks. However, it is unlikely that a
single QoS technology can satisfy the diverse requirements for a future multi-service Internet.
Additionally, it is highly questionable whether any such technology will be uniformly deployed

on a global scale. In this thesis, it is argued that building predictable end-to-end network serv-
ices requires a signalling architecture that integrates diverse data forwarding technologies and
allows for service requests for various topological scopes. The only relevant standard proposal
for a flexible signalling protocol is given by RSVP. While there might also be reluctance
against deploying uniform signalling mechanisms, such mechanisms have an important inte-
gration role to simplify inter-operation between different autonomous systems and to integrate
varying technologies and strategies, similar to e.gBibeler Gateway ProtocdBGP) [RL95]

for routing in the current Internet. Furthermore, they will serve as the principal interface to in-
corporate charging information. It is clear that the technical potential to discriminate service re-
guests must be accompanied by corresponding economic calculations. Accounting of service
requests and appropriately charging for them is essential to protect a multi-service Internet from
arbitrary service requests and to create a funding mechanism to extend network capacity at the
most desired locations at the expense of those users that actually use these resources. The main
objective for such work is flexibility to support all reasonable employment scenarios. On the
other hand, it seems unsuitable to precipitously invent new signalling mechanisms, before the

full potential of existing (yet maybe extended) proposals has been investigated and exploited.
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1.1 Goals

In this thesis, it is intended to show how stringent decoupling of service interfaces and protocols
from service instantiation (as e.g. initially intended for RSVP and IntServ) can create a realistic
point of view on the issue of service signalling. The main goal for this work is to assess the ap-
plicability of RSVP to realize a flexible QoS signalling architecture, incorporating the neces-
sary charging mechanisms for commercial exploitation. To do so, it is necessary to develop an
overall signalling architecture and carry out the suitability assessment of RSVP both conceptu-
ally and technically. The other important goal for this thesis is to investigate the issue of price
calculation and charging in a multi-service Internet. At the same time, it is an explicit goal for

this work to adhere to existing standardization proposals as much as possible.

It is not a goal of this thesis to design a detailed and overall optimal technology to deliver
QoS in the Internet or to suggest particular schemes for pricing and charging network services.
Corresponding to the well-known paradigm to distinguish between mechanisms and strategy,
this thesis investigates and proposes flexible yet efficient mechanisms, leaving it open for fu-

ture work to answer the question about the optimal strategies to employ them.

1.2 Structure

This thesis is structured as follows. In Chapter 2, the general topic for the thesis is motivated,
as well as the specific choice of its focus and methods. Chapter 3 presents and discusses exist-
ing results and related work in the area of QoS and economics for packet-switched networks,
since these general topics constitute the foundation of this work. The first step to investigate the
topic of this thesis is described in Chapter 4, in which the design for a flexible QoS signalling
architecture is presented, based on abstract reasoning about its fundamental building blocks. In
Chapter 5, the technical feasibility of RSVP is evaluated by describing an innovative imple-
mentation design, its realization and examining the performance of the resulting software. The
last step to fulfil the overall goals of this thesis is carried out by developing calculation models
for a multi-service Internet and charging mechanisms for RSVP-based service invocations.
Both are evaluated to conceptually demonstrate the commercial applicability of this approach.
This work is described in Chapter 6. Finally, Chapter 7 concludes the thesis and summarizes
the major contributions. An outlook to future work items is given. Some particular aspects are
described in the appendices. For reasons of clarity and brevity, they are not part of the main

body of the thesis.
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Chapter 2: Motivation

In this chapter, the scope, goals and methods for this thesis are presented, motivated and dis-
cussed in further detail. The motivation begins with describing a very broad vision and general
challenges for this vision. The chapter continues by narrowing down the focus to more detailed

aspects, which resemble the relevant topics for this thesis.

2.1 Vision of an Integrated Multi-service Internet

The current Internet offers a packet-based, best-effort service vilntdet Protocol(IP)

[Pos81] and provides no assurances about the quality of transmission, other than the best effort
of all participating entities. Packets can be garbled, lost, duplicated or arbitrarily delayed. This
particular technology is well-suited and very effective to serve the application mix it has been
initially designed for. This can be directly concluded from the current success of the Internet in
number of users and increase in topological size. At the same time, there are other communica-
tion networks, like the telephone and cable-TV network, which deliver a certain transmission

quality for exactly one application.

A network that can carry many different applications seems highly desirable to support the
large diversity of communication applications that already exists and will be created in the fu-
ture. In fact, it can hardly be imagined to build new and separate networks to support new ap-

plications.

A single network infrastructure is economically more efficient than the current situation,
even if it cannot be as optimized as a dedicated network [She95]. This is due to economies of
scale that can be achieved both in the human resources sector as well as in the equipment sector,
if only one technology has to be supported. The apparent need for interaction and combination
of multiple applications, for example, between human tele-conferencing and collaborative ap-
plications, even further supports this point of view. Finally, there is a potential for resource sav-
ings through multiplexing gains in both the short and medium time-scale. As an example for
medium time-scale multiplexing, consider that the telephone network usually reaches is peak

load during the day, whereas the TV network records it peak demand during the evening. The
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existence of short time-scale multiplexing gains for a heterogeneous applications mix that in-
cludes variable transmission rate applications, is a well-known fact that can be deduced directly

from basic queuing theory [Kle75].

The vision behind the work for this thesis is the eventual realization of a truly global and
ubiquitous communication infrastructure, supporting the largest diversity of applications con-

ceivable, e.g., ranging from text-based email to tele-surgery.

2.2 Challenges for an Integrated Multi-Service Internet

Numerous proposals have been made to enhance the basic service model of the Internet and
provide the capabilities for predictable QoS characteristics (see Chapter 3). However, a number
of issues, which highly influence the suitability of any particular technology, are often not

clearly expressed.

2.2.1 Demand Expectations

Two important but often confused aspects to assess different alternatives for QoS provisioning
in the Internet are given by the time scale one considers and the expectations about the demand
for different types of applications, i.e., the traffic mix that is carried at that time. An insightful
classification is given in [She95] to distinguish different traffic types, especially elastic from in-
elastic applications. Adaptive applications can be considered to have an inelastic lower bound,

thus eventually being inelastic.

If one assumes that future traffic patterns are mainly determined by elastic applications, the
current best-effort service of the Internet might be very appropriate (with only slight modifica-
tions) for a future multi-service network. The conclusion that a relatively small amount of ine-
lastic traffic can be carried with high performance can be drawn quite obviously. Resources will
be plentiful for traffic from inelastic applications, if it is simply marked to receive a higher pri-
ority when packets are forwarded. On the other hand, if inelastic applications, especially long-
lived flows, will form the major part of overall demand, one might choose to favour ATM-like
technology as main interconnection layer, because it is optimized for such applications. Elastic
traffic could then be carried over a meshed IP topology on top of the underlying ATM network

and the impact on overall resource provisioning would be negligible.
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If, however, the traffic mix is roughly evenly distributed between both types of applications,
it seems favourable to have a connectionless packet-switched interconnection layer, which is
augmented by special mechanisms to accommodate and appropriately carry inelastic traffic
without wasting too many resources. It is actually imaginable that ‘roughly evenly’ covers a
quite significant part of the overall distribution scale. In [She95] it is argued that in this case, an
integrated network is economically more efficient than having two distinct network infrastruc-
tures. This point of view is supported in this thesis and furthermore, it is argued that because of
the fundamental uncertainty about future demand patterns, a system should be built to support
any possible traffic mix, yet not necessarily each potential traffic mix at the absolutely lowest

cost. It can be optimized at any time, if the demand patterns actually stabilize.

It should be noted here that demand and technology in fact have a bidirectional dependency.
Technological choices determine the lowest possible price at which certain services will be of-
fered, which in turn influences overall demand. This cyclic dependency makes it even harder to

predict any particular traffic mix.

2.2.2 Commercial Environment

When considering a communication network that is eventually designated to serve in a com-
mercial environment, the most prevalent requirement is given by the need for clear and precise,
yet expressive, semantics of service invocations. This is especially important when it comes to
the upper and tighter end of performance characteristics. Such properties do not only have to
apply to the interface between end-users and network providers, but instead, they are equally
important for interfaces between peering provider networks. The main reason for this assess-
ment has no direct technical background, but is deduced from the necessity of end-customers’
trust in an advanced communication infrastructure. So far, product liability and customer satis-
faction has been paid rather little attention in the area of computer software and Internet tech-
nology, opposite to almost every other industry branch (even the traditional telephony industry
after deregulation). In order to create a similar trust as regular users currently have in their res-
idential telephones, a new era of clear and precise responsibility for the value-chain of creating
an advanced commodity product ‘integrated services network’ is very likely to come forth. For
such commercial reasons, it is also very important that both service provision and service ac-

counting are intimately tied together. It does not make sense to invent new mechanisms to de-
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liver a high-end service without presenting a commercially sound service interface and vice

versa.

2.3 Towards an Integrated Multi-service Internet

The chain of arguments in the previous sections has its background in both technical and non-
technical areas. On the one hand, the are indications for the technical (and consequently eco-
nomical) superiority of integrating all communication applications over a uniform, robust,
packet-switched interconnection layer. On the other hand, it can be expected that some of the
underlying principles of current Internet network service provision, as e.g., cooperation, implic-

it traffic contracts, and the assumption of every party’s goodwill, cannot be carried over to the
commercialized future of an integrated multi-service Internet. Instead, explicit service negotia-
tions will be necessary for a large spectrum of topological scopes and time scales of service du-

ration.

2.3.1 QoS Signalling

The need for an overall and integrative QoS signalling architecture is stated in the most recent
draft of the Internet Architecture Board [Hus00]. Such a general architecture is needed to inte-
grate the prevalent variety of QoS subnet technologies and to provide meaningful end-to-end
services [HusO00]. In general, a receiver-oriented model to request network services can be
adopted for such service signalling [Hus00]. In order for a communication service to make
sense, both sender and receiver must have reasonable interest in establishing it. Only at the re-
ceiver’'s end-system, there is knowledge what kind of network transmission performance is de-
sired and reasonable, therefore, it seems plausible to delegate service requests to receivers. A
sender determines how much traffic it emits and announces this to the network and receivers,
however it does not make sense to have the sender request a certain network performance, if
e.g., areceiver has not enough interest in any particular transmission performance (or transmis-

sion in the first place) and discards incoming packets anyway.

One particular goal of such a QoS signalling architecture, besides flexibility, is given by the
consideration that requests for tight per-flow service guarantees will present the relatively high-
est challenge to a future multi-service network, both in terms of signalling and data forwarding
complexity. In this thesis, it is therefore argued to optimize the QoS signalling architecture for

that case. The development of a QoS signalling architecture is a highly constructive task, which
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requires a significant understanding of existing QoS proposals and application requirements in
both theory and practice. The suitability and even superiority of any particular proposal can
hardly be proven, other than by experiments with real users in a real large-scale network. In or-
der to evaluate the specific architecture that is proposed in this thesis, a usage case evaluation

Is carried out in Section 4.5 to at least back up the claim of its flexibility.

2.3.2 Employing Standardization Proposals

Besides the protocol work for QoS signalling that has been carried out within the IETF, numer-
ous other publications have proposed specific, often called ‘lightweight’, signalling protocols.
On the other hand, the general acceptance of QoS mechanisms for the Internet has been rather
slow, so far. This slow acceptance can be explained as follows. Providing Internet connectivity
in the first place has evolved from an academic niche to an increasingly emerging market. Pro-
ducers of this ‘good’ consequently have only little incentives to differentiate their products, be-
cause satisfying the increasing number of users already ties up their capacities. This situation
might dramatically change in the near or middle-term future, if the market for basic connectiv-
ity begins to saturate. However, deployment of Internet QoS technology can only occur incre-
mentally, but also only makes sense, if eventually the provision of true end-to-end service
commitments is possible. Therefore, in order to alleviate the realization of QoS-enabled Inter-
net communication, it is important to adhere to a minimum of standardized inter-operation ca-
pabilities. Consequently, it seems inefficient to precipitously develop (or even standardize) new
signalling mechanisms, before the full potential of existing (yet maybe extended) proposals has
been investigated and exploited. These arguments do not apply to short-term solutions for ur-
gent congestion problems, but for any middle- and long-term activity to develop a flexible end-

to-end QoS solution.

2.3.3 RSVP

The specification of RSVP [BZB7] is currently the only major IETF standardization proposal

for a QoS signalling protocol. An older approach is given by ltternet Stream Protocol

(ST2) inits latest version ST2+ [DB95], but because of no significant acceptance, it can be con-
sidered largely historic. It is not as flexible and robust as RSVP, because it employs a sender-
oriented setup scheme and hard state in intermediate systems. Furthermore, it represents a dual-

stack approach in the network layer, such that two entities of internetworking protocols have to
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co-exist in intermediate systems. A comparison between both protocols from either point of
view can be found in [DHVW93] and [MESZ94].

Since its invention, the applicability of RSVP is under discussion, because of scalability con-
cerns about the required amount of state and additional computation overhead for periodic soft
state refreshes. However, RSVP is designed to be extremely flexible and robust and provides a
number of features, which seem hard to achieve without this resulting complexity. The over-
head introduced by message refreshes can be arbitrarily traded off against robustness by modi-
fying the refresh period. Its receiver-oriented service model fits quite well with the motivation
for a QoS signalling architecture as presented in Section 2.3.1. Additionally, through this re-
ceiver-oriented service model, RSVP suits the well-known challenges stemming from IP mul-
ticast and heterogeneous service requirements from multiple receivers. For those reasons,
RSVP basically resembles the only currently existing choice for such a highly flexible signal-

ling mechanism.

In this thesis, the approach to investigate the technical feasibility of RSVP is carried out in
multiple directions. First, a few RSVP extensions are presented, which enable the protocol to
more efficiently handle requests for aggregated service invocations and thus, increase overall
flexibility. As with other work items of this thesis, it is impossible to prove the absolute truth of
certain assumptions. While the theoretical complexity of RSVP is not debatable, it is highly in-
teresting to relate the theoretical knowledge to practical performance figures in order to gain ad-
ditional insight about its applicability. This work is described in Chapter 5 and is based on a
new and innovative internal design and a number of optimizations. It forms a large part of the

overall thesis contribution.

2.3.4 Charging

The transition of the Internet towards a commercially funded and used integrated services net-
work raises, among others, the question about how network usage can be charged appropriately.
Clearly, the current charging schemes (mainly flat-fee access-based or time/volume-based) will
not be sufficient in the presence of multiple service classes, resource reservation and discrimi-
nation between different usage requests [MMV97]. It is obvious that if network traffic is dis-
criminated by QoS mechanisms, some negative feedback is needed to prevent users from
arbitrarily allocating resources. On the other hand, a market and competition mechanism is

needed to provide users with the best and most inexpensive level of service, while creating in-
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centives for network providers to supply more resources when there is sufficient demand.
Therefore, charging mechanisms are needed to compensate for the allocation of scarce resourc-
es. Furthermore, they are needed to create a funding mechanism to extend network capacity at
the most desired locations at the expense of those users that actually use these resources. A QoS
signalling architecture is in principle independent of charging models built on top of it, howev-

er, both have to be related, to achieve clear responsibility for service delivery when service re-
guests induce financial consequences. For example, the legal aspects of service charging might
require that a network provider can present detailed accounting records for high-end services

upon request. A signalling architecture must therefore allow for the collection of such data.

Several aspects have to be taken into account, when designing charging mechanisms for a
multi-service Internet. Primarily, there is a need to ensure technical inter-operation between
charging mechanisms and network service signalling on the one hand and accounting and actu-
al network service on the other. Furthermore, cost-based price calculation resembles an impor-
tant input to capacity planning and sales price calculation. In this thesis, work is presented to
develop calculation models and charging mechanisms for an RSVP-based QoS signalling ar-
chitecture and thus, to assess the suitability of RSVP as a general basic signalling mechanism
as a whole. Similar to a QoS signalling architecture, the resulting system proposal can hardly
be proven to be optimal for real world employment. The charging mechanisms that are pro-
posed in this thesis, have been experimentally implemented to realize a proof-of-concept about
their suitability. Additionally, they are analytically assessed in order to verify their applicability
to a variety of cost and price calculation scenarios. In order to do so, certain calculation meth-
ods have been developed, as well. These calculation models have been designed, but not solved
or optimized. They are intended to serve as basis for economic research to improve and apply

them.
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Chapter 3: Fundamentals of QoS and Economics

In this chapter, the existing fundamental knowledge about QoS for packet-switched networks
and economics of communication networks is presented and related work is revised. As well, a

brief overview about RSVP is given.

3.1 QoS - Related Work

An insightful overview and evaluation of various QoS technologies for the Internet is presented
in [MEHOO]. In the following sections, a brief overview about the relevant state of the art is giv-

en.

3.1.1 QoS Provision

QoS-enabled network services can be provided by a spectrum of different technologies which

can be mainly distinguished by their trade-off between complexity and capabilities. Those tech-

nologies are built upon different models of Q0SQ®S modetonsists of the following mac-

roscopic facets (related to [Bra97]):

» Scopedefines the logical distance over which a service model is provided.

» Granularity defines the smallest unit which is treated individually by a service model.

» Time Scaledefines the granularity in time on which services are being provided.

» Control Model defines the entities which exert control over the network and how they do it.
As extreme cases, control could either be located exclusively in the network or in the end-

systems, with a continuum of hybrid forms in between.

QoS models apply differeQoS toolsn order to achieve their respective goals:

* Network Design and Engineeringdeals with the proper setup and maintenance of network
equipment based upon experience, expert knowledge, heuristics or formal optimization
methods [Ker93]. Sometimes this is also caflealisioning

» Traffic Engineering is concerned with distributing the incoming traffic for a given network
among potential transmission paths by mechanisms as, e.g., explicit routing capabilities
[RVC99] or QoS-based routing schemes [AVER].

11
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» Signalling and Admission Controlis an integrated set of mechanisms which builds upon a
session paradigm where users of the network signal their requirements explicitly and the
network consults admission control modules to grant or reject those requests. Examples of
proposed signalling protocols for the Internet are RSVP [BZB and ST2+ [DB95], while
proposed admission control procedures are either parameter- [PG93] or measurement-based
[GK97,BJS99]. Without per-flow admission control, only statistical QoS assurances can be
given on a per-packet basis.

» Packet Schedulingis concerned with the decision which packet to send next on a given
link if there is a number of packets waiting for service [SV98]. This decision of course has a
major impact on the QoS experienced by a packet since the queuing delay usually consti-
tutes a large portion of the total end-to-end transfer delay.

 Traffic Policing/Shaping deals with forming traffic to an either negotiated or at least adver-
tised level at the edges of networks or between distinct network elements in order to ensure
a controllable load of the network. Example mechanisms in this area are the well-known
leaky or token bucket traffic envelopes [Tur86,Cru91].

» Adaptivenessis the capability of end-systems to react upon congestion in the network by
evaluating signals from the network. These signals can be either implicit, e.g., the loss
behaviour of the network, or explicit, e.g., by a so-calleglicit Congestion Notification
(ECN) [RF99]. Dynamic and possibly congestion-based pricing of network services is also

a form of network signal proposed for managing QoS [MMV95,GK99b].

These tools have different time-scales and, thus, not all of these tools are suitable for all differ-
ent kinds of QoS models. In general a combination of those tools is needed to implement a cer-
tain QoS model. For example, proper network design and engineering is certainly a prerequisite
to the successful operation of any QoS model. The QoS models mainly differ in how much em-

phasis is put on each element in their combination of tools, which reflects different assumptions

on how powerful the different components are assessed.

Proposed QoS models in the Internet arena are listed below and classified according to the

above mentioned aspects.

IntServ. This model [BCS94] is composed of RSVP as a per-flow signalling protocol and
service classes defined by the Integrated Services (IntServ) architecture [Wro97b,SPG97]. Its
scope is to provide end-to-end services, and its granularity is determined on a per-flow basis,

i.e., itis very fine-grained. Through RSVP, the concept of a session is introduced which deter-

12
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mines the unit of time-scale of that model. The control loop of the IntServ model tends to be
network-centric in the sense of offering fairly advanced services inside the network, which can
be requested by applications. A usual counter-argument against this QoS model is based on the
resulting complexity for network elements. The most important tools to implement the IntServ
model are signalling and admission control obviously, but it also depends upon a sensible net-
work design and engineering in order to keep the blocking probability for sessions low. Further-

more, policing and shaping is required to keep reserved traffic in its negotiated borders.

DiffServ. While still evolving, the Differentiated Services (DiffServ) [BBE8] model's

scope is rather inter-domain, based upon the peering between network domains. It outlines a
framework which allows for bilateral contracts Bgrvice Level Agreemer{8LA) at such bor-

ders. Currently, the DiffServ proposals only deal with different flavours of forwarding behav-
iours inside network elements, so-calledr-Hop Behaviour¢PHB) [HBWW99,IJNP99]. It is
assumed that by concatenating PHBs, it is possible to build sensible services, thereby allowing
for an end-to-end scope in result. However this is not a necessary direction of evolution for
DiffServ. The PHBs operate on traffic aggregates, so-caledaviour Aggregatés(BA)

[NCO00], and thus its granularity is fairly coarse-grained. Similarly, the unit of time-scale is ex-
pected to be long-termed since SLAs should be rather static, although with the addition of dy-
namic SLAs by the introduction of signalling protocols, the time-scale could decrease
[FNM*99]. As with the IntServ model, the control model is rather network-centric, but for
some of the PHBs defined, it is necessary for end-systems to adapt themselves to the network
state. Recent results [Cha00,Bou00,SZ99] have shown that only by providing static service lev-
el agreements (SLA), the theoretical worst-case performance guarantees for providing per-flow
services might exhibit a larger conflict with the objective to utilize resources as efficient as pos-
sible, than often assumed. Therefore, it can be concluded that building end-to-end services out
of DiffServ PHBs forwarding classes will not be fully sufficient to satisfy the diverse require-
ments for a future multi-service Internet. The tools upon which DiffServ builds are mainly net-
work design/engineering and traffic policing or shaping. However, an introduction of dynamic
SLAs will make it move towards an emphasis of signalling and admission control mechanisms,

as well.

Over-provisioned Best-effort. This model argues for a continuation of the current operation

of the Internet in a best-effort manner. The underlying assumption is that over-provisioning net-

*  Recently, the IETF DiffServ working group decided to change the terminoldggri®omain Behaviour
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work resources is both sufficient and possible to sustain the single service nature of the current
Internet. The scope of that model is end-to-end in nature since all the intelligence is located in
end-systems. Since there is no state in the network and all traffic is treated at the same granu-
larity, it is as coarse-grained as possible. The time-scale of this model is very large and essen-
tially equal to the length of one capacity planning cycle. Since end-systems are the only
intelligent units in the network, the control model is end-system-centric. Certainly, the most im-
portant tool applied by that model is that of network design/engineering in order to always pro-
vide for a super-abundance of network resources. However, in periods of scarcity of resources
this model relies on the adaptiveness of end-systems to such presumably transient situations,

and hence, it is intrinsically targeted to elastic applications.

Price-controlled Best-effort. This is not a single proposal, but a notion of several authors
[MMV95,KMT98,CP99] who feel that pure over-provisioning is not sufficient without addi-
tional means of signalling besides packet loss. This additional signal is a per-packet price that
may depend on the internal state of the network, i.e., its congestion level. However, some au-
thors even propose a semi-static approach with fixed but differentiated prices per packet
[OdI99]. With respect to its properties this model is very similar to the pure over-provisioned
best-effort model, however, its time-scale is related to the frequency of price announcements
and, due to the ability to set prices, the network is not as passive as for that model. With regard
to the tools that are applied by that model it also has to be noted that it heavily relies on the com-
bination of network design/engineering and the adaptiveness of end-systems, and hence, itis in-
trinsically targeted to elastic applications. Furthermore, it is crucial for correct operation that
the end-systems’ or users’ sensitivity to pricing signals can be estimated. In order to provide a
flat-fee best-effort service in combination with price-controlled best-effort, it is important that
traffic for both classes can be distinguished by routers, hence a DiffServ-like marking scheme
IS required to distinguish service classes. Price marks must be set only with respect to the con-
gestion level of this traffic class. Furthermore, if the price-controlled service class is supposed
to offer a higher transmission quality than flat best-effort, a single tail-drop queue might not be
sufficient to appropriately favour packets from this service class over best-effort packets. Ad-
ditionally, there are open questions about potential time-gaps between pricing signals and ad-
aptation at the end-systems, as well as the prerequisite of global consensus between all

participants in such a model.
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3.1.2 RSVP

RSVP is designed to carry reservation requests for packet-based, stateless network protocols
such as IP. In essence, it is aimed at combining the robustness of connectionless network tech-
nology with flow-based reservations by following a so-cakedt stateapproach. State is cre-

ated to manage routing information and reservation requests, but it times out automatically, if
it is not refreshed periodically. In the RSVP model, senders inform RSVP-capable routers and
receivers about the possibility for reservation-based communication by advertising their serv-
ices via PATH messages. These messages carry the setnd#itsspecification(TSpec) and

follow exactly the same path towards receivers as data packets, establishing soft state in routers.
Receivers initiate reservations by replying with RESV messages. They contain a TSpec and a
reservation specificatioffRSpec) and also establish soft state representing the reservation.
RESV messages are transmitted hop by hop and follow exactly the reverse path that is formed

by PATH messages.

RSVP treats reservation requests (TSpec and RSpec) as opaque data and hands them to com-
plementary local modules, which are able to process them appropriately. Being tuned to support
large multicast groups, RSVP uses logic from these modules to merge reservation requests that
share parts of the transmission path. Merging takes place at outgoing interfaces by merging re-
guests from different next hops that can be satisfied by a single reservation at the same inter-
face. As well, reservation requests that are transmitted towards a common previous hop are
candidates for merging. The amount of merging possible is determined by the filter style, which
is requested by receivers. For shared filter style, all reservations for the same interface and all
reservations towards the same previous hops are merged, respectively. When distinct filter style
is requested, only reservations that specify the same sender are being merged. Furthermore, fil-
ter styles are classified by whether applicable senders are wildcarded or listed explicitly. The
(potentially empty) list of senders is call&dterSpec The following filter styles are currently
defined:

» FF (fixed filter): single sender, distinct reservation

» SE (shared explicit): multiple senders, shared reservation

* WF (wildcard filter): all senders, shared reservation

All these filter styles are mutually exclusive and a session’s filter style is determined from the
first arriving RESV message. The combination of TSpec and RSpec is falledpecification

(FlowSpec). The combination of FlowSpec and FilterSpec is referredltmedescriptor
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The initial description of RSVP [ZDE3] explains many details and the design philosophy
of the protocol. A detailed overview about RSVP operation in combination with the IntServ ar-

chitecture is given in [WC97].

3.1.3 QoS Signalling

A number of proposals have been made for lightweight signalling protocols or signalling pro-
tocols that are dedicated for certain application scenarios. In this section, some of the recent
proposals for packet-switched networks are briefly presented and discussed in comparison to
RSVP.

In [PS99], the lightweight reservation protoddESSIRs presented. This protocol is tied to
the employment of RTP [SCFJ96] as transport protocol and exploits RTCP reports to establish
end-to-end resource reservations. Reservations are requested from the sender and thus, the pro-
tocol does not support heterogeneous requests from multiple receivers in a multicast group. It
provides a very elegant and efficient way to carry out resource reservation for certain applica-
tion scenarios. Its processing overhead is reported to be less expensive than that of RSVP by a
factor between 2 and 3. However, this speed-up has to be traded off against the loss of flexibil-
ity. Furthermore, only limited details about the performance tests are given in [PS99]. For ex-
ample, the testing scenario did not burden the YESSIR protocol engine with the ability to
support various service classes. Since the software is not publicly available, so far, it is impos-
sible to verify these results or fill the gaps in the test. As a conclusion, while being an interesting
approach, this proposal does not provide the flexibility of RSVP and its performance gain must

be subject to further study.

The Boomerangproject [FNM"99] defines a limited set of protocol primitives to establish
guantitative QoS parameters for end-to-end IP flows. It requires no immediate support from
end-systems, because it is proposed to be embedded into ICMP messages. However, this is not
a very clean system design. In a sense, it can be considered as a very useful and efficient subset
of RSVP’s specification, but, as the authors of [FKB8] note, it cannot be considered to re-

place a protocol like RSVP.

An alternative suggestion has been made in [PHS99] by the developnt@@RPto enable
resource management for inter-domain trunk reservations. This proposal borrows from the
specification of BGP [RL95] and considers backbone reservations along the sink tree to each

destination. It addresses some problems of the current version of RSVP for this scenario. This
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work also presents a very interesting and useful analysis of the resulting protocol overhead.
However, as shown in Section 4.5.3 and Section 5.1.2, these improvements can be quite easily
carried out by slightly modifying RSVP and without losing the general scope of RSVP, instead

of defining a completely new protocol.

While all the proposals mentioned above contain very important insight and present valuable
properties, they are, at the same time, limited to support certain application scenarios. None of
them is as flexible as RSVP. However, approaching the overall problem with a single homoge-
neous protocol seems to be clearly advantageous when compared to using multiple protocols

for different services and scopes, because a single protocol eliminates functional redundancy.

Very interesting work has been carried out in the are@pén SignallindCLSS98]. How-
ever, the focus of this work goes much beyond the understanding of signalling for this thesis, in
both effort and goals. It is targeted towards creating programmable interfaces employing active
networking nodes. In that sense it can be considered more heavy-weight and less evolutionary

as compared to the traditional protocol-based approach.

In comparison to proposals how to specifically realize the inter-operation of certain QoS
mechanisms, the work of this thesis concentrates on the interface role of a QoS signalling pro-
tocol. Work as described in [LR98,BYB0, TKWZ00] can be considered as complementary, in

that low-level detailed aspects of inter-operation are examined and solved.

3.1.4 Integrated QoS Architectures

Besides ATM and the already mentioned IntServ approach, several research groups have devel-
oped comprehensive QoS architectures, consisting of both QoS models and the respective sig-
nalling mechanisms. These projects have created enormous insight into the challenge of QoS
provision in the Internet. However, all these research architectures have in common that they
cannot be applied directly to the global Internet, because of their overall complexity and the
tight relation between individual components. All approaches focus on reservation-based serv-
ices and thus, employ similar QoS tools as the IntServ architecture. The following three archi-

tectures can be considered as the most influencing ones.

Tenet

The core building block of the Tenet approach [BF8] is given by a real-time channel,

which is defined as a simplex unicast end-to-end connection with performance guarantees and
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restrictions on traffic shapes. Two versions of the Tenet protocol suite have been implemented.
The network service is provided using a connection-oriented channel administration protocol in
combination with a separate network protocol and two dedicated transport protocols for contin-
uous media and real-time message delivery, respectively. Thereby, the Tenet approach employs
a dual-stack model of employing two network protocol entities in intermediate systems. In this
project, issues like channel setup, multi-party communication and flexible service interfaces
have been studied, among others. The need for pricing as back-pressure method against greedy
service requests is recognized, but no corresponding mechanisms have been integrated. With
respect to QoS signalling, the protocol suite is less flexible than RSVP in the areas of multicast
communication and connection establishment, mainly because it employs sender-oriented con-

nection setup and hard-state at intermediate systems.

HeiTS

This QoS architecture, developed as part oftleéProjectgHer92], uses the concept of stream
handlers as the core building block, to which QoS assurances are applied. The end-to-end data
path is described as a concatenation of stream handlers, including resources in both end systems
and network. The network part of this overall architecture is given by HeiTS and consists of es-
sentially ST2 [DB95] as network protocol and a dedicated transport protocol. Additionally, as-
pects of media scaling and resource reservation in advance have been investigated in this
project. Further modules of the overall system are especially given by HeiRAT [VHN93] for re-
source administration and HeiBMS for buffer management. The HeiProjects are a very compre-
hensive approach to QoS for packet-switched communication. However, when considering

QoS signalling, this architecture inherits the problems of ST2 as discussed in Section 2.3.3.

QO0S-A

The QoS-A architecture [CCH94] defines the most complete and comprehensive QoS architec-
ture. There is a distinct architectural model consisting of layers and planes, similar to the ATM
model. The network layer is based on ATM technology and QoS-A is focused on service con-
tracts between the user and the network. A service contract consist of a variety of QoS param-
eters, for which the level of service commitment can be independently chosen, i.e., instead of a
fixed set of service classes, each parameter combination is allowed. A cost parameter is inte-
grated into the service contract, as well, to express the system’s effort to deliver certain servic-
es. Furthermore, the service contract specifies a QoS maintenance policy, which describes how

the system should react upon variations in the actual delivered QoS. As with the HeiProjects,
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this project also investigated resource management within end systems. One particular work
item is given by integrating QoS control functionality in the Chorus micro kernel [(GR

There has been no separate QoS signalling protocol developed in this project, but the architec-
ture’s flow manager is designed similar to ST2, however, with extensions supporting fast con-

nection establishment and advance reservation service.

3.2 Economics - Related Work

There are two economic perspectives which can be applied to the Internet. Work in the area of
welfare economics seeks to optimally allocate resources between competing users, subject to
certain criteria. From a business economics point of view, a network provider’s goal to maxi-
mize its profit is adopted and cost and price calculation is carried out appropriately. In a theo-
retical perfect market, both perspectives lead to the same results, however, the intermediate
path to this result differs. Furthermore, both approaches have to model a very large and com-
plex system and deal with a lot of uncertainties. Consequently, the respective work can only an-
alyse a particular fragment of a real situation and thus, both approaches typically lead to

different inaccuracies.

3.2.1 Welfare Economics

So far, significant research work has been published on the issue of pricing in telephone net-

works (see e.g. [MV91] and references contained herein). In the area of packet-switched multi-

service networks, approaches to find welfare-optimizing price models can be found in e.g.

[MMV95,MM97,KVA98,PSC98,SFY95,GK99b]. A good overview about the fundamental

economic theory is given in [Var96]. There are mainly three basic concepts that are used to as-

sess the operation of a communication network:

» Utility refers to a user’s valuation of the successful transmission of a packet or a flow of
packets.

» A utility curve describes the type of an application in terms of the user’s utility depending
on the amount of resources allocated to transmit his network traffic.

» Marginal cost denotes the additional cost that is caused by the additional transmission of a

packet or a flow of packets.

It has been established by many researchers [MMV97,WPS97,SFY95] that pricing based on

real marginal cost is not sufficient for communication networks. For example, the marginal cost
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of transmitting an additional packet through a network is basically zero. Consequently, conges-

tion costs are often used as marginal costs, i.e., consumption of resources prohibits other users

to use them and lowers their utility. The goal of a pricing algorithm is then to provide the opti-

mal resource allocation with respect to the users’ utility function. In this section, the most influ-

encing proposals are briefly presented. Three game-theoretic criteria are usually used to asses

the characteristics of any pricing algorithm:

* Nash equilibrium defines a state in which no participant can increase its individual lot
through unilateral actions, i.e., a local optimum for each participant.

» Pareto optimality defines a state in which no lot can be increased for any participant with-
out decreasing the lot of others.

» System optimality defines a state in which the sum of all individual lots is maximized.

In [MMV95], the concept of &mart Markefor packet-switched networks is presented. This is

a conceptual system, which is not intended to be a real engineering proposal, but to illustrate
some economic principles. The Smart Market is created by carryin§emdnd-Pricauctions

[Vic61] at each router for all packets. Packets contain a representation of an amount of money,
which is used as a bid and serves to reveal the user’s true valuation of the service, i.e., essen-
tially his utility curve. This system leads to a system-optimal allocation of resources. In
[MM97], the Smart Market proposal is extended to cover flow-based services, as well, howev-
er, the overall practicability is still questionable, because it relies on independent auctions at

each router.

A completely different proposal has been made in [OdI99] to design pricing and QoS in the
Internet according to the old pricing system of the Paris Metro. This model is intended to be ex-
tremely simple by statically partitioning the network into two classes and differentiating both
classes by price. For economic reasons, it can be concluded that the load situation would usual-
ly be better in the high-price class and thus, this service class would deliver superior service.
However, there is little flexibility in this approach and no intention to provide real service guar-

antees.

Realizing the respective shortcomings of both previous alternatives, a sophisticated model
for pricing Internet services and analysing the resulting effects has been developed and present-
ed in [GK99b]. It aims to combine the simplicity of [OdI99] with the economically powerful
proposal in [MMV95]. Packets are statistically marked similar to the ECN proposal for the In-

ternet [RF99] and it can be statistically shown that the resulting system converges to a system-
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optimal state as long as all utility curves are strictly concave. This proposal is definitely the
most elaborated model to price packet transmission in the Internet by a simple mechanism and
employing economic insight. However, its application to the real Internet remains open, be-
cause of the prerequisite of strictly concave utility curves. Furthermore, it is not clear, whether
the theoretical results hold in the presence of real timing and delay effects at the scale of a glo-

bal communication network.

Opposite to the proposals presented above, there are publications [PSC98,VLK99] indicat-
ing that stability and optimality criteria are not necessarily fulfilled by very simplistic propos-
als. Specifically, in [PSC98] a careful investigation of game-theoretic results in the presence of
multi-dimensional QoS vectors and burstiness of network traffic is reported. It is argued that
these desirable economic characteristics are guaranteed, if there are enough resources in the
network to potentially accommodate all users requirements, but not necessarily in any other

case, especially if utility curves are not concave.

3.2.2 Business Economics

Little work can be found in the area of business economics to find provider-oriented calculation
models for packet-switched multi-service networks. From a business economics point of view,
communication services are characterized by:

 availability of a non-storable resource (network capacity)

* high fixed costs & low variable costs

In business economic theory, these characteristics, which are similar to traditional telephony,
electricity, aircraft seats, etc., are dealt with by using a management technique\gellgd
ManagemenfLei98]. When Yield Management is used, calculation is basegrofit contri-
butionandopportunity costsinstead of using full-cost or variable-cost calculation. The concept

of profit contribution means that each resource unit is sold for a price higher than its marginal
cost. The difference of both contributes to the overall revenue, which must exceed the overall
investment for the appropriate business cycle. Opportunity costs describe the fact that selling a
resource unit prohibits using it for another business transaction. Under given price-demand pat-

terns, prices can be optimized to maximize the overall revenue.

In the context of communication networks, granting a service request is profitable as long as
the charge for this request is higher than its marginal cost. However, to reach the optimum prof-

it, opportunity costs must be added to the marginal costs, i.e., a service request might prohibit
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using the resources for another request with a potentially higher revenue. In fact, opportunity
costs dominate marginal costs by far, since variable costs are negligibly low. The main task is
to optimize capacity and prices according to a given price elasticity (i.e. demand per price),
such that the overall revenue is maximized. A very general, complete and hence complex price
calculation model is presented in [WPS97], although it lacks full applicability to multiple serv-
ice classes. Particularly, details about the relation of prices to resource-oriented admission con-

trol are not considered in [WPS97]. These aspects are further discussed in Chapter 6.

In [Lei98], it is attempted to describe a complete cost- and price-model for a typical Internet
Service Provider (ISP). Then, it is examined how the introduction of a new service offering,
namely IP telephony, in combination with a flat-fee pricing model influences the ISP’s revenue.
The author shows, how this change negatively affects the provider’s profit and clearly points
out that offering new services in combination with the traditional flat-fee pricing model of cur-

rent Internet access service directly leads to this result.

One interesting theoretical business aspect must be mentioned at this point. Similar to other
emerging electronic businesses, providers of Internet service face the risk of high customer
fluctuation. Electronic markets might create an almost friction-free economy for commaodity
products. In such an economy, however, it is clear that price is the dominating and potentially
only factor for a consumer’s decision. In theory, this leads to a price-war between competitors
trying to drive each other out of business to realize economies of scale. Prices are then expected
to decrease until and below production cost. Eventually, a monopoly situation can be estab-
lished by the winner. To avoid this scenario, it might be necessary for ISPs to vertically inte-
grate their business with providing application-level services and to realize so-eatledmies

of scope

3.3 Conclusions

When considering the diverse proposals for enabling QoS in the Internet in combination with
the economic background information, it becomes clear that all this work provides extremely
useful insight into the problem and its potential solution. However, there is currently no clearly
superior technology that has the ability to supersede all others. Because of the different appli-
cability scenarios and the natural heterogeneity that will result from this diversity of QoS tech-
nologies, it can be concluded that a controllable and flexible interaction layer is needed to

integrate all these approaches. Such interaction can be carried out by a uniform mechanism for
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signalling service requests. Other proposals than RSVP are generally limited in their applica-
tion scenarios and thus, do not provide the same flexibility. In analogy to the open question
about superior technical mechanisms for providing QoS, no single and completely sound busi-
ness model can be foreseen at this time. Therefore, there is also need for flexible charging
mechanisms, which allow for highly differentiated pricing and accounting strategies. An early
overview about charging for Internet communication has been published in [KSWS98b]. As
well, the relation of QoS and charging for communication networks has been surveyed in in
[KSSWO0Q].
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Chapter 4. QoS Signalling Architecture

As motivated in Chapter 2 and further discussed in Chapter 3, it is rather unlikely that a future
commercial multi-service Internet can provide end-to-end QoS completely without service sig-
nalling. In this chapter, the scope for developing a signalling architecture is an arbitrary combi-
nation of packet-switched networks, some having end-systems attached, some might be pure
transit networks, all of them are running IP as the basic interconnection layer protocol. The
main focus of this work is to define a useful global architecture for service interfaces at traffic
exchange points between peering networks (including end-systems/end-subnets). It is not an
immediate goal of this architecture to describe the most efficient packet-forwarding technology
to actually build end-to-end services, since that is beyond the scope of this thesis. Furthermore,
it is not a goal to precisely define the inter-operation of potentially different QoS technologies
at such service exchanges points. However, a usage case evaluation is described in Section 4.5

in order to conceptually show the applicability of this architecture.

4.1 General Taxonomy of QoS Signalling Architectures

Itis important to clarify fundamental roles of building blocks for a QoS architecture. In this sec-
tion, a taxonomy is given along the well-known distinction between mechanism and strategy/

algorithm.

4.1.1 Distinction of Service Interface Mechanism from Distributed Algorithm

One must clearly distinguish two roles of a signalling protocol like, e.g. RSVP. It has been ini-
tially designed as a distributed algorithm to enable multiple entities to cooperatively deliver a
certain service, i.e., multiple routers creating a reservation-based, end-to-end transmission serv-
ice. On the other hand, it can be considered as an interface specification to request services, re-
gardless of how the service is technically constructed. In this role as an interface mechanism, it
can be used to negotiate related administrative information, such as prices and payments, as
well. Much of the current QoS debate does not clearly distinguish between both roles, thus cre-

ating significant unnecessary misunderstanding. If any single and coherent protocol can pro-
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vide for multiple incarnations of both roles, it can be considered superior to having multiple
distinct protocols for different services, because a single protocol eliminates functional redun-
dancy. Inthat sense, certain extensions for RSVP are described in Section 4.4, which enable the
resulting protocol architecture to serve as both concise interface mechanism and, if desired, dis-
tributed algorithm. RSVP can be considered as being a basic mechanism, whereas the tradition-
al IntServ approach of establishing per-hop and per-flow reservations can be described as one
particular example of a strategy employing the RSVP mechanism.

4.1.2 Basic Alternatives for QoS Signalling Architectures

To illustrate the distinction between distributed strategies and interface mechanisms, a some-
what instructive comparison can be made by comparing ATM’s separation between UNI
[ATM96b] and PNNI [ATM96a] with the Internet architecture, as depicted in Figure 1 (a) and

(b). Along the dimensiodistributed algorithmtwo types of functionality of a communication

user/network network/network user/network network/network

== NN\ Z2//% > NNN2N\\|£
- )8 o sdh a2
/ // / © /////’// / ©

interface mechanisms interface mechanisms
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QoS / / g QoS RSV\ “BB signalling” g
Routlng//?/// é’ Routingk \\\E\ 78/66//(0// En
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interface mechanisms interface mechanisms
(c) (d) BB: bandwidth

broker

Figure 1: Basic Alternatives for QoS Signalling Architectures

network are shownRouting,which establishes basic connectivity between nodes@ng
which refers to performance characteristics applying to specific flows between sets of nodes.
QoS is negotiated between participating entities. The second dimension is givwetergce
mechanismand populated by two instances, as well. In both architectures, end users are not in-

volved in the global routing mechanism, hence, in both scenarios the remaining problem space
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Is split in a certain way. In ATM, this separation is done along interface mechanisms. With the
advent of RSVP, the Internet community developed a separation along the two algorithmic
tasks. However, there are proposals to decouple basic connectivity from QoS provision in ATM
signalling, as well [RHV99]. It is important to note that at least either of these splits is inevitable
for a modular and concise design of the overall architecture, since otherwise, an interface to
global network-level routing would have to be presented to end users. This choice is depicted
in Figure 1 (c), whereas part (d) of Figure 1 shows the alternative of further subdividing the
problem space, as suggested in e.g. [NJZ99]. In the light of these issues, the different points of
view in the current debate about how to provide QoS in the Internet can be classified by which
of those four basic alternatives turns out to be superior for a future multi-service Internet.
Thereby, although not complete in terms of technology choices, these architectural alternatives

establish a minimal taxonomy for competing QoS proposals for the Internet.

4.2 Proposed Architecture

The most important requirement to consider when assessing the basic architectural alternatives,
is to consider interfaces (especially interfaces to end-users) as stable and hard to change. There-
fore, service interfaces must be chosen carefully to be very flexible, robust and compatible with
future developments. On the other hand, service interfaces must not inhibit the performant re-
alization of services. The best way to accommodate these goals is to make interfaces as lean yet

expressive as possible.

4.2.1 Concept

This proposal for an overall QoS signalling architecture conceptually consists of three layers as
depicted in Figure 2. With respect to the taxonomy in Section 4.1, it is assumed that a basic con-

nectivity mechanism exists, which is given by a routing protocol and packet forwarding nodes

ice | service | end-to-end service signaliing ™ service
service layer enabler enabler
QoS _ QoS subnet technology QoS
QoS layer enabler [% P enabler
packet forwarding
packet layer router - - router

Figure 2: QoS Signalling Architecture - Conceptual View
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calledrouter. This is described gzacket layein the picture. The actual QoS technology is rep-
resented by an intermedia@®S layer An entity that, besides carrying out router functionality,

also performs active load management by policing, shaping or scheduling, or marking packets
for a certain scheduling objective, is call€bS enablerA pure QoS enabler, however, does

not participate in end-to-end signalling. Advanced end-to-end services that allow for specifica-
tion of performance characteristics are realized using a complementary interfacesenvibe

layer. The entities of this layer, which handle service signalling and potentially flow-based load
control (admission control) are denotedsasvice enablerA service enabler can also perform

the role of a QoS enabler, but not vice versa. Of course, in a future QoS-enabled Internet, fur-
ther open issues, such as QoS routing have to be addressed, as well. However, their eventual

precise definition is currently beyond the scope of a QoS signalling architecture.

The focus of this work is to design a flexible service layer that allows for integration of a va-
riety of QoS layers. In the conceptual architecture, the layers can be considered as roles. Com-
pared to previous work, the role or functionality of each layer is not bound to certain nodes in
the network topology. Instead, it depends on a network operator’s particular choice of QoS
technology and furthermore, on the service class, which node carries out the role of a certain
layer. Detailed usage cases are presented in Section 4.5. While this concept increases flexibili-
ty, the resulting architecture is not as completely defined as in earlier proposals like those pre-

sented in Chapter 3.

4.2.2 Topological View

To illustrate the application of the conceptual architecture, an example network topology is
shown in Figure 3. The picture shows a sender host S and a receiver host R which are connected
through an access network eachs@nd Ag) and two backbone networks, {Bnd B,). Border

routers are shown as entitieg,R, Rg, Ry, Ry in this figure. Service signalling takes place be-
tween at least those border routers. Depending on the service class and the particular QoS tech-
nology, intermediate routers (not shown in this picture) might participate in the signalling, as
well. Furthermore, subnets might employ bandwidth brokers [NJZ99], depicted as BB, to carry
out resource allocation for the complete subnet for other service classes. In this case, service re-
guests are either forwarded from border routers to the bandwidth broker or alternatively, the
bandwidth broker somehow intercepts the respective service requests. All nodes are classified

as eitherservice-awarepartially service-awarer service-unawar@s depicted in Table 1. In
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case of partially service-aware nodes, these nodes have to distinguish whether to process or just
forward a service request. The main criterion for this distinction is very likely to be the service

class. This aspect is further illustrated by the usage cases in Section 4.5.2.

BBy, BBg,
7° 7°

o ‘BB,
S 7=
Rs? AS Rl Bl RB BZ

v\j

Figure 3: QoS Signalling Architecture - Topological View

Table 1: Service Awareness of Network Nodes

Service Awareness Description

service-aware signalling-capable, support for all service classes

partially service-aware signalling-capable, support for some service classes

service-unaware not signalling-capable

4.2.3 RSVP as General Signalling Mechanism

In order to satisfy both goals of flexibility and optimization for highly demanding services
when realizing a service layer, as discussed in Section 2.3, a solution is given by a uniform ex-
tended RSVP interface for advanced services. Using such an interface as service layer entity at
each traffic exchange is both sufficient and effective to realize the conceptual architecture for
multiple topological scopes and QoS technology alternatives and to create meaningful end-to-
end services. With respect to the taxonomy in Section 4.1, this design represents the choice to
carry on with the Internet service architecture and to employ RSVP (including the extensions
presented in Section 4.4) as the primary signalling mechanism, especially for inter-domain sig-
nalling. Initially, it can then be used as a service interface between bandwidth brokers (particu-

larly for dynamic DiffServ SLAs or other coarse-grained QoS technologies).

However, the main motivation is given by the advantage that a future migration to employ
RSVP inits initially intended style as distributed algorithm to request and provide per-flow and

potentially per-node service guarantees will be alleviated, if the basic mechanisms are already
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in place. In such a future scenario, RSVP then acts as a signalling mechanism between each
node, as well. Consequently, it is intended that a router employing this extended version of
RSVP can efficiently handle both per-flow and aggregated service invocations of multiple serv-
ice classes. The alternative to invent different signalling mechanisms for per-flow and aggre-
gated service requests or different mechanisms for end-to-end and backbone signalling seem
clearly inferior, especially if RSVP can be applied beyond its initial scope without introducing

a large overhead. In Chapter 5, it is demonstrated that even the application of RSVP in its initial
way of operation does not necessarily exhibit as much of a performance problem, as usually as-

sumed, if the software is well implemented.

In order to emphasize the generalized application of RSVP, the teem&e requesand
service invocatiorare used throughout the rest of the thesis to describe the general interface
mechanism, despite RSVP’s initial designation for actual end-to-end reservations. Only when
referring to reservation-based services, the tegasrvation requesindreservation establish-
mentare used. To keep the relation with traditional RSVP, protocol messages are nevertheless

referred to as PATH and RESV messages.

4.3 Service Classes

A general QoS architecture should be flexible to support arbitrary service classes and be open
for new alternatives. To this end, the following services classes are considered to be supported
by the architecture. These services classes represent the set of currently discussed methods to
provide various QoS assurances for Internet communication:
* best-effort
It is highly desirable for any kind of future multi-service network to provide a flat-fee best-
effort service class in order to continue the extremely successful operation of the current
Internet and support elastic applications like web-browsing. Such a service provides a low
threshold entry, especially for private users, and accommodates a large number of applica-
tions and usage scenarios. If a flat-fee service is not offered by technical means, it is essen-
tial to develop a sound business model to provide it on top of other service classes.
« ECNt-priced best-effort
ECN-priced best-effort service in combination with ‘admission control’ gateways is a rather

new proposal, presented in [GK99a], that uses ECN-marking [RF99] at routers to signal

*  Explicit Congestion Notification
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congestion to end-systems and furthermore, argues that ECN-priced best-effort leads to sta-
ble resource allocation. Although the applicability of these results might be debatable,
ECN-priced best-effort could be considered as a separate service class and provide differen-
tiated service for elastic applications.

» DiffServ PHB concatenation
While currently the quantitative precision for end-to-end services that are provided employ-
ing a concatenation of DiffServ PHBs cannot be fully assessed, it seems clear that such
services can be built very soon within the Internet and that there will be demand, e.g., in the
area oivirtual Private NetworkgVPN).

* IntServ Guaranteed, Controlled Load, and Guaranteed Rate
The well-known IntServ service classes represent the upper end of the service range by pro-
viding guaranteed per-flow service to applications like high-quality videoconferencing, dis-

tributed games or even future tele-medicine.

It is important to distinguish the different motivations that might lead to the provision of a par-
ticular service class. The natural motivation is given by the assumption of appropriate demand
and price-elasticity to eventually recover the service’s cost and operate at a profitable level. An-
other source of motivation might be given by existing excess resources or by the fact that a serv-
ice class promises a very high resource utilization. Then, such a service class can be offered at
a very competitive price, which in turn stimulates the necessary demand to create an overall

profitable business.

4.4 RSVP Extensions

There are mainly two shortcomings in the currently specified version of RSVP, which aggra-

vate its application as a general service interface:

» Traffic flows are either identified by host or multicast addresses, i.e., the specification of
subnets as source or destination address is not possible.

» Path state information has to be stored for each service advertisement in order to ensure cor-

rect reverse routing of service requests.

In order to appropriately extend RSVP’s functionality, existing ideas [Boy97,PHS99] have
been taken up and augmented to design a general processing engine for a lean and flexible serv-
ice interface. The major goal for this work is to achieve a high expressiveness for service inter-

faces. The extensions are mainly dedicated for, but not restricted to, unicast communication
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(including communication between subnets) and cover cases where the per-flow model of tra-
ditional RSVP signalling, which in the worst case exhibits quadratic state complexity [PHS99],
seems inefficient, because the requested transmission performance characteristics do not re-
quire flow isolation at each intermediate node. In that sense, the extensions are targeted to ag-
gregated service requests on the control path. This has to be distinguished from the issue of
aggregating flows on the data path. For the latter, careful network and traffic engineering, e.g.
using MPLS [LR98], is required or alternatively, strict performance guarantees might be given
by applying network calculus to multiple flows [SKWS99]. For both multicast in general and
non-aggregated performance-sensitive (i.e. inelastic) unicast communication, the current ver-
sion of RSVP can be considered as very well-suited, especially if recent proposals to increase

the overall efficiency of RSVP operation [BBX®)] are implemented.

4.4.1 Compound Addresses

The current specification of RSVP supports only host and multicast addresses. In order to spec-
ify service requests for traffic aggregates between subnets, the notion of addresses has to be ex-
tended to cover network addresses. A respective proposal to includ€lalsless Inter-

Domain Routing[CIDR) extension into RSVP has been made in [Boy97]. In this thesis, the
termgeneralized addreds used to refer to either a host or a network address, including CIDR
prefixes and the special address 0.0.0.0 denoting complete wildcarding. Additionally, it might
be necessary to specify several of such addresses within a single session or sender description,
thus the notion of @ompound address introduced, which consists of a set of generalized ad-
dresses. Of course, a dedicated node must exist within an end-subnet to receive and respond to
such service advertisements. In principle, any node can emit requests as long as they are author-

ized.

In order to employ the full flexibility of compound addresses, it is inevitable to introduce a
further generalization to specify their handling at certain nodes. During transmission of RSVP
messages targeted to a compound address, the border router towards the specified subnet(s) will
be hit. In that case, it has to be decided whether the message is forwarded towards multiple des-
tinations or not. If the message is not forwarded, then the resulting service essentially covers
only a portion of the end-to-end path. If however, the message is forwarded into multiple sub-
nets, it is not immediately clear how to interpret any quantitative expression of performance

characteristics. The terstoping stylas used to describe the alternatives that such a message
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Is forwarded to multiple next hopsgen scopeor not (closed scope To this end, it is an open

issue whether the scoping style should be chosen by the node issuing a request or whether it is
determined by the network provider depending on its local policy how to provide certain serv-
ices. As this is a matter of strategy and not mechanism, it is beyond the scope of this work to
extensively investigate the detailed aspects of this question. Nevertheless, some usage case ex-
amples are given in Section 4.5. In Figure 4, an example RESV message is shown to illustrate

the choice between both alternatives.

session: A
sender: B,C @
service: 2 Mbit/s RESV 9. y g

BR: border router

Figure 4: Compound Addresses and Scoping Style

If RSVP’s addressing scheme is extended to include compound addresses, new challenges
are presented to the data forwarding engine of a router. In order to support flows targeted to or
sent from an end-system at the same time as a session involving the subnet of this end-system,
a longest-prefix match on both destination and source address might be necessary to distinguish
which packets belong to which session. However, it can be expected that any service establish-
ing performant communication for traffic aggregates between subnets is going to be built using
a packet marking scheme, as e.g. the DiffServ model. In the DiffServ architecture, such a case
Is already considered and alleviated by the fact that only edge-routers are expected to do the full
classification to isolate aggregate service contracts from individual flows. In the core of the net-
work, traffic belonging to aggregates is forwarded according to its DiffServ marking and indi-
vidual flows requiring total isolation can be appropriately serviced using a dedicated DiffServ
mark and full packet classification. The same marking scheme can be applied to RSVP messag-
es themselves, such that per-flow request messages are transmitted to the appropriate end-sub-
net, but not processed by nodes along a trunk flow. This allows for transparent end-to-end

signalling, even in the case that a flow is mapped onto trunk service along a part of the path.
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A somewhat different treatment of port numbers is necessary to incorporate compound ad-
dresses into RSVP. It might be useful to specify a port number, if e.g., the resulting service is
used for a single application which can be identified through the port number. In any other case,
the port number should be set to zero and effectively denote wildcarding. Analogous to the de-
scription in the previous paragraph, a classification challenge exists, which will be alleviated by

employing a DiffServ-like marking scheme.

A scheme of compound addresses in combination with the choice of scoping style is more
appropriate for service requests between subnets than the initial approach of CIDR addressing
of RSVP messages [Boy97], because it overcomes the limitations induced by restricting source
and destination to a single address prefix each. Furthermore, the scoping style provides a con-
trollable way to deal with the resulting flexibility. Thereby, it is well-suited to especially pro-
vide a signalling mechanism and interface between bandwidth brokers which control the
establishment of dynamic SLAs that are eventually provided to traffic aggregates by means of
DiffServ PHBs.

4.4.2 Hop Stacking

To reduce the quadratic amount of state that might have to be kept by routers in case of tradi-
tional RSVP signalling, it is quite trivial to extend its specification similar to [PHS99]. Tradi-
tionally, PATH messages are sent along the same path as the data flow and state containing
reverse routing information is kept at each node to allow forwarding of a RESV message along

the exact reverse path towards the sender.

In order to alleviate this effect for intermediate nodes, a mechanism tdrapestackingan
be incorporated into RSVP. From a node’s point of view, hop stacking provides a transparent
method to employ other approaches for QoS provision without per-flow state at intermediate
nodes, e.g., RSVP over DiffServ-capable networks [BY®#. However, from an overall sys-
tem’s point of view, hop stacking defines a generic mechanism to carry out RSVP signalling
without PATH state at each node. It can be used for trunk signalling or tunnelling, and it pro-
vides for an open interaction with traffic and network engineering. In that sense, slightly more

freedom is taken to extend the existing RSVP specification than other approaches.

Each router has the option to replace the RSVP_HOP object by its own address and store ap-
propriate state information from PATH messages (traditional operation). Alternatively, the ad-

dress of the outgoing interface is stored as additional RSVP_HOP object in front of existing
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ones. During the service request phase, the full stack of such hop addresses is incorporated into
RESV messages and used at respective nodes to forward the service request to previous hops,
if no PATH state has been stored. On the way upstream, such a node removes its RSVP_HOP
object and forwards the message to the next address found in the stack. This mechanism allows
for installation of state information for service requests without the necessity to keep PATH
state for each service announcement. This specification introduces even further flexibility as
compared to other approaches in that stacking of hop addresses is optional and can be mixed
with traditional processing within a single session. A node might even remove the full stack,
store it locally together with the PATH state, and insert it into upstream RESV messages, such
that the next downstream node does not have to deal with hop stacking at all. Figure 5 illustrates
the flexibility of hop stacking. In this picture, nodes C and D perform hop stacking instead of
storing local state whereas node E removes the full stack and stores it locally, such that node F
does not realize the existence of stacked hops at all. An according RESV message travelling

along the reverse path, can find its way back to the sender by local state or stacked hop infor-

mation.
PATH message
destinaton "¢ T T T T T TTE A =R
F—— F=—d4 +t==4 F==4 -+
hops L _A_ L _B_ | L §’§ | LD_C’_BJ L _E_ J
A B C D E F
phop state A ' D,C,B

Figure 5: Hop Stacking for RSVP Messages

4.4.3 Interface Semantics

While the extensions presented above form the procedural part of this proposal, it is important

to define coherent semantics at a service interface. The inherent meaning of accepting a tradi-
tional RSVP message is to adhere to the distributed algorithm, i.e., to appropriately process and
forward the request, establishing an end-to-end resource reservation. In this architecture, the se-
mantics are changed such that the meaning of accepting a service request is a (legal) commit-

ment to deliver this service, regardless of its actual realization. For example, compound
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addressing provides an interface to transparently incorporate IP tunnels as presented in
[TKWZO00]. Similarly to the notion oEdge Pricingf]SCEH96], this creates a notion efige re-
sponsibilityfor the end-to-end service invocation. Effectively, an application’s data flow might

be mapped onto several consecutive network flows in the notion of traditional RSVP. In that
sense, intermediate nodes carrying out that mapping might actually be considered as ‘RSVP

gateways’ or ‘service gateways’.

4.5 Usage Case Evaluation

A collection of usage cases is described in this section to conceptually show the flexibility of
the RSVP-based signalling architecture to integrate diverse QoS technologies and create a va-
riety of service scenarios. The usage cases focus on the mechanisms of service layer signalling
between service enablers. In case of multiple alternatives, it is left open to further work to de-

termine the optimal strategies to map service requests onto the underlying QoS technology.

4.5.1 Supporting Diverse Subnets

Below, it is briefly presented how various QoS subnet technologies can be integrated by this
QoS signalling architecture. Most of these are well-known and treated (together with link layer
technologies) by the IETF ISSLL working group (see [ISS00] for a list of documents). Howev-

er, there’s an additional scenario explained below, which supports the proposal of providing

QoS by employing ECN marking in a certain way.

IntServ Signalling for Per-Hop, Per-Flow Service

A per-flow service invocation for an IntServ service class can be handled precisely as described
in [BZB™97,Wro97a,Wro97b,SPG97] and thus, is not described here in further detail.

Service Signalling across DiffServ Subnet

The details of per-flow service invocations for a service class, which is mapped biffSarv
Code Point(DSCP) within a subnet, are described in [BYB]. Besides the possibility that
partially service-aware nodes ignore service requests because of the service class, another op-

tion is to bypass them, if the respective DiffServ SLAs are realized as tunnels [TKWZ00].
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Service Signalling across ATM Subnet

As has been proposed in numerous publications [SMMT97,BG97;888A98b], RSVP sig-
nalling can be carried out across ATM subnetworks and exploit the QoS capabilities of an ATM

subnet. Further details on how to map QoS parameters can be found in [SKS00Db].

Service Signalling across ECN-priced Subnet

A somewhat speculative proposal to provide QoS has been made in [GK99a]. It is based on in-
termediate nodes carrying out statistical ECN-marking, which are interpreted as small charges
at edge systems. It is claimed that the resulting economic system provides a stable resource al-
location which could then be considered to resemble a certain QoS. In order to mimic the all-
or-nothing characteristic of regular admission control, the ingress of the subnet acts like a risk
broker and decides whether to accept or reject a service invocation. This risk broker subse-
guently undertakes the economic risk of guaranteeing the accepted service even in the presence
of rising congestion and thus, charges. Another option is for the ingress node to adapt the send-
ing rate to the current congestion situation. Since the ECN mechanism is an end-to-end mech-
anism and usually requires a transport protocol to carry the feedback from the receiver back to
the sender, it is not immediately obvious how such an approach should be realized for a partial
path in the network. However, if RSVP signalling is employed between the edge nodes of such

a partial path, the periodic exchange of RSVP messages can be used by the egress node to pro-

vide at least some kind of feedback to the ingress node.

4.5.2 Flexible Service Signalling Techniques

The following scenarios present a variety of service invocations that can be supported using the
RSVP-based QoS signalling architecture. Note that all the scenarios presented below can be

carried out at the same time in the same infrastructure.

Reduced State Service Signalling in Backbone Networks

In this scenario, a backbone network is assumed, which allows for establishment of trunk res-
ervations between edge nodes, which are dynamic in size and routing path. Because of a poten-
tially large number of edge nodes that advertise services to each other, it may be inappropriate
to potentially keep state for each pair of edge nodes at routers. Furthermore, the service class
does not provide precise service guarantees, but rather loosely defined bandwidth objectives.
RSVP signalling can be carried out between each pair of nodes including the hop stacking ex-

tension. Path state is not stored at intermediate nodes and reservations towards a common send-
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er are aggregated at each node. Consequently, the worst-case amount of state that has to kept at
each router is linear to the number of nodes, instead of quadratic. This example resembles the
basic state reduction technique of BGRP [PHS99].

Service Mapping of Flow Service to Trunk Service

The notion of compound prefix addresses allows for expression of service mappings of individ-
ual flows into aggregated trunk services. Individual flow requests that arrive at the ingress end
of the trunk service are incorporated into a single service request, which is described by a com-
pound prefix address and transmitted to the other end of the trunk. In Section 4.4.1, it is dis-
cussed how to distinguish trunk traffic from other packets which might be exchanged between
the corresponding end systems. Alternatively, a tunnel might be established for the aggregation
part of the data path [TKWZ00] and eligible packets are encapsulated into the tunnel. Never-
theless, it is useful to have a notion to describe the aggregate traffic flow, such that signalling

can be carried out across multiple autonomous systems.

Lightweight Service Signalling

One might even go one step further and consider an RSVP PATH message as service request,
while RESV messages only confirm the currently available resources. In that case, the end-sys-
tems keep track of the network state along the data path and no state information is stored at in-
termediate nodes. Such a scenario can be realized by a specific service class instructing each
intermediate node to report its current load situation and service commitments, but without car-
rying out any particular activity for this request. PATH messages record their way through the
network by hop stacking and RESV messages are initiated by receivers including the amount of
service that this receiver requests. On their way back to the sender, the RESV message is used
to collect the information whether this service is currently possible. Intermediate nodes are free
to store as much state information as necessary and feasible to report best-effort estimates of the

current load situation.

4.5.3 Application Scenarios

In addition to the simple techniques described in the previous section, the following examples

describe more complete application scenarios which employ these techniques.
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Service Signalling for Dynamic Virtual Private Networks

Consider a corporate Internet user wishing to establish a VPN between multiple locations. Each
of these locations operates an IP network with a different subnet address prefix. Furthermore, it

Is deemed important to dynamically adapt the requested VPN capacity according to each loca-
tion’s current demand. In this example, it is examined how the resulting service requests are
handled by a backbone network B, which is crossed by traffic from multiple locations. The sce-
nario is illustrated in Figure 6. The corporate subnets are denoted wit,SS5; and S. The

edge routers are depicted ag E, and E&. Each corporate subnet emits service advertisements
(e.g. from a bandwidth broker or dedicated gateway) towards the other subnets, either separate-
ly or bundled with a compound destination address. The corresponding service requests might
be treated separately or also be aggregated at certain nodes and targeted towards a compound

sender address.
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Figure 6: Virtual Private Network Scenario

As an example, Sadvertises a certain total amount of traffic towards the other subnets,
hence there is no specific service description for each subnet. The advertisement is processed
by E; and forwarded to the other edge devices. If the backbone QoS technology is given by a
combination of static SLAs and a bandwidth brokey dbtains the information about multiple
egress edge devices from the bandwidth broker and splits up the request accordingly. If inter-
mediate nodes also act as service enablers, the advertisement is forwarded as a bundle, until an
intermediate node contains two routing entries for the different destination subnets. This is sim-
ilar to multicast distribution and applies the service mapping technique described in the previ-

ous section. The correspondent service requests frgnSSand § traverse back to S
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establishing the subnet-to-subnet service. Because of the dynamic nature of RSVP signalling,

the dimensioning of the VPN service can be adapted over time.

Inter-Domain Service Signalling

A scenario of inter-domain trunk reservation signalling has been described and carefully ana-
lysed in [PHS99]. The same advantages as reported for BGRP can be obtained by employing
the reduced state signalling technique described in the previous section. If combined with a re-
cent proposal to bundle and reliably transmit refresh messages BERSVP provides a

functionally equivalent solution having the same complexity as described there. However, there

is no completely new protocol needed.

4.6 Summary of Results

In this chapter, some fundamental aspects to distinguish different proposals for QoS architec-
tures have been addressed and, as a result, a minimal taxonomy has been presented, based on
the separation of mechanism and strategy. Then, a general QoS signalling architecture has been
developed, which employs an extended RSVP as its major building block and covers a variety
of service classes. This architecture is more flexible than previous approaches, because the con-
ceptual roles are not statically bound to certain nodes in the topology. Certain protocol exten-
sions have been designed to enable RSVP to serve as general and flexible QoS signalling
protocol. The architecture and protocol extensions will be published in [KSBS00]. The ap-
proach is aligned with the most recent QoS architecture draft of the Internet Architecture Board
[Hus00] in that it supports the integration of heterogeneous QoS technologies and allows the
provision of end-to-end services. This conclusion is conceptually shown by a usage case eval-

uation.
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Chapter 5: Implementation and Evaluation

Besides the ideas presented in Section 4.4, various proposals have been published, which de-
scribe useful extensions to the basic version of RSVP (see Section 5.1.2 for details). The goals
of these extensions are mainly to complete RSVP’s specification in the areas of security and re-
liability and furthermore, to improve certain characteristics which are identified as currently
limiting overall performance. On the other hand, little attention has been paid to the implemen-
tation of the core protocol engine itself. As a result, RSVP is often assessed as having a poor
performance, however, those judgments are usually not based on reasonable and solid data.
Therefore, the internal design structure and algorithms, as well as the overall protocol perform-

ance, have been subject to careful investigation in this work.

The chapter is structured as follows. First, existing work is described and evaluated with re-
spect to the goals of this thesis. Then, an innovative design and implementation of an RSVP en-
gine is described, which forms one of the main contributions of this thesis. Certain
improvements over previous work are discussed in detail in a separate section and the current
implementation status is briefly presented. Finally, performance tests are described and their re-
sults discussed in order to gain insight about the technical feasibility to employ RSVP signal-

ling in a large-scale scenario.

5.1 Existing Work

Apart from the work that is described in this thesis, there is only one publicly available imple-
mentation of RSVP, namely tH8I rsvpdpackage from USC ISI [ISI99]. The ISI rsvpd pack-

age is regarded as the reference implementation, and it is also the basis for numerous other
versions for different platforms [GF98]. This package is very complete and useful, however, it
does not appear to be the optimal platform for examining and testing protocol characteristics or
even modifications for anyone not belonging to the original developer team. This assessment

stems from the following observations:
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» Because of its innovative nature, it is likely that the initial implementation design has been
done with only little experience of the protocol. The code grew historically and it seems that
no significant design reshaping has been done.

» Throughout the implementation, design and coding style is that of system-level C code.

» Portability is aggravated because system-dependent code (e.g. system calls) is distributed
across the implementation.

» The implementation is distributed without design documentation relating general concepts
to implementation details. The only documentation available [BZ97] is outdated and con-
tains errors. A new attempt to describe message processing [LBZ99] is incomplete and has

not been updated so far.

Furthermore, this software package is currently not suitable for performance testing, because it
contains several fatal bugs, which basically prohibit testing scenarios which involve the dele-
tion of multiple sessions. An investigation of this problem revealed at least one non-trivial error
in the memory management to be responsible for this situation. It is quite easily possible to fix
the most prevalent problem, such that the software does not crash too often, but as a result,

memory leaks prohibit reasonable operation.

5.1.1 Performance Evaluation

Some work has been reported to assess the performance of commercial RSVP implementations.
In [NCS99], a technical framework for carrying out such tests is presented. The performance
figures for a midrange commercial router show that it cannot deliver the delay objective for 450
flows requesting a small bandwidth. Furthermore, from the numbers given in this paper, it can
be deduced that RSVP flow setup scales significantly worse than linear. These results indicate

that this implementation is in a rather early and immature development stage.

Other published work describes the implementation of an RSVP-capable switch-router in
[BBD*99], but the reported performance figures are targeted towards the fundamental capabil-
ity of the system to deliver QoS objectives in the first-place, rather than performance of the sig-

nalling capabilities in a large scale.

In [PS99], interesting performance figures are reported for RSVP message processing on a
commercial router platform. However, these performance figures are somewhat debatable, be-
cause it is not mentioned under which load conditions they were taken. Additionally, because

these numbers are not the central focus of the work in [PS99], not many details about the exper-
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iments are given. Because of these observations and because the code which was used is not
publicly available, these numbers can serve as a basic indication about RSVP’s processing

overhead, but they cannot be considered to be the final statement in the discussion about RSVP.

5.1.2 Proposed Improvements

A number of protocol improvements have been suggested to increase the performance charac-
teristics of RSVP operations. An initial proposal to speed up the service establishment time in
the presence of occasional packet loss has been made in [PS97]. One of the problems with this
approach is the requirement to introduce a reliable confirmation message into RSVP. An im-
proved approach has been described in [MHSS99], which also deals with the general issue of
reliability of RSVP messages, e.g., in case a service invocation is torn down. Instead of refresh-
ing all the state information, neighbouring RSVP nodes only need to exchange ‘heartbeats’ de-
noting their liveness. A slightly different suggestion addressing the same issue even more
precisely is currently developed within the IETF RSVP working group [B@G This mech-

anism addresses further details, such as how to discover a very short-timed node failure.

It is beyond the scope of this thesis to rate these different techniques, however, it can be
clearly deduced that they create the potential to drastically reduce RSVP’s processing require-
ments, especially for steady-state refresh signalling. This eliminates one of the major disadvan-

tages of the current RSVP specification.

Other RSVP extensions, which are in the process of being standardized, encompass diagnos-
tic messages [TBVZO00], inter-operation with IP tunnels [TKWZ00], cryptographic authentica-
tion [BLTOO] and user identity representation [Y0®].

5.2 Improved Design of the Protocol Engine

Because of the generally limited software quality of the only available free implementation, its
guestionable internal structure and the restricted value of the few available published perform-
ance figures, it was decided to develop a new protocol engine from scratch obeying the follow-
ing design goals:

 structured (object-oriented) design and implementation

 portability for multiple platforms, including simulators

» clear and concise representation of RSVP’s concepts in the code

« suitability for performance testing
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Another explicit goal for this work was to create and publish an experimental platform which
allows other researchers to test and examine modifications of RSVP with a reasonable effort.
This implementation is callddOM RSVP enginfKar00b], orKOM rsvpdfor short.

While at a first glance RSVP seems to be straightforward and easy to understand, the details
of an implementation are somewhat puzzling. One reason for the slow acceptance of RSVP
might actually be given by the very limited amount of published work on implementation inter-
nals, leaving room for myths and rumours about very high implementation complexity and poor

performance.

In this section, an innovative design for an RSVP engine is presented together with an over-
view of the corresponding message processing rules. The design is based on relational design
and object-relationships between state blocks. A rigorous approach for modelling RSVP would
begin by representing state information as relations and identifying functional dependencies be-
tween them. Then, well-known normalisation algorithms could be applied to create the highest
possible normal form and message processing could be expressed using relational algebra. In-

tuitively, this is often done to some extent by software designers and programmers.

While not following the strict method in this work, state information is explicitly modelled
as relations which in turn are considered as state blocks to create object-relationships between
them. The initial relational model is deduced from the relevant standardization documents
[BZB*97,BZ97,LBZ99] and personal reasoning about the protocol. Additionally, experiences
made during design and implementation of the software have been a source of insight into pro-
tocol operations. The details of relational representation are omitted here for reasons of brevity
and can be found in Appendix B. Some basic relations are equivalent to the respective RSVP

objects as specified in [BZB7] and listed in Table 2.

Table 2: Mapping of RSVP Message Objects to Basic Relations

RSVP message object Relatior
SESSION SessionKey
FILTER SPEC Sender
RSVP_HOP Hop

44



QoS Signalling and Charging in a Multi-service Internet using RSVP

5.2.1 Conceptual Design

A significant part of RSVP message processing consists of finding appropriate state blocks for
certain operations. For a normal implementation (i.e. without using a dedicated database for
state information), state blocks and object-relationships can be considered to be more expres-
sive and efficient than directly implementing the relational model. The relationships between
objects are explicitly stored when knowledge is available, instead of recalculating them through
relational rules whenever they are needed. The algorithmic description in [BZ97,LBZ99] ex-
hibits a relational style, but without being rigorous. Opposite to that approach, the processing
rules in this work are based on object-relationships between state blocks. A subset of state
blocks is similar to those described in [BZ97,LBZ99], but semantics and lifetime are occasion-
ally modified. Additional relations are designed to express useful state information. Eventually,
these are represented as state block objects as well, to efficiently accomplish protocol opera-

tions as outline above.

State Blocks - Overview

State information is stored as objects containing relationships to other objects. The contents of
a PATH message are stored ilPath State BlockPSB) whereas contents of a RESV message
are stored in &eservation State Blo¢RSB). As an example for relationships, each PSB has a
relationship to aPrevious Hop State BlocPHopSB) representing the hop from which this
PATH message has been received. Information concerning a reservation at an outgoing inter-
face is stored in a@utgoing Interface State Blo¢lOutISB) and the relationship between res-
ervation state and PSB objects is modelled as separate dbjggbing Interface at PSB
(OlatPSB) in order to internally represent an N:M relationship by 1:N relationships (which sim-
plifies structure and implementation). This design introduces a more detailed representation of

state information, by introducing the separate state blocks PHopSB and OlatPSB.

State Blocks - Details

From the initial relations, corresponding state block objects and state block relationships are de-
duced. Although this is not done rigorously (i.e. by using normalisation algorithms), certain op-
timizations have been applied to avoid redundancy of information and to suit an efficient
implementation. The result can be expressed as an entity-relationship model and is shown as di-
agram in Figure 7. As shown in the diagram, all entities except Session are weak entities, i.e.,

they cannot uniquely be identified without the respective session key. Furthermore, OutISB is
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indirectly identified through the set of OlatPSB objects it is related to, although the cardinality
ratio implies the opposite direction. In RSB, there is no information about the outgoing inter-
face stored and the list of senders is not used for identification. Thereby, it is a weak entity de-
pending on the key of OutlSB. For both RSB and OutlSB, instead of storing the set of
applicable senders, a relationship to PSB is maintained (indirectly in case of OutISB). The car-
dinality ratio of each relationship is shown in the diagram in Figure 7. A brief description of

each state block is given below.

Session RSB O 1 OutISB
1 1 1
n n n

[Propsal}-O—|_pss |-

n 1 n

=0

Figure 7: Entity-Relationship Diagram for State Blocks

Session. For each RSVP session, the Session state block bundles all relevant information and
the session’s destination address and port is saved there. Relationships are kept to those state
blocks that are needed to fully access all information during early stages of message processing.
All Session objects are identified by a SessionKey and bound to a single RSVP object, repre-

senting an RSVP router.

Path State Block (PSB). A PSB holds all relevant information from a PATH message, i.e.,
the sender’s address and traffic specification, routing information, etc. It also stores blockade
information, which is needed to alleviate the effects of RSVP’s so-c#iiést-reservation
problem [BZB97].

Reservation State Block (RSB). An RSB represents a reservation requested from a next
hop, particularly by holding the reservation specification, i.e., the FlowSpec, which determines
the amount of resources that are requested, depending on the service class. It is identified by its

outgoing interface, available from OutlSB, and the next hop’s address.

Outgoing Interface State Block (OutlSB). This state block represents the merged reserva-
tions from multiple RSB objects applying at a certain outgoing interface. It is roughly compa-
rable to theTraffic Control State BlocKkTCSB) in [BZ97,LBZ99]. However, different from
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those processing rules, the TCSB is split into a general (OutlSB) and a specific part in this new
design. The nature of the specific part depends on the particular traffic control module, which
in turn depends on the corresponding link layer medium behind the network interfacé9BZB
SA98a,SWKS99]. An instance of OutlSB is constructed immediately upon creation of the first
contributing RSB.

Outgoing Interface at PSB (OlatPSB). For each outgoing interface that is part of the rout-

ing result for a PATH message, an instance of OlatPSB is created. A relationship to an OutISB
object expresses that an actual reservation is active at this interface. The introduction of this
state block allows the split of the N:M relationship between PSB and OutISB into two 1:N re-

lationships.

Previous Hop State Block (PHopSB). The concept of an explicit PHopSB is new to an
RSVP description. It is used to hold information about reservations that are merged at a certain
incoming interface towards a previous hop, as well as the resulting reservation request that is
sent to this hop. A PHopSB is identified by the previous hop’s IP address and the incoming in-
terface, at which traffic from this hop arrives for the destination address of a session. Analogous
to OutlSB and RSB, a PHopSB object is created as soon as the first PATH message arrives

from a certain previous hop.

Relationships

Each relationship is presented below, including the necessary key to traverse it, if it is a multi-
object relationship. The respective keys applying to these relationships are often smaller than
the full key of each state block. This is due to inherent identification through the relationships.
However, the implementation of this model is done by directly storing the relationships. Fur-
thermore, all Session objects are bundled into a global container. This could be considered as a
special relationship to a unique object representing the RSVP router. An illustrative example
for relationships between state block objects relative to the data flow belonging to a single

RSVP session is presented in Figure 8.

Session<<—> PSB. key: Sender, Incoming Interface and Previous Hop (R1)
In a PSB object, information about incoming interface and previous hop are not stored directly,

instead this information can be extracted from the corresponding PHopSB (see (R3) below).

47



QoS Signalling and Charging in a Multi-service Internet using RSVP
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RSB - — 1 NHOP
RSB ~ —

>
Session
PHOP} — - —|{PHopSB—{PSB Rsg| [} — LNHOP
. 2 {PSB RSB| | | —{NHOP
—PHopSB p o —
PHOP} — - —|-PHopSB—{ PSB OutISB—[RSB| | + — 1NHOP

. _|[PSB
PHOP}- — | ~|{PHopSB | 525

NHOP

Network Interface OlatPSB
relationship | PHOP|| NHOP| adjacent RSVP-capable router

[ ]

Figure 8: Example for Relationships between State Blocks in a Session

Session<<—> PHoOpSB.  key: Incoming Interface and Previous Hop (R2)
While it seems redundant to store relationships from Session to PSB and PHopSB, both rela-
tionships are needed in order to efficiently deal with routing changes and process a PATH re-

fresh message that arrives from a different previous hop. Details are given below.

PHopSB <<—> PSB. key: Sender (R3)

Each PSB is logically connected to the PHopSB representing its previous hop. This relationship
Is mainly used when reservation requests are created for previous hops. Information obtained
through this relationship from the PHopSB (hop address and incoming interface) is used to dis-
tinguish PSB objects in (R1). In PHopSB, the merged FlowSpec of all PSBs from this previous

hop is maintained in case of a shared reservation style.

PSB <> OlatPSB. key: Outgoing Interface (R4)
This relation expresses that a PATH message is routed to a set of outgoing interfaces. In case of
unicast sessions, it is effectively reduced to a 1:1 relationship. In PSB, the shared flowspec of

all applicable reservations is maintained.

OutlSB <> OlatPSB. key: Sender (R5)
A merged reservation, installed at an outgoing interface, applies to a set of senders. This is ex-
pressed by storing relationships to the respective OlatPSB objects, instead of directly storing in-

formation about all applicable senders. In the other direction, this relationship in combination
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with (R4) expresses the existence of a reservation at a certain outgoing interface for a particular

sender.

OutlSB <<—> RSB. key: Next Hop (R6)

Each OutISB is related to those RSB objects that are merged together at an outgoing interface.
Because an RSB only contributes to one specific OutlSB, partitioning the set of RSB objects
along all OutISB objects creates a complete and disjoint decomposition. Because the informa-
tion about the applicable outgoing interface is always available for an RSB, a relationship be-

tween Session and RSB is not necessary to access RSB objects from a Session object.

RSB ——> PSB. key: Sender (R7)
A reservation applies to a set of senders, either by explicit selection (SE or FF filter style) or im-
plicit association (WF filter style). Instead of storing a list of all sender addresses, a relationship

to the respective PSB objects is maintained from the RSB.

Operations Overview

In the following paragraphs, the core operations of the RSVP engine are explained with respect
to the relationships between state blocks. The presentation is divided into four parts, which to-
gether form the central protocol operations:

» State Maintenance

» Outgoing Interface Merging

* Incoming Interface Merging

» Timeout Processing

In general, if a message or timeout triggers a modification of internal state, all relationships are
updated immediately during State Maintenance or Timeout Processing, except the relationship
between OlatPSB and OutISB. For Outgoing Interface Merging, the ‘old’ state of this relation-
ship has to be available to appropriately modify the filter setting at the underlying traffic control
module. Afterwards, this relationship is updated, as well. If the contents of an RSB change,
Outgoing Interface Merging is invoked. If during Outgoing Interface Merging, the contents of

an OutISB are changed, Incoming Interface Merging is triggered. Only if the resulting upstream
reservation request (stored in PSB/PHopSB) changes, a new RESV message is created and sent

to the previous hop immediately.

The basic claim of this work is that maintaining relationships imposes no significant addi-

tional overhead during analysing an incoming message and updating state from it. However,
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when it comes to merging reservations and timeout processing, existing relationships can be ex-
ploited instead of recomputing them every time, especially under stable conditions. In this sec-
tion, only the basic operations are described. Whenever the itgarfaceis used in the
following text, it might also denote a local connection to an instance oAg@ication Pro-

gramming Interfac€APl), i.e., a local application communicating with the RSVP engine.

State Maintenance

Arriving RSVP messages are decomposed into components and processed depending on the
type of message. During processing, appropriate state blocks have to be located, created and/or
modified and relationships between them have to be updated. Below, a pseudo-algorithmic de-
scription of the processing rules is given for each message type. Although it is not mentioned
explicitly for most of the message types, usually the appropriate Session object has to be deter-

mined first.

PATH. Find a Session and check for conflicting destination ports. If no Session exists, create
one. Find a PSB for this sender through (R1) and check for conflicting source ports. If none ex-
ists, create a new PSB. When creating a PSB object, create the relationship to the corresponding
Session object (R1). If the PSB is new and no appropriate PHopSB can be found, create a new
PHopSB and its relationship to Session (R2). Set a relationship between PSB and PHopSB
(R3). If the session address is multicast and the incoming interface differs from the routing loo-
kup result, mark this PSB as local to an API session. Update all information in the PSB and in
case of relevant changes, trigger an immediate generation of a PATH message and potentially

invoke Outgoing Interface Merging.

RESV. Process each flow descriptor separately, i.e., each pair of FilterSpec and FlowSpec.
Match (i.e. consider the intersection of) the filter specification (in case of FF or SE) or the ad-

dress list determining the scope (WF) against all existing PSB objects that route to the outgoing
interface through (R1). Find or create an appropriate OutlSB for one of the resulting PSB ob-
jects through (R4) and (R5) and find or create an RSB using (R6). When creating new objects,
set the corresponding relationships. Update the RSB and invoke Outgoing Interface Merging, if

relevant content has changed, i.e. FilterSpec or FlowSpec.

PTEAR. Find a PSB through (R1). If found, forward the message to the PSB’s outgoing in-

terfaces, remove the PSB, clear its relationships and invoke Outgoing Interface Merging.
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RTEAR. Process each flow descriptor separately. After looking up the matching PSB objects
(R1), find an RSB through (R4), (R5) and (R6). If found, remove the filters that are listed in the
message and invoke Outgoing Interface Merging. If the RSB'’s filter list is empty, remove the

RSB and clear its relationship to OutISB.

PERR. Find a PSB through (R1). If found, forward the message to the previous hop, which
is accessible through (R3).

RERR. Find a PHopSB for the previous hop address from the message through (R2). If

found, find all PSB objects that match a filter from the message through (R3). If the error code

indicates an admission control failure, set a blockade FlowSpec at those PSB objects. Find all
OutISB objects that have a relationship to any of the PSB objects through (R4) and (R5) and do
not belong to the incoming interface of the message. Forward the message to all next hops
which are represented by RSB objects that have a relationship (R6) to these OutlSB objects. In
case of admission control failure, forward the message to only those next hops which sent a res-

ervation containing a FlowSpec not strictly smaller than that of the received error message.

RCONF. Forward the message to the outgoing interface that results from a routing lookup for

the message’s destination address.

Outgoing Interface Merging

During the merge operation at an outgoing interface, all applicable PSB and RSB objects have
to be collected to access their TSpecs and FlowSpecs. Precise operation depends on the nature
of the underlying link layer and appropriate algorithmic descriptions can be found for point-to-
point or broadcast media in [BZ97,LBZ99] and for non-broadcast multi-access media (e.g.
ATM) in [SA98a,SWKS99]. Outgoing Interface Merging operates on a certain OutISB. Rela-
tionships to those PSB objects that are relevant and route to this interface as well as RSB objects
that contribute to the merged reservation state are given by (R4), (R5) and (R6). They can be
traversed directly, instead of recomputing them. Therefore, no special (filter style dependent)
rules have to be given on how to find those state blocks. The rules to calculate the appropriate
merged FilterSpec and FlowSpec settings are given in [BZ97]. The result is stored in the
OutISB and, if the merged FlowSpec or the FilterSpec has changed, the appropriate PSB and
PHopSB objects (accessible through (R4), (R5) and (R3)) are marked for Incoming Interface
Merging. Certain policing flags have to be passed to traffic control, which can be derived from

accessible information, as well. To determine whether this reservation is merged with any other
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reservation that is not less or equal, the least upper bound of all merged FlowSpecs from all
OutISB objects (at different interfaces) for all PSB objects can be calculated by traversing (R4)
and (RY5). If at the end of Outgoing Interface Merge the OutlSB has no relationship (R5) to any
OlatPSB object (which must coincide with having no relations (R6) to RSB objects), the
OutISB is removed. Further details about the invocation of traffic and policy control modules

are discussed in Section 5.3.1.

Incoming Interface Merging

After a single or multiple (in case of RESV message processing) invocations of Outgoing Inter-
face Merging, all PHopSB and PSB objects that are marked for update are subject to Incoming
Interface Merging. During this sequence, it is again possible to traverse relationships, instead of
collecting state blocks. The details of this merging operation depend on the filter style for the
session. In case of distinct reservations (FF), each marked PSB that relates to the PHopSB is
considered separately. All OutlSB objects accessible through a PSB through relationship (R4)
and (R5) are inspected and the FlowSpecs of all RSBs accessible through (R6) are merged. A
flow descriptor is created, containing the PSB’s sender address and the merged FlowSpec. For
shared reservations, all FlowSpecs of all RSB objects accessible through (R4), (R5) and (R6)
from any of the PSB objects are merged. The resulting flow descriptor contains the set of all
sender addresses and the single merged FlowSpec. In case of relevant changes, a RESV mes-
sage is created and stored at the PHopSB. The PHopSB manages the periodic refresh of this

message.

Timeout Processing

According to the soft state paradigm, each state block is associated with a timer and deleted
upon timeout. Periodic refresh messages restart the timer. Timers are directly connected to the
object they apply to and the actions resulting from a timeout are similar to those when receiving
a PTEAR or RTEAR message. The only difference is, that no PTEAR or RTEAR message has

to be forwarded.

5.2.2 Software Design

Given the objectives of the project, the following goals have been set for an implementation:
* Message handling (creation/interpretation) should be clear, simple and extensible.
» Protocol processing should be clear and comprehensible, yet efficient.

» The implementation should be portable, but also nicely integrate with system interfaces.
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The design that has been chosen is a hybrid form of object orientation and procedural design.
Object orientation does not seem to be fully appropriate for implementing state machines like
network protocol engines, however, many aspects of an implementation can benefit from data
encapsulation, inheritance and polymorphism. C++ has been selected as the programming lan-
guage of choice to implement such a hybrid design under the given objectives. In the following
description, identifiers stemming from the implementation are printed in italic, when they are

introduced. Figure 9 gives an overview of the design.

RSVP
Timer g%’) g
Mgmt | | 585
Global State G
Message Processof gg:ver
25
L] 22
L g8
State BlocK Session ~
Repository] ~ ] Message -
L
Routing w2
Interface 38
33
<—> message exchange Traffic Control
————— relationship access

T: Timer
L: Logical Network Interface

Figure 9: Conceptual Design of RSVP Implementation

In this picture, the main components, which together form the contents of a gi&hdtob-
ject, are shown. An RSVP object represents an RSVP-capable router and interacts through ab-
stract interfaces with system-dependent services like routing, network I/O, traffic control and
others. The primary handler for incoming messages and events is dendfedsege Proces-
sor. Multiple Sessiorobjects exist, representing currently active RSVP sessions.Stédte
Block Repositorys an abstract notation for all state block objects which are accessible through
the relationships, initially starting from Session. A numbeLogical Interfaceobjects encap-

sulate physical and virtual interfaces of the underlying system. Logical interfaces are numbered
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and the number is used as LIH (Logical Interface Handle, see [BZBfor details). The asso-

ciation with API clients is modelled as a dedicated container object, caPé&ervey contain-

ing a special instance of a Logical Interface and all information about currently active API
clients. RSVP messages are encapsulatedMessagelass and passed between Logical Inter-
face, Message Processor and Session objects, potentially involving API Server. Global state is
accessible from all other parts and kept separately in the RSVP object, for example, the current
message, a PHopSB refresh list, etc. Solid arrows denote the exchange of RSVP message ob-
jects and the dashed line represents relationship traversal. Other inter-object communication is

not shown.

Message Processing

Each incoming message arrives at the main RSVP object. It is passed to the Message Processor,
which carries out preprocessing and updating global state. Afterwards, the message is dis-
patched to the appropriate Session object for further processing. The initial part of State Main-
tenance (e.g. finding or creating a Session object) and the majority of Incoming Interface
Merging is carried out in the Message Processor object. Another significant part is implemented
in class Session. Merging at an outgoing interface is link-layer dependent and consequently,
functionality is split up. Further details are given in Section 5.3.1. Incoming Interface Merging
takes place when reservation state has changed, that is, if FlowSpec or FilterSpec of an OutiSB

has been modified. It is implemented in class Message Processor.

Implementation Details

Some specific implementation details are explained below to illustrate the fulfilment of the in-
itial design goals. As a general note, an RSVP implementation on a regular UNIX workstation
can only serve as a proof of concept and research platform for future investigations. Therefore,
although the design is kept prepared for efficient operation, it is not necessary to implement for

outmost efficiency.

Relationship Representation. Relationships are implemented as a set of classes from which
state object classes inherit. These relationship classes automatically maintain referential integ-
rity. A single-object relationship is internally represented by a pointer or reference, whereas a
multi-object relationship is internally represented by a sorted container of pointers to the re-

spective objects. The order is determined by those object attributes forming the relational key.
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Timers. Timer management is logically separated from the rest of the implementation, such
that it can be independently optimized without considering other parts of the code. A base class
BaseTimetexists, from which refresh and timeout timers are derived. They are controlled by
their owners, but handled commonly through BaseTimer. In the basic version, all timers are
kept in a container, ordered by their expiration time. This design completely hides implementa-

tion details between timer management and timer clients.

Container Classes. A simple container library for lists and sorted lists has been implement-

ed, in a style similar to the C++ Standard Template Library [ISO98]. While it is conceptually
very advantageous to use common container classes, it seems not necessary to provide the most
efficient implementation for them. It is left to the user of this implementation to decide whether
outmost efficiency is required when accessing certain containers or not. Because of the encap-
sulated design, testing of different algorithms and data layouts for containers is possible with
relatively low effort.

For example, the container of (R4) is internally realized as an array of pointers, because at
most one OutISB exists at each interface and the maximum number of network interfaces is
limited, fixed, and can be determined at start-up of the RSVP daemon. The container for the
timer system is implemented as a two-layer hierarchy, where its upper layer is given by a an ar-
ray representing time slots and the lower layer consists of a sorted list of timers belonging to
each slot. The session container is implemented in a similar manner, except that the upper layer
is accessed through a simple hash function defined on the session’s destination address. The
size ratio between upper and lower layers of these containers are configurable, hence they allow

for trading off memory requirements against processing effort.

5.3 Internal Design and Algorithmic Improvements

Besides developing a new general design for an RSVP engine, a number of internal design and
algorithmic improvements have been carried out to generalize RSVP operations and improve

message processing performance. These improvements are described below.

5.3.1 Generalized Interface to Traffic Control and Policy Control Modules

The initial specification of RSVP lacks two aspects, which are important for real employment
as general signalling mechanism. The interface to traffic control modules, which eventually

control and enforce resource reservations, has been specified without taking into account the
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specific properties of non-broadcast multiple-access (NBMA) networks such as native ATM.
Additionally, no interface to policy control modules has been specified. While the general op-
eration of RSVP in theCommon Open Policy Servig€OPS) framework is described in
[HBC*00,Her00a], this does not cover any implementation internals. A policy control module

is needed to make and enforce administrative authorizations to use certain resources. As well,
inter-operation with a charging system has to be carried out by this module. Several new as-
pects arise when broadening the point of view on traffic control by NBMA networks and policy

control.

Silent Next Hops. Consider the arrival of the first RESV message from a downstream RSVP
hop. Suppose that a reservation is already in place at the respective outgoing interface and that
the new request carries no new FilterSpec and a FlowSpec which is strictly smaller than the ex-
isting one. If NBMA subnets and policy control modules are not considered at this point, no
traffic control operation is necessary, because the new request can be served by the existing res-
ervation. However, in case of NBMA networks, a new reservation request conveys a new next
hop. This information must be handed over to the traffic control module, because it might be
necessary to establish a dedicated transmission channel (e.g. a VC or VC-endpoint in case of
ATM) to it. Also, a policy control module that calculates charges and accounts them to next

hops must be informed about such a change.

IP Multicast. The interface to a traffic control module of RSVP is specified in [BZB].

With respect to IP multicast, it is mentioned in this document that the description “assumes that
replication can occur only at the IP layer or ‘in the network™. This can be denotedasad-
castnetwork. Note that a point-to-point link can be considered as special type of broadcast net-
work. As has been extensively discussed, e.g. in [SA98b] and [@BR there are many
aspects of efficiently overlaying RSVP and ATM networks, which mainly result from the
NBMA characteristics of ATM and the fact that ATM does not directly support the highly flex-
ible IP/RSVP multicast model. Without extensions, an RSVP engine merges all requests arriv-
ing at a single outgoing interface by calculating the least upper bound of all FlowSpecs. In case
of NBMA networks, however, the traffic control module itself must be able to decide how to
merge reservations. The conceptroérging groupscan be used to express this capability
[SA98a]. Because ATM does not support multicast-VCs with heterogeneous QoS parameters,

the traffic control module partitions the set of next hops according to the similarity of their QoS
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requests into merging groups. Then, a multicast-VC is used for transmission to each merging

group. Algorithmic aspects of efficiently building merging groups are studied in [SWKS99].

Atomicity of Operation. Both traffic control and policy control module independently de-

cide about acceptance of a reservation, based on their respective state and configuration. Each
operation must be done atomically, i.e., having an all-or-nothing property. Furthermore, for the
core RSVP engine, complete acceptance or rejection of a reservation must appear as a single de-
cision, because RSVP has no mechanisms to deal with a reservation that is accepted by only one
of both modules. Consequently, admission of a reservation request must be done in one atomic
operation from RSVP’s point of view. An open issue is to determine which of traffic control
and policy control module decides first about admission and which is second. That module do-
ing the first decision must be prepared for a full rollback if the other decision fails. In this work,

it has been decided to place this burden on the policy control module for the following reasons.

Itis likely to assume that policy control decisions generally consist of an authorization, a va-
lidity check and an accounting step. Validity check and accounting might be omitted, if the net-
work operator considers it unnecessary. The validity check might be a test whether the offered
payment is sufficient. This in turn requires part of the accounting process to be carried out.
‘Raw’ resource accounting might be followed by an internal transaction, e.g., debiting an inter-
nal account. Internal transactions are periodically cleared by external transactions, i.e., real pay-
ments. Because an update of traffic control parameters immediately results in different network
conditions, affecting other flows as well, it is favourable to lower the probability of a traffic
control rollback over a policy control rollback. In case of a policy control rollback, internal
transactions can be reverted without influencing any external entities.

Additionally, from the diversity of subnet technologies and their potential for complexity
(e.g., in case of ATM or when employingSubnet Bandwidth ManaggyHB *00]) it can be
concluded that the effort for rollback preparation and potential resource wastage makes a case
for this design decision. Yet another reason can be given by considering network provisioning.
In a well-dimensioned network, traffic control rejections can be expected to be less likely than
policy control refusals (e.g., because of overdue bills or empty prepaid billing cards). The same
strategy has been chosen in the proposal for interaction between RSVP and COPS [Her00a]. In
the following three paragraphs, certain challenges and approaches to them are presented, which

result from these considerations.
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Partial Rollback of Traffic Control. The scope of a single traffic control update operation is
defined by the handling of a single RSVP message or timer expiration per interface. Performing
such an update operation consists of several actions to be carried out. Besides installing a new
FlowSpec for a reservation, FilterSpecs to identify eligible sender applications might be added
or removed. Although unlikely, it is possible at least for a filter insertion operation to fail.
Therefore, the traffic control modules are prepared for partial rollback by carrying out the up-
date operation as follows:

» First, the new reservation FlowSpec is installed, then filters are added or removed. Note that
the above definition of a scope for a single operation prevents that filters are added and
removed within the same update operation. As well, when filters are removed, the installed
FlowSpec is never increased.

» If installing a new FilterSpec fails, all previously installed FilterSpecs from this update
operation are removed again and the FlowSpec is set to its previous value. Thus, the impor-
tant all-or-nothing property of a traffic control update operation is guaranteed by internal
partial rollback. By appropriately designing the respective software interface (see below), a
traffic control module for NBMA networks can easily be integrated into this process to

revert any merging group operations (as discussed above).

Full Rollback of Policy Control. In order to integrate a policy control module that has the

capability for rollback, the interface has to be split into two parts.

1. The preparation step consists of authentication and validity check. As a result, the request is
either accepted or rejected and temporary state is saved within the policy control module.

2. The commit step corresponds to accounting, i.e., handing over the state information for per-
sistent storing and potential external transactions.

If a reservation is accepted and later rejected by the traffic control module, it is sufficient to de-

lete all temporary state information.

Concurrent Execution. Both traffic control and especially policy control operations might
involve a certain overhead, so that it seems desirable to execute them concurrently to the core
RSVP operations. This however, requires to specify most of RSVP’s state information and op-
erations such that concurrent execution is possible. As presented in Section 5.3.3, extending the

implementation design for concurrent execution is not too hard.
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Interface Design

The traffic control and corresponding modules are modelled as a class hierarchy forming four
layers of abstraction. Common tasks are implemented in higher layers whereas more special-
ized task are implemented in derived classes. A class diagram of this design is given in Appen-
dix C. A common base clasgrafficControl exists, which provides the main interface to the
core RSVP engine. The following interface presentation is restricted to the most relevant meth-
ods without showing details like arguments and return types.

class TrafficControl {
virtual updateReservation() = 0;
virtual redoLastReservation() = 0;
updateFilters();
addFilter();
removeFilter();
updateTC();

This base class completely implements the high-level handling of insertion and removal of
FilterSpecs. Whenever during message processing a FilterSpec is found eligible for insertion or
removal, a call taddFilter or removeFilterrespectively is made. In order to minimize interac-
tion between traffic control module and the system’s resources, these actions are buffered with-
in the TrafficControl class and executed only whepdateFiltersis called. Common merging
logic is implemented in the methodpdateTC This calling interface takes an instance of
OutISB as input parameter. All state that is needed for admission control and updating of the
underlying scheduling system is then accessible through relationships starting at OutISB. The
methodsupdateReservatiomndredoLastReservatioare realized in derived classes and imple-
ment the logic for merging of multiple reservations. They are specialized on broadcast or
NBMA respectively, depending on the actual type of subnet an interface is attached to. Corre-
spondingly, two classes are derived fr@QutISB TCSB_BMAandTCSB_NBMAInternal state
information for a reservation at an outgoing interface is stored in these classes. For example,

merging group information for NBMA subnets is stored in objects of TY{p@B NBMA

A separate clasSchedulercts as a base class for different flavours of scheduling packages
and provides a common interface to them. This interface is basically the same as the traffic con-
trol interface in [BZ97]. The public methods of class Scheduler are eventually realized by call-

ing internal virtual methods, which in turn are implemented in derived classes. Furthermore,
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this class provides some common mechanisms like logging of events and high-level admission
control.

The interface to policy control includes the necessary methods to perform a policy control
update in two steps with a potential rollback after the first one. Given that the general design for
the protocol engine allows for traversal of object-relationships, it is suitable for those methods
to take similar arguments as the traffic control interface. All operations that are carried out
whencommitis called, can be executed concurrently to further RSVP operations.

class PolicyControl {
checkAndPrepare();
commit();
rollback();

h
Structure of Operation

In order to glue the pieces together, the following pseudo code describeggduate TCfrom
classTrafficControlutilizes the services of other objects. As can be seen from this pseudo-code,
the appropriate design of traffic control and policy control modules and interfaces leads to a
very concise and elegant expression of high-level concepts.

PolicyControl::checkAndPrepare();
if (success) {
updateReservation();
if (success) {
updateFilters();
if (success) {
PolicyControl::commit();
return;

}

redoLastReservation();

}
PolicyControl::rollback();

}

5.3.2 Fuzzy Timers

By far the largest container in an RSVP implementation is necessary for timer handling. In this
implementation, all timers are stored in a hierarchical container. The upper layer is implement-
ed as an array representing time slots and accessed through a hash. The lower layer is imple-
mented as a sorted list. The configuration of this hierarchy, i.e., the amount of time covered by

each slot, can be set arbitrary. Such a container is only capable to foresee a limited amount of
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time in the future, which should sufficient for RSVP. In order to accommodate the rare event
that timers exceed this time frame, an additional sorted list is kept and timers from this list are
moved into the respective slot when it becomes available. This concept is knowtnaer a
wheel[VL87]. The best possible access complexity of such an implementation using standard
hardware i$D(log(n)), with n being the (varying) number of timers in a slot. Consequently, per-
formance of this container can be arbitrarily traded off against memory requirements by choos-

ing the size and number of slots. This data structure design is shown in Figure 10.

t: duration of slot
n: number of slots
T: timer

Figure 10: Design of Timer Container

For RSVP messages, this scheme can be optimized even further. RSVP is designed to be ro-
bust against varying message transmission times and in fact, a large number of all timers are
calculated as random numbers within a certain interval. As a consequence, there is no demand
for outmost precision in the scale of a few milliseconds. If the duration of a time slot in the hi-
erarchy becomes small compared to the basic refresh time (e.g. smaller than 100 microseconds
when the basic refresh interval is set to 30 seconds), an option to efogkytimerss imple-
mented. When enabling it, timers are stored in a simple FIFO list instead of being sorted ac-
cording to their precise expiration. During each time slot, timers are fired equally distributed
according to their location in the simple list. The result is a slight inaccuracy of timers com-
pared to their expiration time. The inaccuracy is bounded by the length of a time slot and can
be considered a very reasonable trade-off. This scheme promises a significant performance gain
over the plain timer wheel, because the access complexity is reduC¥d}diowever, as pre-
sented and discussed in Section 5.6.4, only a limited performance gain has been observed so

far, on top of what is achievable by tuning the normal timer wheel implementation.
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5.3.3 Multi-threaded Message Processing

Employing the new design of the RSVP engine, it was possible to quite easily replace the initial
sequential message processing by a multi-threaded protocol engine with an incremental imple-
mentation effort of about 4 weeks. The design tries to mimic operation in a high-speed router,
such that for each network interface a dedicated thread for message processing is created. Re-
capitulating the software design from Section 5.2.2, the class Message Processor is combined
with a thread of control and an object is created for each network interface in the system. Be-
cause of a current lack of system support, certain interactions with the operating system, e.g. the
reception of raw IP packets, cannot be performed truly multi-threaded. Therefore, those opera-
tions are currently carried out sequentially. As a consequence, in addition to the threads per net-
work interface, there is a dedicated thread to initially receive and dispatch protocol messages.
Furthermore, a separate thread is created to handle timer events. Synchronisation points are set
at

* access to the central state repository (synchronisation point per session),

* interfaces to traffic control (synchronisation point per interface),

» access to the central timer management (global synchronisation point), and

» access to certain system services (global synchronisation point, see above).

Of course, using multiple threads on a single-CPU workstation cannot be expected to signifi-
cantly increase performance other than potentially providing improved interaction with any ex-
ternal 1/0O operation. This design could be further improved. For example, the global lock for
the timer system could be replaced by more fine-grained locking for each slot of the timer con-
tainer. On the other hand, with the fuzzy timer scheme, access to the timer container is not as
time-consuming and critical as with a sorted container. To this end, the purpose of this exten-
sion is to demonstrate the simplicity and feasibility of parallelizing RSVP operations as a proof
of concept. Indicative performance tests have been carried out and are described in

Section 5.6.5. The design of multi-threaded message processing is sketched in Figure 11.

It becomes very obvious that the object-relationship design alleviates the task of paralleliz-
iIng message processing a lot. The reasons are given by the natural encapsulation of data and
functionality in an object-oriented design. This allows for easy identification of synchronisation
points. Because all state objects are stored and accessed through the session object, no addition-

al locking is necessary for them, besides acquiring a single lock for the session.
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Session Timer System
Container Managemen Services
Lock Lock Lock
|—| Timer Executor |—1I| .___[||.. 5] Session|.
Msgt, | Message Processp—i—— |._s| Session ‘--QIOI/TC
\ - YL
N -] 1"
Msgf-~ [Dispatct}f - == >I[ Message Processpr===1{-===~- --> Session| AclonTc
/ \\ ‘)/ \‘
Msg|’ "3 [ Message ProcesshF===4------ - - > Session| ‘yL|oITC
L, Lock: access lock Msg: incoming message Ol: outgoing interface

TC: traffic control
[C—] Thread

Figure 11: Multi-Threaded Message Processing

5.4 Protocol Extensions

In this section, the message processing rules for the RSVP extensions, which are presented in
Section 4.4, are given. This is done separately from basic RSVP processing in order to clearly
show the respective overhead compared to the standard RSVP specification. Only fundamental
changes in processing are described. For example, allowing CIDR prefixes as address descrip-
tion requires to extend the message format of RSVP messages appropriately, which in turn
leads to different parsing of messages. Such obvious details are omitted here. Because these ex-
tensions are mainly intended to augment RSVP’s capabilities as an interface mechanism, these
processing rules should not be considered as exclusive description. On the other hand, this con-

sideration eventually applies to the basic processing rules, as well.

5.4.1 Compound Prefix Addresses

Compound prefix addresses change the addressing of RSVP messages in two ways. First, by al-
lowing network addresses to be used and second, by allowing more than one address to be spec-
ified. This applies to session descriptions, i.e., the SESSION object and sender descriptions,
i.e., SENDER_TEMPLATE and FILTER_SPEC objects. The changes in message processing

are discussed separately for sender and session descriptions.
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Sender Description

In case of a PATH, PTEAR or PERR message, the introduction of a network address in a sender
description does not change the specification of operations at all. The case of multiple addresses
within a single sender description can be handled by creating multiple PSB objects, but it seems
efficient to extend the definition of a PSB appropriately to store the respective information in a

single object.

As well, the introduction of compound addresses does not change the processing of RESV,
RTEAR or RERR messages, except if the node acts as RSVP gateway and has previously com-
bined multiple PATH messages into a single compound message. In that case, the setting of the
scoping style determines, whether the respective service request is forwarded to multiple previ-
ous hops, or not. As mentioned in Section 4.4.1, itis currently not clear in which scenario which

entity is responsible for determining the scoping style.

Session Description

In case a session description contains a network address, this does not change the processing,
except at the border router towards the respective subnet, which, depending on the scoping
style, has to decide whether to forward a PATH message into multiple subnets, or not. The in-
formation about the destination of a PATH message is looked up in the routing table, as usual

and the message is forwarded using the session address as IP destination address.

If multiple addresses are given as session address, a similar situation exists. Either the rout-
ing lookup for PATH messages delivers a single interface, in which the message is simply for-
ward using any of the addresses as IP destination address. Alternatively, if multiple routing
entries direct the message to multiple interfaces, it depends on the scoping style, whether this

message is forwarded any further.

In both cases, if a service enabler detects multiple outgoing interfaces for a PATH messages
and decides to forward the message through all of them, the resulting session is treated similar
to a multicast session at this node. The same applies for PTEAR messages and, in the opposite

direction, to PERR messages.

The handling of RESV, RTEAR and RERR messages is completely analogous to the usual
message processing, because they are transmitted hop by hop along the reverse data path ac-

cording to previously stored routing information.
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5.4.2 Hop Stacking

Hop stacking requires a change in the message format, as well, and furthermore, a change in the
philosophy of message parsing. While a traditional RSVP implementation can, in principle,
handle message objects in arbitrary order, the order of RSVP_HOP objects becomes important
for the introduction of hop stacking. For handling of a PATH or PTEAR message at a node that
employs hop stacking, it is sufficient to perform regular message processing, of course, without
creating of or searching for any PSB objects. Upon reception of the corresponding RESV or
RTEAR message, such a node can process it normally, but has to remove the first RSVP_HOP

object and eventually forward the message to the node denoted by the next RSVP_HOP object.

RERR messages are transmitted hop by hop to those next hops which are stored in RSB ob-
jects, such that the processing is unaffected by hop stacking. PERR messages can be transmitted
directly to the first hop of a stack. Intermediate hops that perform hop stacking have not stored

path state and thus, do not need to be informed about such an error.

Each node that receives an RSVP message containing a stack of hops, has to copy this stack
to related outgoing messages. Alternatively, for PATH messages, the stack might be stored in
the local PSB object to insert it into corresponding RESV or RTEAR messages. In that case, the
full stack can be removed from the message and only the local outgoing interface information

Is placed as RSVP_HOP object into the outgoing PATH message.

5.5 Implementation Status

In this section, the current implementation status is described in comparison to the RSVP spec-

ification. The software package is publicly available [KarOOb].

Basic Information

This implementation is a full implementation of RSVP operations, except for a few limitations
given below. It has been tested to correctly inter-operate with the reference implementation. It
is developed and tested to compile on Solaris 2.{6,7}, FreeBSD 3.X and Linux 2.X operating
systems, using GNU C++ 2.95 and higher. The complete source package consists of approxi-
mately 19,000 lines of code. System-dependent code is cleanly separated and consists of about
2,000 lines of code with at most 250 lines dedicated to each system. The implementation effort

is estimated to be about 18 person months. To this end, the implementation integrates schedul-
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ing packages for CBQ scheduling [FJ95] on Solaris [WG& and CBQ and HFSC scheduling
[SZN97] on FreeBSD employing the ALTQ package [Cho98].

In experimental versions, an integration with the VCM package for ATM [SKS00a] on So-
laris has been implemented, as well as extensions for embedding charging information into pol-
icy objects [Bet99] as described in [KSWS98a]. However, these components are currently not

part of the public distribution release.

Limitations

Some of the properties of a fully compliant RSVP implementation with respect to {BZRre
currently missing. The main reason for them to be missing is their relative irrelevance with re-
spect to the project goals, compared to the effort necessary to develop and test these features.
» |IPv6 [DH95] is currently not supported. Due to the modular and portable design of the soft-
ware, this should not create too much effort, but of course it would require the effort to be
tested then.
« UDP encapsulation as described in [BZ5] is not supported. It is not planned to support
this in the future, because it does not belong to the core of the specification and it is already
discussed in the IETF to drop this requirement [Bra98].
Other RSVP parts and extensions, which are currently in the standardization process or just be-

ing standardized are currently not supported, either, for example [BLT00] and(BGS

Features

The implementation provides some additional features that are new to an RSVP implementa-

tion and rather rare for experimental protocol implementations in general.

The protocol engine can be compiled to execute in an emulation mode, in which multiple
daemons execute on the same or differing machines and use a configurable virtual network be-
tween them, simulating shared link media and static multicast routing. Without such a feature,
examinations of RSVP behaviour in non-trivial network topologies are only possible by using
a simulator or by using real systems. In the second case, it is necessary to start multiple proc-
esses on multiple machines needing super-user privileges and a suitable infrastructure. The em-
ulation mode allows to experiment without the need for additional software or hardware. A test-
suite can be created by writing high-level configuration files, from which detailed configuration

files are built. A preconfigured test-suite consisting of 16 virtual nodes and test scenarios is pro-
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vided as part of the current distribution package. Furthermore, the emulation mode can be com-

bined with real operation, for example, to test interoperability with other implementations.

An initial attempt to port this software to the OPNET modelling environment [OPNOO] has
been successfully realized [Met99]. While by far not all system interfaces are supported yet,
this shows the general practicability of such a port by modifying only a limited number of mod-
ules. Some minor changes have to be done in the current OPNET modelling library (version

6.0.L) in order to enable RSVP support.

For the purpose of experimenting with various protocol aspects and enhancements or creat-
ing optimized versions for specific purposes, a large part of the full functionality is compiled

optionally and fully configurable at compile time.

5.6 Performance Evaluation

In order to assess the performance of an RSVP implementation and to address the usual con-
cerns against its processing overhead, a number of performance experiments have been carried
out. After describing the general setup, these experiments are documented here in detail. It is
important to mention at this point that the KOM RSVP engine has not been subject to careful
and detailed tuning on the coding level. No specific optimizations have been carried out, other
than the general design decisions and algorithmic improvements described earlier in this chap-

ter.

The first series of tests compares the performance of the KOM rsvpd with the ISl rsvpd. The
second series investigates the current performance limits of the new implementation and the
following experiments analyse the effect of algorithmic improvements that have been imple-
mented. Additionally, an experiment is reported, which investigates the influence of the aver-
age flow lifetime on the processing effort. Finally, some experiments have been carried out to

obtain additional interesting performance figures, e.g., about the end-to-end setup latency.

5.6.1 Experiment Setup

The experiments were carried out on standard PC-based workstations, which serve as router
platform running FreeBSD 3.4. These workstations are equipped as follows:
» single Pentium Il processor, 450 MHz, 512KB second-level cache

* point-to-point 100 Mbit/sec Ethernet links, 3Com 3c905C-TX interface cards
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* Gigabyte GA-6BXU mainboard, standard hard disk

e 128 MB RAM main memory

The total cost of this equipment as of December 1999 is approximately 600 Euros plus 50 Euros
per network interface. For the tests, 6 nodes are connected as depicted in Figugesizseéd

as destination host and; s source host. Multiple unicast sessions are created by specifying
multiple port numbers. Since handling of API sessions creates additional overhead at the re-
spective end node, Nand Ny are used as additional source and destination hosts, if a large
number of sessions is created. The RSVP refresh interval is set to 30 seconds, as suggested in

[BZB*97]. The RSVP daemons exchange basic RSVP messages only, without policy data and

integrity objects.
data flow
>
Nl \ / N5
N3 N,
N> / \\ //( \ Ng
AN e

observation points

Figure 12: Experiment Setup for Performance Measurements

The load generator at{NN,) creates sessions and path advertisements with a randomized
time interval in between, until a certain number of sessioisreached. The upper bound of
this time interval can be chosen for each experiment. When the target number of sessions is
reached, the load generator creates and deletes sessions with the same randomized time interval
respectively, in a way that the number of sessions is guaranteed to stay in the imei@al [
The receiver at N(Ng) responds to each path advertisement by generating reservation requests,
which establish the end-to-end flow reservation. All experiments encompass the generation and

transmission of confirmation messages.

The observations have been taken at Nodah N,. Measurements have been done by pe-
riodically executingtop and recording the highest numbers for current total memory con-

sumption and percentage of raw CPU time that is reported for the RSVP daemon on either node.
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Note that this kind of measurement introduces some inaccuracies and inherent randomness,

which however does not seem to have affected the clarity of the results.

5.6.2 Comparison with Existing Work

For this first series of tests, no specific optimizations have been turned on in the KOM RSVP
engine. The timer container has been configured to consist of 20,000 slots covering 50 millisec-
onds each. Both implementations have been compiled with the same optimization and debug-
ging flags. The hash-based session container does not provide any performance gain for either

alternative, because all flows are targeted to the same host.

Because of the restricted capability and reliability of the ISI rsvpd, its performance figures
can be considered valid only to a limited extent. It has been chosen to avoid the memory leaks
in the existing implementation to at least get some realistic performance figures by avoiding to
place the additional burden of administering stale information to the software. As a result, the
numbers for the ISI rsvpd can only be considered a lower bound for CPU consumption, because
it usually crashes before a stable situation with creation and removal of sessions can be reached.
The listed results consequently show the situation just before the crash. With the KOM rsvpd,
each test has run for several minutes. The listed percentage of CPU time is the highest number
that has been observed during that time. The memory consumption has always stabilized at the
reported amount. The results are depicted in Table 3. The average lifetime of a single flow is
calculated according to the creation/removal interval to be evenly distributed between zero mil-

liseconds and the given number.

Note that the creation/removal interval is adapted for a small number of flows, such that the
average lifetime of flows is not much smaller than the RSVP refresh interval. The influence of
the average flow lifetime is further studied in Section 5.6.6. The numbers for the ISI rsvpd can-
not be considered as stable as the numbers for the KOM rsvpd, because of the above mentioned
reasons. However, it can be derived from these performance figures, that the KOM RSVP en-
gine performs significantly more efficient than the ISI rsvpd. While it is unclear how much of
this efficiency gain has to be attributed to a better coding style in general, it can obviously be
concluded that the innovative object-relationship design at least does not prohibit performant
implementation, however, at the expense of additional memory consumption. The KOM rsvpd
consumes almost twice the amount of memory per flow when compared to the ISI rsvpd num-

bers.
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Table 3: Experiment Results: ISI rsvpd vs. KOM rsvpd

experiment settings ISI rsvpd KOM rsvpd
# flows | timeinterval| avg. lifetimg % CPU Memoty % CPU Memary
0 - -- 0.00 1920K 0.00 2724K
500 100 msec 25.00 sec 2.05 2372K 1.18 362PK
1000 50 msec 25.00 sec 6.18 2856K 3.5p 4544K
1500 38 msec 28.50 seg 10.01 3296K 5.3p 547K
2000 25 msec 25.00 seg 14.89 3768K 7.3/7 6388K
2500 25 msec 31.25 sec 20.51 4244K 9.911 7308K
3000 25 msec 37.50 sec 25.98 4728K 13.38 8236K
3500 25 msec 43.75 sec 33.74 5208K 16.60 9160K
4000 25 msec 50.00 sec 42.58 5692K 20.26 10084K
4500 25 msec 56.25 sec 51.3Y 6168K 23.73 11008K
5000 25 msec 62.50 seg 60.4% 6656K 27.83 11928K
5500 25 msec 68.75 seg 7969 7140K 32.96 12848K

* number of successful reservations: ~ 5400

5.6.3 Performance Limits

The goal of this set of tests is to find the upper limits of reservation requests for a tuned version
of the RSVP implementation. The experiment setup and measurements have been done as de-
scribed above. In the tuned version, the timer container consists of 100,000 slots covering 10
milliseconds each and API processing is disabled at intermediate nodes. Assertion checking
and debug output is turned off. Since these tests are carried out in a limited infrastructure with
at most two destinations hosts, port numbers are included into the hash calculation for the ses-
sion container in the tuned version. Because doing so establishes a perfect hash distribution for
the test scenario, the session hash index has been restricted to 4096 to simulate a realistic situ-
ation. Furthermore, the load generation is distributed between all four end nodes as depicted in

Figure 12. The results are listed in Table 4.

The following conclusions can be drawn from this experiment. Tuning the protocol imple-
mentation reveals a significant potential for increasing the performance. A router platform
based on standard PC hardware can handle the full signalling for 50,000 unicast flows. The
higher amount of initially allocated memory for the tuned version can be attributed to the addi-

tional memory requirements for the finer-grained timer container. The memory requirements
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Table 4: Experiment Results: Performance Limits of KOM rsvpd

experiment settings basic KOM rsvpg tuned KOM rsvpd
# flows | timeinterval| avg. lifetimg % CPU Memony % CPU Memary
0 -- - 0.00 2724K 0.00 4724K
2500 25 msec 31.25 sec 9.91 7308K 4.39 9324K
5000 25 msec 62.50 sec 27.88 11928K 8.50 13940K
7500 25 msec 93.75 seg 58.11 16548K 11.38 18560K
9800 25 msec 122.50 se¢ 93.12 2078BK -- --
10000 25 msec 125.00 se¢ 65.09 21156K 14.75 23168K
15000 25 msec 187.50 se¢ - -- 20.95 32396K
20000 25 msec 250.00 sec -- -- 27.78 4163PK
30000 25 msec 375.00 sec -- -- 40.6) 60096K
40000 25 msec 500.00 se¢ -- -- 55.17 78556K
50000 25 msec 625.00 se¢ -- -- 67.99 97012K
40000 12 msec 240.00 se¢ - -- 56.69 78556K
50000 10 msec 250.00 se¢ - -- 70.56 97012K

* load generated by 4 nodes, see main text

per flow remain unaffected. Two additional tests are listed, in which the creation/removal inter-

val is set in a way that the average lifetime of a flow is approximately 4 minutes. The resulting

load numbers demonstrate that the RSVP engine is indeed able to handle such a load of ses-

sions, even when assuming a realistic average lifetime of calls. In fact, the impact of the lifetime

of flows seems to be quite low. Further details are discussed in Section 5.6.6.

One particular detail can be observed when comparing the load numbers for the basic ver-

sion in Table 4, depending on how many nodes participate in load generation. If four end nodes

are used, messages arrive at intermediate nodes at three network interfaces, instead of two. As

a consequence, the resulting load is substantially smaller and the performance limit is in-

creased. The explanation of this behaviour is related to the implementation of the timer wheel

in combination with theselect

system call, which is used to query for incoming packets.

Each switch between timer management and message reception incurs aelaltto , which

must be considered as expensive. It takes at least 10 milliseconds on Linux, Solaris and FreeB-

SD to perform this system call when any timeout is given. Aftgect

returns, exactly one

message is read from each eligible interface. Now, if messages arrive from more interfaces,

more messages are potentially received, before the next invocation of timer management. This
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leads to less switching between message reception and timer management and thus, reduces the

total number of system calls, which in turn decreases the system load.

Figure 13 shows an overall picture of the experiment results from this and the previous sec-

tion. The graph depicts the fraction of CPU load as a function of the number of sessions.
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Figure 13: Performance Curve for ISI and KOM rsvpd

5.6.4 Fuzzy Timer Handling

While in theory only fuzzy timer handling can guarantee the property of overall linear complex-
ity by simplifying access to the timer container, the previous experiment shows that, by ena-
bling a fine-grained timer wheel, essentially this linearity is already achieved. In fact, a further
modification of implementing fuzzy timers is needed to achieve any visible improvement at all.
Because of the effects of switching between timer management and interface service, which is
described in the previous section, all timers from the current slot are fired whenever the system
enters the timer management. This further reduces the number of switches andsedéstto

and consequently, the overall processing load. A comparison with regular operation, which in-

dicates the additional performance gain, mainly at a high load, is shown in Table 5. At a load of
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about 58,000 flows, the system exceeds the maximum amount of main memory that is available

and starts swapping to disk. This prohibits any further performant execution under this excep-

tional high load.

Table 5: Experiment Results: Performance of KOM rsvpd & Fuzzy Timer Optimization

experiment settings tuned KOM rsvpd fuzzy KOM rsvpd
# flows time interval| avg. lifetimg % CPU Memory % CPU  Memary
0 -- -- 0.00 4724K 0.00 4724K
20000 25 msec 250.00 seg 27.78 4163pK 26.12 416B2K
40000 12 msec 240.00 seg 56.69 78556K 53.87 785p6K
50000 10 msec 250.00 seg 70.56 9701RK 63.96 970[L2K
58000 8 msec 232.00 se¢ -- -- ~70.00 >108M

5.6.5 Parallel Message Processing

This experiment is carried out to investigate the scalability of the multi-threaded message
processing on a multi-processor platform. The experiment setup is very simple and shown in
Figure 14. The end-systemg Bnd E are the same PCs as in the other experiments and are
connected to a router R. Both end-systems act as sender and receiver and create a large number
of flows. A SparcServer 1000 with four 60Mhz CPUs running Solaris 2.6 serves as router. Be-
cause a separate thread is needed in the RSVP daemon to receive raw IP packets and dispatch
them to the worker threads and another thread is used for timer handling, at least four CPUs are

needed to carry out a reasonable experiment with two network interfaces.

R

I

observation point

Eq =

Figure 14: Experiment Setup for Parallel Processing
In order to test the capabilities of this system, tests have been run in single-threading mode

and in multi-threaded mode with enabling an increasing numbers of CPUs. The goal of each
test is to find the highest number of flows that can be handled reliably. Therefore, the RSVP
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daemon has been slightly modified to regularly check the difference between the number of
PSB and RSB objects. If this difference increases over a certain threshold, the daemon stops
and reports the numbers of successfully established reservations. Because the total number of
flows that can be sustained by this router is rather small, the RSVP refresh time is set to 3 sec-
onds in order to increase the effect of established sessions compared to the creation of new
ones. As well, to decrease the high influence of system code, which cannot be executed truly
multi-threaded, the software is compiled without compiler optimization. The results are listed

in Table 6. Each test is executed ten times and both the highest and lowest result are not taken

into account for calculating the average result.

Table 6: Experiment Results: Performance of Parallel KOM rsvpd

# CPUs # flows (individual tests) avg. # flows
single-threaded 451, 425, 464, 473, 466, 450, 450, 494, 520, 489 467
1 345, 389, 386, 380, 373, 373, 393, 350, 357, 366 371
2 552, 478, 571, 605, 571, 532, 563, 556, 518, 572 554
3 707, 723, 693, 756, 731, 718, 711, 702, 729, 727 719
4 592, 621, 711, 662, 652, 655, 648, 666, 655, 663 653

It becomes clear from the resulting performance figures, that the potential for parallelization
gains is indeed given, but certainly limited, at least on the tested platform. Furthermore, when
comparing the results for single-threaded execution with those of multi-threaded execution on
a single CPU, a significant overhead for synchronization mechanisms can be observed. These
limitations must be partially accounted to the insufficient support of the operating system to
support multi-threaded reception of raw IP packets and other low-level services, but also to in-
herent limitations of RSVP processing and the improvable implementation design of the paral-
lel code in the KOM protocol engine. To this end, the result of implementing multi-threaded
message processing is somewhat unsatisfactory. On the other hand, the design and implemen-
tation of multi-threaded message processing should be considered as a proof of concept, rather
than the final design of a production-level implementation. Especially, with proper operating
system support, the need for a separate dispatcher thread (which might very well form the bot-
tleneck of the current system) and its synchronisation would be eliminated. As can be conclud-

ed from the results of Section 5.6.3 and Section 5.6.4, the overall performance of the RSVP
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daemon is to a great extent determined by the system-level task of receiving packets from the

network.

Another conclusion can be drawn from these tests, which backs up the above considerations.
Testing the efficiency gain of a multi-threaded RSVP implementation on a simple and small
multi-processor workstation as in these tests, is probably not sufficient to fully reveal parallel
processing efficiency. For example, the performance drop when comparing execution on
4 CPUs can be explained as follows. On this platform, up to 3 CPUs can be bound to a process
group exclusively. When using 4 CPUs, the RSVP daemon competes with other background
processes and consequently, the overall scheduling effort increases for the operating system.
This is reflected by the lower performances and indicates, that these tests cannot be regarded as

real tests with 4 CPUs.

As discussed in Section 5.3.3, there is a broad field for further work on tuning the design and
implementation of multi-threaded RSVP operations. Additionally, it would be very desirable to
compare the results obtained during these tests with performance figures from different hard-

ware and operating system platforms.

5.6.6 Lifetime of Flows

The experiments in Section 5.6.3 and Section 5.6.4 indicate that the average lifetime of flows
has only limited influence on the computational overhead for a certain number of flows. In or-
der to further investigate this issue, a dedicated set of tests has been done to examine this effect.

The results are listed in Table 7.

Table 7: Experiment Results: Influence of Average Flow Lifetime

experiment settings fuzzy KOM rsvpd

# flows | timeinterval| avg. lifetimg % CPU Memony
10000 30 150.00 sec 13.96 23168K
10000 25 125.00 sec 14.75 23168K
10000 20 100.00 sec 14.99 23168K
10000 10 50.00 sec 15.77 23168K
10000 5 25.00 sec 16.65 23168|K
10000 3 15.00 sec 21.48 23168K
10000 1 5.00 sec 77.10| 23168K

* number of successful reservations: ~ 9700
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These numbers back up the assumption that the average lifetime of flows has only limited
influence on the overall computational overhead, as long as it is above the RSVP refresh inter-
val, which has been set to 30 seconds for these tests. If the lifetime of flows becomes shorter,
this generates an absolute increase in the number of RSVP messages and results in a much high-
er processing load. In fact, for these cases, it can be noticed in Table 7 that the increase of CPU
load is approximately inverse proportional to the lifetime of flows. It can be concluded that usu-
ally a large fraction of CPU load is caused by refresh messages and on the other hand, that there
is not much difference in the processing effort for setup messages as compared to refresh mes-

sages.

Indirectly, this result demonstrates the large potential for performance gains by extending
RSVP with mechanisms to reduce the amount of state refresh messages, like those presented in
Section 5.1.2. However, this particular behaviour could also be an artefact of this specific im-
plementation, therefore, further work covering different implementations would be needed to
investigate the details. Unfortunately, at this time, no such implementation is available. The ISI
rsvpd cannot reliably handle the deletion of sessions, hence, this kind of experiment is currently

not possible.

5.6.7 Other Experiments

Some other experiments have been carried out to assess this implementation under a variety of
aspects. Because their results are highly bound to the specific scenario, they are somewhat il-
lustrative, but they may not be regarded to be as relevant as the above experiments. Therefore,

they are not documented here in the same level of detail.

RSVP & Packet Classification

In combination with the ALTQ package [Cho98], two adjacent routers running KOM rsvpd can
both sustain the signalling for 10,000 flows and at the same time, classify and schedule 25,000
packets per second. Note that this result does not make any statement about the aspect whether
all flows actually receive their QoS objective. Evaluating the ALTQ package is beyond the

scope of this thesis.

End-to-End Setup Latency

Using the setup shown in Figure 15, tests have been carried out to measure the setup latency of

RSVP requests. fand Ry are not handling any background RSVP sessiqgraitl R, are load-
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ed with up to 20,000 flows. The total end-to-end setup latency usually varied between 22 and
26 milliseconds, independent of the load of intermediate routers. Consequently, the setup laten-
cy can be estimated to be about 5-6 milliseconds per intermediate hop, which shows that even
along a path with a large number of hops, the end-to-end setup latency will very probably be

acceptable.

Send RO Rl R2 R3 Recv

Figure 15: Experiment Setup for End-to-End Latency

5.7 Summary of Results

The assessment of RSVP’s technical feasibility started with collecting and analysing the avail-
able material. Very soon it became obvious that the publicly available code as well as previous
publications are not sufficient to study the aspects that were deemed interesting for this work.
Therefore, a new implementation of RSVP has been developed from scratch. The overall de-
sign of the protocol engine has been published in [Kar00a]. It employs the notion of objects and
relationships between them to efficiently store and access protocol state. It is innovative in its
design and for example, allows easy inclusion of multi-threaded message processing. Further-
more, certain design and algorithmic extensions for the implementation of an RSVP engine
have been proposed, some of which have been published in [KSS00]. An enormous potential

for performance gains has been demonstrated by tuning the implementation appropriately.

In the performance experiments of Section 5.6, RSVP has been evaluated with respect to its
basic mode of operation. The main goal of this work is to show the performance potential, even
without further changes to the protocol. From the performance figures, it can be deduced that
the suitability of RSVP as a general purpose signalling interface and protocol is much better
than generally assumed. A standard PC router, at equipment cost of about 600 Euros plus net-

work interfaces, can handle the signalling for more than 50,000 sessions in a realistic scenario.

If RSVP is applied for trunk signalling as presented in Section 4.5, there is already no reason
to question RSVP’s performance. However, experiments such as those carried out in this work

are needed to assess its real-world applicability. Given the results of Section 5.6.6, it can be de-
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rived that the proposed modifications of the protocol to reduce the number of refresh messages,
will drastically improve its performance and thus, its applicability. The indicative numbers ob-
tained for packet classification and scheduling, as well as end-to-end setup latency, further back
up the claim about RSVP’s applicability, even for employment in an IntServ-like QoS technol-

ogy, which might be carried out in access networks.

As an illustrative example, consider a commercial high-speed router equipped with standard
PC hardware as control processor. Furthermore, assume that the performance of an RSVP im-
plementation can be tuned to sustain the signalling of 100,000 flows on such hardware (which
does not seem unrealistic). If telephone calls have a bandwidth requirement of 64 Kbit/sec, the
router could handle the signalling equivalent of 6.4 Gbit/sec. If such telephone calls make up
for 32% percent of the overall capacity, such a router could handle the per-flow signalling for
up to eight OC-48 links. This calculation does not even include the highly promising proposals
presented in Section 5.1.2. Of course, telephone calls might be compressed and use less than 64
Kbit/sec. However, it is also very likely that they can easily be aggregated as presented in
[SKWS99], which reduces the number of flows.

Essentially, the user-level RSVP implementation presented in this chapter is not the bottle-
neck for operation on a standard UNIX platform. Instead, the execution of system services
largely determines the overall performance. This can be concluded from the experimental re-
sults, including those measuring the capabilities of multi-threaded message processing. Conse-
guently, further work, especially on different hardware and operating system platforms, is

needed to better understand the ultimate limits of an RSVP engine.

Besides its complexity of operation, RSVP is often objected to as being overly complex for
implementation. The experience from this implementation shows that RSVP indeed exhibits a
certain complexity. However, it was possible to realize an almost complete and even multi-
threaded implementation of RSVP investing less than 18 person-months of development effort.
Given the large applicability and the inherent complexity of the fundamental problem of pro-
viding performant end-to-end services, it can be argued that this experience contradicts those

objections.
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Chapter 6: Calculation and Charging

In this chapter, the investigation of QoS signalling is continued by considering the second im-
portant aspect of a future multi-service Internet, which is given by a commercialized environ-
ment. This work is carried out as follows. First, a set of requirements is described which are
deemed important in a commercial environment. Second, a cost and price calculation frame-
work is described and exemplified for a set of service classes. The ability to support cost-based
pricing is a minimal requirement for any charging mechanism. Therefore, a distributed cost-
based charging model is introduced, which serves as the basis for defining charging mecha-
nisms. Then, a set of mechanisms is presented and discussed, which have been developed to re-
late RSVP service invocations to the corresponding charging information. Additionally, a cost-
based calculation model for advance service requests has been developed, which is described
and related to the RSVP mechanisms. Finally, an auction-based calculation scheme is selected
and its potential for realization is briefly discussed, as well. The calculation models have been
developed up to a point where economists can pick them up and continue to refine and optimize

their characteristics.

6.1 Goals and Expectations for Charging of Communication Services

Some fundamental assumptions about the relationship between market participants have to be

reviewed when the Internet is considered as a commercial communication network where users

are charged according to their resource consumption. These assumptions are mainly driven by
the individual market participant’s point of view.

» Each participant is independent and individually seeks to minimize its costs while maximiz-
ing its profit. This assumption fundamentally contradicts the pursuit for a globally optimal
price function.

» Participants do not necessarily trust each other, not only with regard to authentication, but
also in terms of correct information.

» Participants are used to a high level of legal security.

» Consumers of commodities are used to a high level of service and consumer protection.
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» Communication prices are set independently by each network protglghe price for a

service likely depends on the costs for sub-services that are needed from other providers.

In the following subsections, these general assumptions are elaborated in more detail from dif-

ferent perspectives.

6.1.1 User Requirements

Predictability of Charges. Users want to be able to predict the costs of using a particular ap-
plication, which include the expenditures for the communication services induced by this appli-
cation. Therefore, an exact a-priori specification of communication charges would be desirable.
However, if this requirement cannot be fulfilled, a set of weaker demands can be sufficient.
First, a user should be able to roughly estimate his charges. Such an estimation does not need to
be exact but should give at least a rough feeling to the user — similar to the knowledge that an
international phone call of several minutes duration costs more than a Euro and not just a few
cents. Second, a worst-case price should be known. Finally, it must be prohibited that a user is

charged a higher price than previously announced, without giving his explicit approval.

Transparency and Accuracy of Charging. To find out how much is spent for which appli-
cation and what are the reasons for this, users need the ability to determine the costs of a partic-
ular session, e.g., if an application uses several flows, the costs for each of these should be
stated explicitly. Furthermore, for some users it might also be of interest to see where inside of
the network the major charges are caused. This may give them information to switch to a dif-
ferent provider in future. Detailed per-session information about charges can also be used to de-
cide whether a certain service and its quality offer a good value for the price. Since not all users
are interested in such details, each user must be able to decide how much information should be

given.

Convenience. Charging components should not make the usage of communication services
much more difficult. The charging mechanisms themselves as well as the final bill based on the
information gathered by the charging system must be convenient for its users. Hence, it must be
possible for users to define ‘standard charging behaviour’ for their applications so that they are
not bothered with details during the start up of an often used application. On the other hand,
they should be able to change such a description easily to have control over their expenditures,
e.g., changing spending caps. Furthermore, most users want to have as few separate bills as pos-

sible, i.e., have contracts and according business procedures with only one provider.
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6.1.2 Provider Requirements

Technical Feasibility. The charging approach and its mechanisms must be feasible and oper-
able with low effort. Otherwise, if it becomes too complex, the costs for the charging mecha-
nisms might be higher than their gains. A set of real-life user trials needs to be performed to
assure any of such characteristics. The added overhead for communication due to additional in-
formation transmitted between senders, network nodes and receivers, and also for processing
and storage purposes especially in network nodes, e.g., to keep and manipulate charging infor-
mation, must be as low as possible [FSVP98]. In addition, the introduction of scalable and low
effort security mechanisms is essential for any type of counterfeit-proof charging records and

billing data.

Variety of Business Models. The business of providing network service over packet-
switched networks must be sustainable and profitable to attract the necessary investments into
the infrastructure. It is unlikely to expect all service providers to adopt exactly the same busi-
ness model and strategies. Therefore, charging mechanisms must be flexible enough to support
a large variety of business models and inter-operate between multiple network domains em-
ploying different models. As well, a charging system must be flexible enough to handle differ-

ent pricing strategies, for example during peak and off-peak times.

6.1.3 System Requirements

Flexibility. When information is transmitted from a sender to one or several receivers, the
flow of value associated with this information can be (1) in the same direction as that of the data
flow, (2) in the opposite direction, or (3) a mixture of both because both sides benefit from the
information exchange. For example, in the first case, the sender transmits a product advertise-
ment, in the second case, the receiver retrieves a movie for playback, and in the third case both
sides hold a project meeting via a video-conference system. To support these different scenari-
0s, a charging architecture must provide flexible mechanisms to allow the participants in a com-
munication session to specify their willingness to pay for the charges in a variety of manners.
Senders must be able to state that they accept to pay for some percentage of the overall commu-
nication costs or up to a specified total amount. Similarly, receivers may state what amount of
costs they will cover. Additionally, charging mechanisms must allow for flexible distribution of
communication charges among members of a multicast group. A number of cost allocation

strategies can be found in [HSE97].
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Fraud Protection and Legal Security. One of the most important issues demanded by par-
ticipants is protection against fraud, i.e., that they do not have to pay for costs they have not in-
curred and that no one can misuse the system. The fear of users is that a provider may cheat or
that other users may use their identity or derogate from them in any other way. Providers want
to be sure that users indeed pay for the used service. A prerequisite against fraud is technical
security, such that users cannot damage, misuse or intrude the provider's communication sys-
tems. Finally, legal security creates the demand that in case of a failure, there is enough infor-

mation to determine responsibility for it.

6.1.4 Network Operation Requirements

Stability of Service. When a particular service with a certain quality has been agreed upon
by the user and the provider, it must be ensured that the service is indeed delivered to the user.
Hence, an exact definition of ‘quality assurance is met’ is needed. On the other hand, users must
be able to estimate the impact of such quality goals on their applications, hence the definition
must not be too complex. For example, if multiple users start a video conference application,
they likely request a communication service with a specified bandwidth and delay. If the pro-
vider assures to deliver this service, the users expect no quality degradation and a very low
probability of service disruption during the conference. In case of quality degradation or service
disruption, an appropriate refund mechanism must be applied, which largely depends on the
type of application, and hence, should be negotiated during the setup of a communication serv-

ice.

Reliability of Service. In order to provide the basic infrastructure for an multi-service Inter-
net, service availability must be very reliable. Current telephone networks are usually designed
to keep the blocking probability in the order of4@Gimilar requirements are likely to apply to
integrated services networks as well. To assure such a low blocking probability, even during
peak hours, significant effort in the area of network and traffic engineering is necessary, which
in turn must be accompanied by appropriate business calculation. A slightly different situation
exists in case of per-packet QoS guarantees without explicit flow admission control. In that
case, the notion of blocking probability might be replaced by reliability of service measured in

terms of probability that the promised level of QoS is violated.
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6.2 Cost-based Price Calculation

Under a profit-contribution model for communication services, the terms cost and price can be
used somewhat interchangeably from the network provider’s perspective. Marginal costs are
negligibly low and in case of limited capacity, opportunity costs basically equal prices and are
implicitly included when such a model is optimized. It can be assumed that actual market prices
consist of a fixed transaction component, a resource allocation component and possibly other
components. A fixed flow setup charge in combination with resource-based components leads
to the usual characteristic that the function of price per resource unit is sub-additive for an in-
creasing amount of resources. Furthermore, actual market prices can be influenced by market-
ing considerations and deviate from calculated prices. Nevertheless, it is important to internally
use precise calculation as a reference model for the daily business process. In fact, the ability to
perform cost-based price calculation is essential in order to carry out reliable internal calcula-
tion and utilize the results as input to capacity planning and marketing. Thectestybased

price calculationis used to refer to internal cost and price calculation for the resource-based

price component.

A multi-service Internet employs multiple service classes of packet-switched network com-
munication. For each class, QoS is described by a vector of partially different parameters. All
service classes compete for the same underlying network resources, such that an internal calcu-
lation model should be related to resource usage. However, service requests cannot directly be
compared with respect to resource consumption, especially across service classes. Therefore,
the existence of multiple service classes presents new challenges to a cost and price calculation
model, which are only partially addressed by existing work. In this section, a framework for
carrying out such cost-based price calculation is presented and specifically applied to the
IntServ service classes. As well, several applications of such a calculation model are presented

to illustrate its usefulness.

6.2.1 Single-Service Cost-based Price Calculation

Certain restrictions are usually applied to a calculation model to keep the economic time hori-
zon limited and the complexity of the overall problem tractable. Specifically, the notion of a
business cycldescribes the time period in which a specific investment volume has to be recov-
ered. One must further assume the existence cdggregated price-demand estimatitor

each time during the business cycle. A simple profit-maximizing calculation model for a net-
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work providing a single communication service class can then be expressed as maximizing the

the following formula [MV91]:

}bR(y(t))dt -K(C) tO[0,Th  subjecttoy(t) <C (1)
0
Variables used:
y(t) aggregated demand at tirne
R(y(t)) aggregated revenue at time
Tb duration of business cycle
C total available resource capacity
K(C) amortization of capital investment over one business cycle

In such a model, the time parameter is a constant scaling factor, i.e., price and demand are ap-
plicable per fixed time unit, which can be chosen arbitrarily small. In the big view, a calculation
model can be used in two areas of the cyclic calculation and planning process, shown in
Figure 16. First, during capacity planning, network capacity can be increased as long as the in-
crease is covered by expected revenue for this investment. However, changing the capacity of
a communication network happens on a rather long time-scale, therefore, as a second applica-
tion, this calculation model can be used to optimize revenue under a given limited capacity. In
the second case, opportunity costs come into play when there is more demand than supply. If a
service request has to be refused because another service request occupies resources, then the
potential revenue of the refused request can be considered as opportunity costs of the accepted
one. Although opportunity costs are not directly expressed in (1), they are implicitly included
when optimizing it. In general, during capacity planning as well as network operation, a certain
target value can be expected to limit the fraction of resources usually available for high quality
service invocations. This is desirable, for example, to keep the blocking probability low or to

prohibit starvation of best-effort traffic.

capacity planning— g pricing

\ demand estimatiovP/

Figure 16: Cyclic Dependency among Calculation Tasks
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6.2.2 Multi-Service Cost-based Price Calculation

There are several constraining factors for cost-based price calculation for a packet-switched
multi-service network, resulting from multiple service classes using the same resources. In this
section, two axiomatic requirements are established and then, a general calculation formula re-
sulting from these requirements, is presented. Finally, some additional aspects are discussed,
which strongly devise cost-based price calculation to be modelled according to the axiomatic

constraints.

Axiomatic Constraints
Linearity. The price for resource usage must be linear.

alp(x) = p(allx) for resource usage (2)
This requirement is due to the possibility of arbitrage (resale at low transaction costs) in packet-
switched communication networks. Because the service of transmitting packets from one node
to another can be used for many different applications, it might be hardly feasible for regulation
authorities to prohibit arbitrage in a conventional (i.e. legislative) way. Furthermore, the objec-
tive of prohibiting resale might be dropped. Any non-linear pricing scheme, however, can be
exploited by arbitrage [MV91]. Even if external arbitrage is not an issue, linear resource prices
seem to be most appropriate for internal calculation, because they properly reflect resource con-

sumption.

Uniformity. The price for each resource’s usage must be uniform across service classes.

pSl(xq) = psz(xq) for each resource, usagex for each pair of service class®sS, (3)

There are two reasons for this axiom. First, requests for different service classes might be sub-
stituted by customers, exploiting the knowledge about a service class’ definition. This can be
done for immediate use or for resale, which in turn resembles a kind of arbitrage. Second, op-
portunity costs might apply across service classes, if a request for one service class has to be re-

fused, because a request for another service class occupies the resources.

General Price Calculation Formula

A common requirement for pricing communication services is that prices should be known be-
fore a service is requested [FD98,FSVP98,KSWS98a], hence the price per resource unit must
be stable during a specific time period. Assuming this and taking into account both axioms from
above, a general price calculation formula for multi-service networks should be defined as fol-

lows:
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p(x,t) = ay(t)x; + ax(t)x, +...+ ay(t) X, for resource vectox = (Xq,Xy,...,%,) at timet 4)

This linear price formula must be used for all service classes. For capacity planning it can be
used to determine the optimal network capacity. In case of limited capacity, the optimal traffic
mix during peak-load periods can be estimated similarly. This calculation method is tienmed

ear cost-based price calculation

Further Considerations

Auctions. From an economic point of view, every sales transaction can be considered as an
auction [MM98]. Winner determination takes place by ordering all bids and choosing the high-
est one(s). In case of a multi-service network, multiple resources have to be considered, which
is calledcombinatorial auctionThe underlying theoretical problem of winner determination in
combinatorial auctions is proven to be NP-complete [RPH98], but approximate polynomial so-
lutions exist [San98]. The problem becomes even harder, if bids from multiple service classes
for multiple resources cannot be ordered at all. However, if cost and price calculation is uniform

for all service classes, this additional complexity is resolved.

Demand Interdependence. For packet-switched multi-service networks, itis very likely that
demand patterns are interdependent between different service classes, because users might
combine or substitute traffic flows of multiple service classes within a single application. Ad-
ditionally, interdependency between resource parameters can exist. As an example, for a delay
guaranteed service, the amount of buffer needed is largely determined by bandwidth and delay
characteristics. If the price for a critical resource, e.g. bandwidth, is increased, demand for the
service class, and thus demand for other resources, decreases as well. If a uniform price func-
tion is used, which represents all resource parameters, per-flow demand estimation for each
service class can be replaced by estimating aggregated demand interdependency per resource

parameter. This seems to be easier to accomplish, based on past measurements and experiences.

Multicast. A thorough study of allocating costs among members of a multicast group is pre-
sented in [HSE97]. Cost allocation is described by splitting each link’s costs among a defined
subset of group members. The particular definition of the subset determines the overall alloca-
tion strategy. Of course, the sum of all cost fractions must equal the total costs for a link. Real-
izing such an approach becomes much simpler, if costs can be expressed as a linear function of
resource parameters, especially if charges are shared among receivers with heterogeneous QoS

requirements.
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6.2.3 Linear Cost-based Price Calculation for Integrated Services

The IntServ architecture is the only existing set of end-to-end service classes, which is currently
defined by the IETF. Therefore, the calculation framework is exemplified for this set of service
classes.

The most evident obstacle for developing a calculation model for the IntServ architecture is
that certain service classes are currently not precisely defined. Therefore, this section begins by
refining the service definitions. The other details of each service definition can be found in
[Wro97b], [SPG97] and [GGPR96], respectively. For reasons of brevity and simplicity, the ef-
fects of traffic distortion for this model are not explicitly considered, other than what is speci-
fied in the error terms during Guaranteed service negotiation. Initially, this model is focused on
a single link or a specific path through a network cloud, connecting two IntServ-enabled rout-
ers, although this restriction is partially dropped in Section 6.2.5. These are the relevant flow
specification and error term parameters [Wro97a] which are used for the rest of this discussion:

b bucket depth

p peak rate
token rate
flow MTU

-

service rate
slack term

rate-dependent error term

O 0O un o2

rate-independent error term

The approach described here presents a general idea for a calculation method, rather than spe-
cific calculation rules to be used for each implementation. However, the IntServ service defini-

tion refinements given below can be considered to closely resemble realistic services.

Guaranteed. For the duration of a service invocation, each router is guaranteed to always
have service ratR available for a flow conforming to the requested token bucket. Furthermore,
all incoming packets exceeding ra&ebut below ratep are forwarded within the (indirectly)
specified delay bound and no conforming packets are dropped due to buffer overflow as long

as such bursts are not larger tihen

Guaranteed Rate. A flow is guaranteed to be serviced with average ratéo specific buff-

ering is guaranteed.
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Controlled Load. A flow conforming to a token bucket is forwarded almost without queuing
delay or loss, as long as its data rate is not higher th@ursts are forwarded with as little
gueuing delay and loss as possible, depending on the actual load situation. This is achieved by
allocating a specific excess service rate and buffer for each flow and enabling flows to borrow
unused resources from each other. An implementation might, for example,guseanteed

rate schedulefGLV95] in conjunction withhierarchical link sharing[FJ95] to accomplish

such forwarding. Assuming constant excess paramétndg to be used for each flow (de-
pending for example on the total number of flows and desired failing probability), the following

simple formulas can be defined for the amount of serviceRratel total buffeB:

R=r+(p-r)f, B=>blg withf,gO[01] 5)

Please note that the following considerations do not rely on exactly the above definitions and

formulas, but only on having any precise specification of resource usage in the first place.

Virtual Rate Parameters

In reality, only one parameter (service rate, i.e., forwarding capacity) denotes the total available

rate resource of an outgoing link. However, there are up to two rate paranresdR, in

IntServ service specifications with even different semantics depending on the actual service

class. In order to allocate costs to reservation requests, a resource model usivgttrabate

parameterss defined:

» Thetoken rate(gy) describes the forwarding rate that is always available and expected to be
constantly used by a flow.

» Theclearing rate(qc) denotes a guaranteed forwarding rate on top of the token rate that is
reserved per delay-guaranteed flow, but expected to be used only for bursts of data.

» Theresidual rate(qg) is a forwarding rate on top of the token rate, which is only statisti-
cally available to a flow. This resource can consume the unused capagity of

These parameters can be used to express the resource consumption of service requests by map-

ping the rate parametersaandR from an IntServ flow specification to the virtual rate parame-

ters according to Table 8. This mapping follows directly from the above service refinements

and the definition of virtual rate parameters.

IntServ Calculation Model
Considering buffer space as additional resource parameter, the linear function

P(XTXcXRiXg) = arXT + acXc + aRXR + apXp (6)
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Table 8: Rate Allocation for IntServ Service Classes

service class Ot dc ar

Guaranteed r R-r -
Controlled Load r - (p-nT
Guaranteed Rate - - r

can be used to assign resource consumption respectively prices to a flow requesting token rate
X1, clearing ratexc, residual rateg and buffer spaceg. Prices are applicable per fixed time

unit, which can be chosen arbitrarily small. The formula for calculating the amount of IBuffer

for Guaranteed service is given in [SPG97]. Converted back to the original IntServ parameters,

the price function for each services class can be expressed as follows:

pe(r.R) = p(r,R-r,0,B) =ar0+ acRr) + ag[B (7)
PcL(r) =p(r,0,p-nfbg =arlr+ arUpr)d +aglbly (8)
Per()  =p(0,04,0) = ar ¥ 9)

These price functions form the basis for an IntServ calculation model, which is linear and uni-
form across multiple services classes and therefore, fulfils the axiomatic requirements de-

scribed above.

For certain scheduling approaches (see [Zha$88])edulabilityis an additional internal re-
source parameter. However, the service classes currently under consideration for IntServ, as
well as the PHBs, which are standardized for DiffServ, heavily rely on rate-based scheduling
semantics. Particularly, for Guaranteed service, each scheduler has to approximate a rate-based
scheduling behaviour. Therefore, it is not needed to explicitly consider schedulability as sepa-

rate resource.

6.2.4 Application of Linear Cost-based Price Calculation to Optimal Pricing

In this section, the calculation model is applied to an optimality approach for profit-oriented
price calculation. The authors of [WPS97] present a very general and complete model for opti-
mal pricing of multiple guaranteed service classes under consideration of price-demand func-
tions. It is correctly pointed out there that analytically solving the whole model is
mathematically intractable, therefore an approximating procedure is described to carry out
planning and calculation. While other research approaches often deal with optimal pricing in a

sense of optimal welfare, this pricing scheme is targeted to maximize profit for the provider.
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However, as noted in [WPS97], a similar model can be developed to maximize other objectives.
By slightly modifying and applying linear calculation for IntServ service classes, the model can
be simplified and, at the same time, enhanced in several ways:

» Instead of using very general assumptions about admission control and the properties of
service classes, the cost-based calculation model below specifically considers the definition
of actual service classes by using resource-based parameters and linear calculation.
Thereby, the applicability to multiple real service classes is given.

* In [WPS97], communication services and demand patterns are modelled by the notion of
calls, i.e., call probability, call duration, static QoS, etc. While being applicable to ATM
service classes, this model does not fit well with the IntServ framework. Instead, the linear
cost-based model only uses aggregated demand functions for each time period, i.e., no
assumption about specific flows is needed, but only an overall estimation of aggregated
demand per network resource, depending on the price-vector. By that, the new model
implicitly encompasses the above details and also covers dynamic QoS.

* As mentioned in the article, [WPS97] does not cover interdependency among service
classes and furthermore implicitly assumes a discrete set of service classes. In the cost-
based model, the fact that each service class offers a vector-space of resource quantities is
taken into account, although the estimation of demand interdependency between resources

remains as an open issue.

In accordance with Section 6.2.1, the price function (6) is extended by a time parameter. The
core formula which shows the total revenue that is to be optimized can then be specified and

looks as follows (roughly using the notation of [WPS97]):

b 0
[0 5 ax(®) Dkt ot -K(C) (10)
o X=T,CRB O

under constraints
V1(t) < Crer tO[0,Th (12)
Ye(t) < Crer—Yr(t) to[0TH (12)
Yr(t) < Crcr—Y1(t) t0[0ThH (13)
yg(t) <Cg tO[0,Th (14)
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Variables used:

ax(t) price coefficient for each unit of; at timet, corresponding to (6)
yx(t) aggregated demand fqy at timet, for price vector &r,ac,ar.ag)
Tb duration of business cycle

Crcr total available service rate (reservable bandwidth)

Cg total available buffer space

K(C) amortization of capital investment over one business cycle

Constraints (11), (12) and (13) denote the fact that the amount of service rate reserved as token
rate cannot be reused, whereas service rate used as clearing rate can be used simultaneously as
residual rate. Constraint (14) states that buffer space cannot be reused. Please note that this is

not in contradiction with multiple Controlled Load flows borrowing resources from each other.

Comparing (10) with the corresponding formula in [WPS97] shows that using virtual rate
parameters and considering only aggregated demand significantly reduces the mathematical
complexity but nevertheless enhances the level of detail by considering real resources instead
of a general admission control expression. In general, this approach should be very useful to ap-

ply theoretic results in a real environment.

6.2.5 Economic Aspects of Guaranteed Service

Linear cost-based calculation is introduced as an approach to model resource and price calcula-
tion for single IntServ routers and attached links. In this section, it is shown how this modelling
technique can be exploited to further analyse certain economic aspects of the Guaranteed serv-
ice class. This also demonstrates how linear calculation can be extended to eventually cover a
whole network domain consisting of multiple IntServ routers and respective transmission lines,
and to analyse economic end-to-end aspects. A brief overview of the Guaranteed service class

is given in Appendix D.

For this investigation, a general charging model is assumed where charges from each router
are accumulated and shared between sender(s) and receiver(s). The values of price coefficients
ay used in this section are not assumed to be globally uniform, instead they are local to each

router. The service rateis assumed to always be larger than tokenrrate
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Token Rate vs. Clearing Rate

In [DVR98], it is pointed out that a receiver might choose to lower its service rate requirements
R by increasing the average data ratehen requesting Guaranteed service. Siqgethe dif-
ference ofR andr, can be used for providing Guaranteed Rate service and Controlled Load
service, a pricing scheme should give the right incentives for users to ch@s®rding to

their average data rate. Using linear calculation, this can be achieved by setting an appropriate
higher price forgr thange. The economically optimal price relation betwesh gc anddg is

part of the optimization problem from Section 6.2.4.

Error Terms

TheC andD error terms, which are part of Guaranteed service negotiation, partially determine
the service rate that must be requested by a receiver to guarantee a specific delay bound. In gen-
eral, from an economic point of view, higher incomi@gandD values lower the service qual-

ity, because a largdR is needed to achieve the same delay. The economic impact should be
considered, for example, if an advanced QoS-oriented routing algorithm takes into account
charges, it might be very important to have a quantitatively precise expression for this service
degradation in order to value and compare different paths. The increase in service rate intro-
duced by additional error term€4,D,) can be expressed as follows (see page 87 for defini-

tions):

jetx = 2=M (15)

mic Dy PXEMHCHG px+ M+ C _Ca(X+Q-D)+Dy(pX+ M+ C)
a(Ca a)_X+Q—(D+ Da)_ X+Q-D  (X+Q-D-D_)(X+Q-D)

(16)

Becausdr >, Ry is part of they resource, the cost increase at each router is given by:
P(CaDa) = ac [Ry(C5,D3) (7)

Not considering the economic impact of error terms could lead to a situation where a service
provider exports higlC andD values in order to cause a higher reservationRointernally,
however, the redl andD values can be used and a smaller reservatioRfemeeded to guar-

antee the end-to-end delay.

Slack Term

As denoted in the relevant research and standardization documents about Guaranteed service,

e.g. [WC97,SPG97,GGB5], the slack term paramet&in a service request is intended to
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flexibly relax the resource requirements at intermediate routers. Among other scenarios, this
parameter can be used by first calculating the necessary serviéedapending on the desired
end-to-end dela. Then, a higher service rafd is requested and the resulting difference of
end-to-end delay is set as slack term parameter. The slack term can be ‘consumed’ by an inter-
mediate router for reducing both delay and rate requirements, depending on the type of schedu-
ler. In case rate requirements are reduced, a bottleneck router installs a smaller serRte rate
according to the formula given in [SPG97]* and adjusts the reservation message, such that up-
stream routers only instait as well. The effects of using the slack term in such a way can best
be explained by rewriting the delay formula for Guaranteed service [SPG97] as:
_ =M Tp-minR) _wm_ ¢
min(R) dp-r) min(R) &,

for n routers, withR; andC; denoting the local service rate and error term at each router.

G
ﬁi + Dot (18)

All downstream routers after a bottleneck router install the requested servidd'rathich
generates an economically unfortunate situation for the receiver. Considering (18), the smallest
service rate installed along the path (in this cBE)eietermines the pure end-to-end queuing de-
lay. Having installecR” at a number of routers only locally affects the additive delay compo-
nent resulting from the local rate dependent error t€rithereby, usability of the slack term
in such a scenario largely depends on
 the relation of delay introduced I&/to pure queuing delay, and
 the relation of total upstream to total downstream amou@t of

as given at the bottleneck router.

Effectively, the receiver pays for a higher service rate at some routers, but does not perceive

the total utility from it. The costs can be expressed as follows:

cosgad(Rh,R) =ac [(R" - R) at each router installing" (19)

On the other hand, prices are lower at routers instafing

sav%|ack(R',R) =ac UR- R)) at each router installing' (20)

When different service rates are installed at routers due to the basic slack term mechanism, it is

very likely that costs exceed savings, because the resulting increase in pure queuing delay can

*  Note that the slack term formula on page 13 of [SPG97] should rgggk (b_RM)((’;_ :"“‘) M ;Cw“ s, + (b_RMz(pp_j") M J'RC“’“
out\F ™ out in\F ™ in
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only be recovered under pathological error term settings. Again, this economic impact should

be considered when installing reservations using the slack term parameter.

Given (18), some suggestions can be made to extend the slack term mechanism. Often it
could be advantageous to only locally install a lower rate and fonmlridstead ofR to up-
stream routers. This would increase the maximum reduction of service rate and generate an
even larger range of adaptability. In this case, the global minirR{R,;,) has to be transmit-
ted in addition to the currently defined parameters and the slack term formula of [SPG97] has
to be changed to:

< 4 (b-M(P-Riew M+Cioi=Ci M+C; . (b=M)(P—Ryi) M+ Ci
out Rnev\ﬂp_ I‘) Rout Ri : Rmin(p - I’) Rin

with R, = Mmin(R,,;,R;) andR;, C; denoting the local service rate and error term.  (21)

The remaining variables have the same meaning as in [SPG97]. When the reservation is for-

warded R, is set to the value &qy,

This idea can even be extended as follows. A router using the slack term sends a confirma-
tion message containing its lod@landD terms as well as its local service rate back to the re-
ceiver. Given this information, a receiver can optimfibwhen refreshing its reservation. In
case of global price information, further optimization would be possible by setting a cBPtain
at ‘cheap’ links while settin@%I at ‘expensive’ ones, e.g. a transatlantic link. In theory, this cre-
ates a regular linear optimization problem, but even then, the necessary information exchange
seems hardly be feasible with the current design of RSVP and also somewhat violates the Edge

Pricing paradigm.

6.2.6 A Formal Model of Distributed Cost-based Charging

This section deals with the issue of extending cost-based price calculation to a distributed envi-
ronment. In order to explain how charges and payments are calculated in a distributed manner,
a formal definition of the necessary information exchange is given. Then, itis shown by solving
an appropriate equation that all payments lead to exact revenue of the calculated local cost for
each hop. For the purpose of explanation, the model is initially restricted to only one sender. An
important issue is how to represent prices and payments. In this model, a prjmécis per re-

source unitin this context, the termesource units largely dependent on the representation of

the communication service class, e.g., if the service class offers the parabsatdveidthand
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delay, the price depends on these parameters. The parameters might be mapped to uniform in-
ternal parameters as shown in Section 6.2.3. Additionally, the total price for a communication
session depends on the duration of this session. In reality, a payment can be represented, for ex-
ample, as a direct exchange of virtual money or a credit or debit to an account. Below, a formal
model of a network, prices and payments, as well as their allocation to a sender and multiple re-

ceivers, is presented.

Leti =0,... n,n+1,..n+m be a number of nodes in a multicast session, where
i = 0 denotes the sender.
i = 1,...ndenote the intermediate nodes, and

I =n+1,...n+mdenote the receivers. (22)

Letm(j) be amulticast functiorthat denotes the previous hop for a npde
m: {1,...n+m} - {0,...,n} with
m(j) = O for at least on¢ [(1{ 1, .., n}
m(i) ziforalli O0{1,..,n}
m(i) =j 0 m(j) #i (23)
To make the charging procedure as transparent as possible for the sender and all receivers, the
model is based on@tal charge which is eventually known to all end systems. Ggtdenote
the total charge that has to be paid (by whoever) to conneci tuojfine multicast tree. In order
to recover this amount, a node splits it (according to a local policy) into multiple fraatjgns
for each outgoing interface where a service is established. A local lprfjctepending on the

providers local pricing scheme is added.

Letc;; denote a fraction of; for m(j) =i, with % Cmj = Ci (24)
J»m(]

=i

LetL,; denote the local price for a request on the outgoing interfgcenfp) =i. The total

charges for a hop is then calculated as follows:

G = Cmj)j + Lm(), (25)
Between two adjacent hops, a charge is paid in the upstream direction. This payment is eventu-
ally recovered from the receiver end systems. The paid charge consists of a fraction of the
charge until the current hop and the local price at the current hofrIBgtlenote such a receiv-

er payment from a downstream hopo an upstream hop Letr be thefraction the sender is

willing to pay, so the receiver has to pay a fraction of 1-
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RR;j = (Cmi)i + L)) X (2 -1) =G 1 -r) for m(i) =] (26)

Additionally, there are downstream payments that are eventually recovered from the sender.
The charge consists of the previously paid downstream payments and the sender fraction of the
local price at the current hop. Let SRlenote a sender payment from an upstreamjHopa

downstream hop

SH; = SK i+ Ly X1 (27)

k, = k, m(k =i
Finally, letE; denote the earnings at noddhese are defined as the difference between the in-

coming and outgoing payments and it is shown that they are equal to the sum of local prices:

E = % RP;+SP |- SP, , —RP for m() =i (28)
m =]

k, m(k) = j

It follows that:

E = (c +L )x(1-r)+ SP.  + L Xr
i k,m%:j mek).k T Lme.k ol L m%:j m(K) K
- SP, —(Cjx(1-r))
k, m(k) =j
= c x(1-r)+ L Xx(1-r)+ L Xr
k,m%:j m(k),k . m%zj m(Kk),k . m%:j m(K) K
—(C;x(1-r))

(Cjx(1-r))+ . mga ] jLm(k),k—(Cj x(1-r))

L (29)
K mga - Mok

It can be concluded that charging mechanisms, which adhere to this model, fulfil the minimal

requirements of allowing for cost-based price calculation.

If receivers request shared reservations that apply to at least one common sender, they are
merged on shared links. In that case, each sender’s fraction must not directly be applied to the
single charge on a shared link, otherwise the distribution of payments does not come out cor-
rectly. If for example two senders independently specify to cover half of the charge, the use of
shared reservation style would cause them to effectively pay for the total cost of a shared link,

whereas a receiver might get away for free. The following definition is used to handle this case.

Let Lg;; denote the local price for a fixed filter reservation regarding sead&he price

FFPg; ; for a fixed filter reservations can then be expressed as:
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FFPSJ,]' = (CI ’J' + LS,i,j) X (1— I’) (30)

Let SFR; = maxns(FFPg; ;) denote the price for a single shared reservation style fromi hop
to hopj. Let rg denote the charging fraction for sendeihenSF denotes the set of senders
merged by a shared reservation style, the sender payment can be expressed as:

SRyi= SR, + SFPR | xrx FFPs ik a1

=i k, m =i Z FFPS’ i, k
s, sl SF

The definition ofRF ; has to be modified accordingly. Similar results can be found in [Her96].

6.3 Charging Mechanisms for RSVP

A fundamental aspect for the charging mechanisms presented in this section is the adherence to
the Edge Pricing paradigm [SCEH96], which is briefly mentioned in Section 4.4.3. Corre-
sponding to this paradigm, a user is charged only by the first network provider along the data
path. This charge includes all expenses that subsequently might have to be paid by the provider
when data is forwarded to another provider. While in principle a market participant may have
business relations to multiple other participants, every single service instantiation is requested
from and charged by exactly one peer participant. Edge Pricing is not necessarily needed to ac-
complish the requirements presented in Section 6.1, but it is an appealing paradigm that helps
meeting demands like transparency, flexibility, convenience and legal security. Edge Pricing
reduces the problem of multi-lateral contracts to a sequence of bilateral contracts and therefore
hides much of the complexity which is introduced by the existence of multiple service providers

and heterogeneous networks in the communication path.

While the charging mechanisms below are described in terms of applying them at each hop
on the data path, it should be easy to see that this is not a necessary requirement. It is possible
to partially deploy such mechanisms in the Internet, or exert them only at inter-domain bound-
aries. This is an immediate implication of adhering to the Edge Pricing paradigm. In terms of
the QoS signalling architecture that is presented in Section 4.2, these mechanisms are carried

out between service enablers.

6.3.1 Overview

As mentioned in Section 2.2.2, it is important to combine the design of networking technology

with sound business models. This in turn requires appropriate charging interfaces. It is general-
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ly important to consider two technical aspects of a charging architecture for a signalling inter-
face. First, other than authentication, all objects of charging information should be considered
optional in order to limit computational complexity for the default case. Second, it is important
that charging-related handling of such service requests can be delegated to another entity denot-
ed agpolicy server Recapitulating the conceptual architecture presented in Section 4.2, this es-
tablishes a two-tier architecture, consisting of service enablers and policy servers. This is quite
similar to the architecture developed in the IETF RAP working group [YPGOO], which de-
scribes the distinction betweerPalicy Decision Poin{PDP) and @&olicy Enforcement Point

(PEP). The PDP is analogous to the policy server and the PEP can be thought of as being the
service enabler. One of the main advantages of such a decoupled architecture is that the filtering
process of incoming service requests is transparent for the outside, because service requests can
be redirected to (or intercepted by) the service enabler, or a separate policy server. Each of these
components can delegate decisions or instruct another component with the results of a local de-
cision. As long as the service interface is not affected by such internal decisions, any combina-
tion can be employed, which creates the highest flexibility, for example, to choose whether

pricing and charging information is tied with service information or transmitted separately.

If prices for communication services are fixed per amount of resource consumption, it might
not be necessary to include any charging information into signalling requests, other than au-
thentication information of the originator. However, the option of charging information includ-
ed in RSVP messages as presented in [KSWS98a] and [FSVP98] allows for the provision of
additional semantics at a service interface. First, volatile pricing can be used to carry out auc-
tions [RFS99] for resource access and second, a call-by-call service can easily be offered to
end-users being connected to multiple service providers, especially, if electronic payments can
be efficiently included into such signalling messages. If charging information and service re-
guests are decoupled at the service interface, they have to be synchronized as belonging togeth-
er later in the transmission path. Such synchronization creates additional overhead, which
especially might impact the setup latency of per-flow requests. As discussed in Section 2.3.1, it
is preferable to optimize the system for this most challenging case, therefore it seems reasona-
ble to allow for the optional inclusion of charging information into service requests. Effective-

ly, the policy-relevant parts of RSVP messages then carry the following information:

FLOWSPEC = <service description>
POLICY_DATA = <authentication> [<tariff>] [<payment>]
<tariff> ‘= <metering method> <price>
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The field <service description> carries the selected service class out of a set as presented in
Section 4.3. Authentication can be carried out as proposed in TO8P The field <tariff> op-
tionally refers to an entry in a tariff structure that is otherwise announced or it directly includes
the relevant information about metering and pricing. For metering, several alternatives are pos-
sible yet not exhaustive:
* metering by service request (as e.g. in [KSWS98a] and [FSVP98])
* metering by counting (aggregated) packets (e.g. [KS97], [Bri99], or [BBCW94])

* metering by counting special indications (such as ECN marks [RF99])

Similarly, <price> either refers to any externally available pricing table or directly includes
price information. The field <payment> can be included in case of volatile per-request pricing
[RFS99] or call-by-call services, if the originator of the request must indicate its willingness to

pay a certain price.

The definition of charging information that is exchanged asynchronously to service invoca-
tions is beyond the scope of this work, therefore the following mechanisms focus on the poten-
tial of embedded information, which is transmitted as part of RSVP service requests. The
mechanisms cover both unicast and multicast transmission, as well as sharing of transmission
costs between senders and receivers. The RSVP specification already incorporates hooks for
policy-related actions, namely the exchange of POLICY_DATA objects. Here, the proposed
definition of certain protocol elements is described, along with their semantics and the mecha-
nisms how to use them. These can be only rough definitions for a variety of reasons. The defi-
nition of a pricing function is a local matter of each service provider and probably depends on
the service class that is actually chosen to transmit data. Furthermore, refinements to the proto-
col elements can be always introduced upon agreement between the operators of two adjacent

service enablers.

6.3.2 Protocol Elements

The protocol information for charging is defined according to the general RSVP policy exten-
sions proposed in [Her00a], but the charging mechanisms can as well be realized using a differ-
ent general framework. According to [HerOOa], a POLICY_DATA object contains one or
multiple policy elementsvhich contents are not further defined in the referred proposal. There-

fore, two policy elements for charging are described below. The goal is to define a small but ex-
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pressive set of policy elements that can be used to exchange charging information for a variety

of calculation models.

The basic elements of these charging mechanisms are giverDioyvastream Charging
Policy Element (DCPEand anUpstream Charging Policy Element (UCPHhe DCPE is sent
downstream within the POLICY_DATA object of PATH messages. The fields in this structure
are used to express a provider’s price as well as a sender’s payment information. Intermediate
service enablers consider this information as input to their local price calculation and update or
replace the policy elements by their own data. Upon arrival of a PATH message at the receiv-
er's end system, the total price has been manifested and the receiver decides whether it is will-
ing to pay this price to request a service. If yes, it issues a RESV message containing an
appropriate UCPE containing its payment information. The same mechanism is applied at in-
termediate nodes, such that in general the arrival of a RESV message, which contains an appro-
priate UCPE, indicates the downstream hop’s consent to be charged for a service request. Note
however, that these mechanisms are not necessarily invoked synchronously at each hop along
an end-to-end path for each service request. It is well feasible that relatively short-lived flow re-

guests are mapped onto longer-lived trunk requests as described in Section 4.5.

With respect to the general form of policy-relevant information as presented in the previous
section, the protocol elements refine the fields <price> and <payment>. The details of authen-
tication are omitted here, because it is assumed that the standard security and identity mecha-
nisms of RSVP, as described in [BLT00] and [YYW®], can be used or appropriately extended.

Metering is assumed to be done per service request.

Downstream Charging Policy Element

TheDownstream Charging Policy Element (DCHE&Yefined as follows:

DCPE ::= <current price>,
<max price>,
<duration of price validity>,
[ <sender payment> ]

<sender payment> ::= <sender fraction>,
[ <max flowspec> ],
[ <limit per receiver> ],
[ <limit per branch> ],
[ <max number of branches> ],
[ <max number of hops> |
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The field <current price> contains a representation of the currently valid price for requesting
the service. Since this information might be volatile, it is bounded by <max price>. The prices
in a communication network are expected to change over time, depending on the calculations
of network providers, both in the short term (due to congestion situations) and in the long term.
The <duration of price validity> field indicates how long the upstream hop assumes the current
and maximum price information to remain stable. It is important to notice that a service enabler
can hardly be held liable for this price information. Even if providers could be forced to charge
the announced price, a service enabler might be implemented to simulate an admission control
failure in such a case. The validity of price announcements will be largely determined by mar-

ket forces and customers’ sensitivity.

A sender can indicate its consent to cover a fraction of the total transmission charge. The
<sender fraction> field allows the sender to specify the fraction of charge it accepts to pay. In
order to protect the sender from arbitrarily high costs, it is necessary to restrict the maximum
charging amount independently of any underlying restriction in distribution of data. A first ap-
proach would allow a sender to specify a maximum charging amount. However, there are ob-
stacles to this procedure. Consider the case where a sender is interested in reaching a large user
population with its data flow and sets a very high maximum amount. Each provider is inde-
pendent in setting its prices, so if any provider had knowledge about a receiver that is connected
directly to its network, it could set its price high enough to let the total sum be just below the
maximum amount, but still be much higher than its normal price, hence, prohibit any other re-
ceiver to receive the data free of charge. The solution is to allow for the sender to give a fine-
grained specification of its interests. Rather than specifying the maximum charging amount, the
sender specifies a maximum per receiver, i.e., per complete path in the multicast tree in
<limit per receiver>. Additionally, a sender can set an upper level of charges per single link
with <limit per branch> and roughly restrict the geographic distribution of the sponsored flow
by setting <max number of branches> and <max number of hops>. Together, the two ‘branch’-
fields can be used to restrict the sender’s total charging amount per hop to the product of both
values. Additionally, both fields together limit the overall number of sponsored nodes and end-
systems. The total amount of charges can be calculated by multiplying the total number of end-
systems with <limit per receiver>. The maximum QoS can be determined by the field <max
flowspec>. If the <max number of hops> field is set in a DCPE, it must be decremented before

it is forwarded within an outgoing DCPE. The other limitation fields must not be changed. Itis
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important to notice that service enablers must be discouraged from changing those fields, if it
is not harmful for the forging party in the first place. Therefore, it is necessary that forgery can
be detected through end-to-end control. Of course, there is a problem with processing these
fields during the advertisement phase, while no actual service has been established. Neverthe-
less, a mechanism to limit the sender’s expenditures is deemed useful to increase an end-sys-

tem’s control over the charging process it is subject to.

Upstream Charging Policy Element

TheUpstream Charging Policy Element (UCPiE)defined as follows:
UCPE ::= [ <credit> ]

[ <sender debit> ]

[ <payment> ]
In the simplest case, the UCPE information can be omitted completely, because emitting a
RESV message expresses a next hop’s consent to be charged for the transmission service. How-
ever, in certain circumstances, it might be useful to transmit additional information. The <cred-
it> field contains the actual charge, which the requesting node is actually willing to pay for this
service. In case of fixed prices, this field mainly serves as control field for the requesting node
to explicitly confirm the announced price. In case of service requests between intermediate
nodes, the field <sender debit> contains the amount of money that the next hop expects to re-
ceive from the sender payment. The <payment> field contains additional information about the
payment, e.g., the selection of an account, the identification of a prepaid billing card or an elec-
tronic payment. The maximum duration of validity for such a request is implicitly defined by

the refresh timer value of the RESV message that carries the UCPE.

6.3.3 Application to Cost-based Price Calculation

Given the calculation model from Section 6.2.3, the price representation for cost-based price
calculation can be formulated by a single homogeneous price function representing all service
classes considered in the calculation model:

price := price for g

T,
price for q C,
price for q R
price for q B

In order to carry out distributed cost-based price calculation as defined in Section 6.2.6, pric-

es can be accumulated at each hop and because the cost-based price function is linear, upstream

102



QoS Signalling and Charging in a Multi-service Internet using RSVP

prices can easily be split at multicast branches. Below, it is explained how to carry out strict dis-
tributed cost-based price calculation employing these charging mechanisms. When describing
the operation at a certain hop, the following indices are used:

* i denotes the previous hop

* | denotes the current hop

» kdenotes the next hop

The local price.  for connecting the next hop is locally configured. The incoming DCPE car-
ries the informatiorC; in <current price>. The fractioq \ of C; (24) is determined by the local

price calculation module. The sum of the local price and the fraction of the incoming price (25)
is placed into the <current price> field of the outgoing DCPE. When receiving a UCPE, the re-
ceiver paymenRP; is calculated by multiplying the price with the amount of resources and
duration of service invocation (set indirectly through the RSVP refresh period). The sender pay-
mentSH , can be found in the field <sender debit> in an incoming UCPE. The upstream sender
paymentSH ; is calculated according to (27) or (31) respectively when transmitting the UCPE
as part of a RESV message. Note that the <sender debit> field thereby automatically accumu-

lates the sender payment when travelling upstream.

6.4 Cost-based Price Calculation for Advance Service Requests

It turns out that taking into account charging and pricing for service requests actually helps de-
fining and implementing sensible services. In this section, an advance service specification is

described, which employs pricing to generalize the technical service interface.

A number of approaches to specify service requests in advance have been published so far.
Many of these concentrate on the issue of enabling advance service in the first place and signal-
ling appropriate requests between network nodes. The fundamental problem of resource alloca-
tion in advance is depicted in Figure 17. Given a certain amount of future requests and no

limitation on service duration, is it possible to schedule incoming service requests?

The work presented in [GSW99] indicates that occasionally preempting existing service in-
vocations in favour of advance requests can increase overall resource utilization. In [SP97], an
agent-based reservation system is presented, in which immediate and advance reservations are
handled differently. Advance reservations always have to specify a finite duration and are never

preemptable. Immediate reservations never specify a duration and are always preemptable. The
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Figure 17: Scheduling of Advance Reservations

system considers certain time horizons, calmkahead timendbookahead timeto decide

about acceptance of immediate and advance reservations. However, this service model intro-
duces unnecessary limitations, which are of questionable virtue. For example, the authors note
that selection of the time horizons is crucial for useful operation and certain requests are inher-
ently precluded. On the other hand, users are expected to pay for service requests, so the ques-
tion remains why certain requests (which are complicated for the system to handle) should be
completely prohibited, instead of just setting appropriately high charges. Different handling of
advance and immediate requests is introduced as an architectural benefit, however, it only adds
complexity to the system. The system is further described, evaluated and implementation de-

tails for admission control are given in [SNNP99].

A different approach [FGV95] suggests that advance reservations also specify a service du-
ration, but immediate reservations are not preemptable. Admission control for reservation re-
guests in advance is done by only considering other advance reservations. Advance and
immediate reservations are isolated by dynamically partitioning the network resources. Be-
cause the partition for advance reservations has to be large enough to admit all requested future
reservations, this might lead to a situation, in which a significant amount of resources cannot be

assigned to immediate requests, yet being unused.

In [BLB98], an architecture for realizing advance reservations in an IP/RSVP-based network
is suggested and discussed. For the RSVP policy framework, the relevant proposed standardi-
zation document [Her00b] defines priority levels for service preemption. However, no back-

ground on advance reservation and the task of assigning priority levels is given. Further details
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on the exact signalling procedures for enabling advance reservations on top of RSVP can be
found in [SBK98]. Other approaches which are not discussed here for reasons of brevity in-
clude [Rei94,DKPS95]

Basically all previously suggested approaches conceive the fundamental admission control
problem associated with service requests in advance. However, the attempts to deal with and
completely solve this problem by technical means usually fall short, because of the limited
scope of such approaches. One particular problem is given by the strict conceptual separation
of immediate and advance reservations and the requirement to specify the duration of an ad-

vance reservation. As a consequence, this irrevocably limits the service time.

Realizing these problems, an integrated and generic service definition for immediate and ad-
vance invocations is presented below, in which a part of the admission control problem is del-
egated to a policy module and integrated with price calculation. This service definition does not
fundamentally deviate from other suggestions, but the model is significantly less complex, yet
more general, in that functionality at the resource layer is restricted to essential aspects, thus be-

ing very simple.

6.4.1 Network Service

The goal is to specify a uniform service description that covers both immediate and advance
service requests. The service description should impose as few restrictions as possible on po-
tential service requests. On the other hand, each service enabler must be able to determine

whether a pending request can be accepted without violating guarantees given to other requests.

When accepting an advance service request, therdgddaback timethe time frame be-

tween service request and service invocation. The fundamental problem when accepting ad-
vance requests can be formulated as follows: During the hold-back time, how can the allocated
resources be used for other requests? If other requests arrive, which specify a service duration,
it can be determined whether these are schedulable. A more difficult situation is given with re-
guests which do not specify a fixed service duration. Three basic solutions exist for this prob-
lem. The first is that each service request, including immediate ones, also specifies a duration
and is only accepted if resource availability can be guaranteed for the whole duration. The sec-
ond possibility is to preempt service requests when their resources are needed for an advance
request. As a third alternative, resources could be partitioned for immediate and advance serv-

ice, such that no preemption is needed and only advance requests have to specify a duration. It
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can be concluded from previous research efforts (see above) that at least one of these solutions
has to be adopted by the network. However, there is no need to technically restrict the system

to either one.

Partitioning of resources should be avoided if possible, because it prohibits resource sharing.
Even in case of dynamic partitioning [FGV95], future advance requests block resources for oth-
er immediate requests. Declaring the duration of service invocations might not be possible and
acceptable for all users and usage scenarios. On the other hand, the possibility of preemption
might also not be acceptable under all circumstances. Therefore, a new network service is spec-
ified here, that does not rely on partitioning and integrates both preemption and duration decla-
ration in a general way. Nevertheless, the potential for precisely predicting service guarantees
Is retained. This goal is achieved by distinguishing between duration of non-preemptable and

actual service lifetime.

Service Definition

A service requedR is described at request time by the 4-tuplggv) as follows:
r: time of service request
S: begin of service
e. end of non-preemptable service

v: amount of resource capacity

That s, at timea, a user requests an advance service invocation of capasiigrting at times,

which is guaranteed not to be preempted until ten€his description does not include the ac-
tual service duration, which can be arbitrary. The differenceanfdr expresses the hold-back
time for an advance request. The key supplement to this service description is the following

specification: At time, each service request is in a sgtg, calledpreemption priority with

11 s<t<e
p(t) = O (32)
o else

If p(t) = 1, then the reservation request is guaranteed not to be preempted. A service invocation
Is assigned a preemption priority of 1 for the time that is specified in the service request. At the
end of this duration the service is not automatically torn down, instead it is just considered pre-
emptable for the sake of scheduling other non-preemptable requests. Employing this additional
state description, the flexibility for requesting and managing advance service requests is ex-

tended, because even if a duration has to be specified for non-preemptable requests, this does
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not necessarily result in a fixed a-priori service time. This service definition is graphically de-
picted in Figure 18. Some examples are given to demonstrate the flexibility of this service def-
inition, each requesting an arbitrary amount of capacity

« immediate and preemptable request at tignB(tq,to,to,v)

« advance request at timgfor timet; requesting a minimum service tirhdR(t,t;,t;+,v)

« immediate request at timgrequesting a minimum service tirkeR(tg,to,to+k,v)

resources

A

i
|
' holdback | non-preempable |, preemptable

—— preemption priority

Figure 18: Advance Service Definition

Using this service definition, each possible instantiation of immediate and advance requests
combined with the choice of preemption priority can be requested. The service definition is in-
dependent of the actual duration of service, it only determines the amount of time when a serv-
ice invocation is not to be interrupted. It turns out that considering non-preemptable invocation
time is sufficient to define a homogeneous service description for immediate and advance re-

quests.

Admission Control

In order to provide service guarantees for blocking probability and preemption, an admission
control algorithm is needed. For this algorithm, only non-preemptable service requests have to
be considered at each time, because all other requests can be preempted. In this sense, the total

load at time is defined as follows:
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n
loadt) = % v; Lpi(t) for p;,v; from all service requests;, i = 1,...n (33)
i=1
Defining C as total capacity ang as current time, a set of requeRs(i = 1,...n), is schedula-
ble, iff

loadt) <C forallt, t>t, (34)

Next, it is shown intuitively how to use this definition as an admission control condition and
then its usage is formalized. Consider the situation shown in Figure 19. The dotted line denotes
the total available capacity of resources and the long-dashed line depicts the currégtTimee
dashed line represents existing and requested non-preemptable requests. tjttiraenew
advance requests arrive, one of which is schedulable while the other one is not. For an immedi-
ate request, non-preemption can be guaranteed for a certain amount of time. Preemptable re-
guests are not shown in this figure, because they do not influence the calculation of overall

schedulability of non-preemptable requests.

resources _
A | capacityC
| unsuccessful
advance request successful
r ="
| | | | advance request
| I
successful - L — — —
immediate request| | |
F— - | loadt)
| L — — — —
I I ;
I
to time

Figure 19: Existing and New Advance Requests

The admission control condition can be specified as follows:

At time ty, a new service requeRf = (to,S,.6Vy) can be accepted by the system, iff

loadf) +v,<C forallt,s,<t<e, (35)
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For admission control, it is sufficient to consider those times at which {peldgnges its value.
If these times are denoted with a simple algorithmic description can be given as follows:
decision = Accept
foreach 15,8 y <1 <e
if (load( )tV x)>C
then decision = notAccept
endfor
Note that this admission control condition does not principally differ from those of existing pro-
posal, it just considers a subset of existing requests only. Therefore, proposals to efficiently im-
plement such an admission control algorithm, as for example the work presented in [SNNP99],

can be applied here, as well.

Service Invocation

There are several ways of invoking this service with a signalling protocol. One possibility
would be to use a handshake mechanism:

user - system: REQUESTE(V)

system- user: RESPONSE(,,,)

user - system: CONFIRM{) or REFRAIN

The user requests a certain amount of resources astame the system responds by specifying
the maximum duration this reservation can be guaranteed to be non-preemptable. Then, the user
either confirms requesting the service by choosing an end time or refrains from service invoca-

tion.

However, a handshake mechanism like this inhibits the problem that additional overhead is
needed to keep the decision an atomic one. State information and timers would be needed to de-
tect hanging invocations. Therefore, the following protocol elements can be used to invoke the
reservation service:

user— system: REQUEST(g,V)

system- user: ACCEPT or REJEC&{,,)

When using this service, a user specifies start syend timee and an amount of resources

The system responds by either accepting the request or rejecting it, depending on its current
state. In case the service is rejected, the system announces the currently possible maximum du-
ration for non-preemptable service oniaformationalbasis, i.e., without guarantees. This in-

formation can be used by the end-system to adapt its requirements and issue a new request.
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Additional information might be added in case of service rejection, for example, an alternative
start time. This service invocation model is idempotent and atomic and therefore, significantly
reduces the complexity of protocol implementation. It also nicely integrates with RSVP’s one-

pass mechanism for reserving resources [SB95].

6.4.2 Policy Module

As discussed in the previous sections, there are fundamental conflicts associated with the ad-
mission control problem for advance requests. It seems clear that a general solution to this prob-
lem cannot be found, especially not purely in the resource layer. Therefore, this issue is
approached by delegating the decision about acceptance of advance and preemption of existing
service invocations to a policy module. In general, advance service requests introduce discrim-
ination between usage requests and therefore, a policy module is needed to control, coordinate

and compensate for resource consumption in the first place.

General Aspects

Several constraints can be identified when a policy scheme for advance resource allocation is
being developed. The issue of protocol implementation is discussed at the end of Section 6.4.1.
Using a policy module requires a network node to actually make two decisions atomically (ad-
mission control & policy control) which increases complexity, as discussed in Section 5.3.1.
This overhead is bound, because the service specification employs a very simple invocation

model.

It seems to be an open question whether advance requests should be subject to additional
charges or receive a discount. Advance requests increase complexity in the network, however,
a network provider can extract planning information for the future, which can be economically
useful. To decide whether an advance service request should be given a rebate or charged an ad-
ditional fee largely depends on the ability to adapt a network’s capacity to demand, i.e., the
planning horizon. If a request is received, which allocates resources after a certain point in time
and if the sum of all requests are significant enough to adapt capacity, it is potentially suitable
to grant a discount for this request. However, such a discount is currently beyond the scope of
this model, because many other externalities would have to be considered as well, for example

trust in the user, time of payment, general market developments, etc.

Advance requests and specification of preemptable and non-preemptable service time create

additional means of discrimination between usage requests, therefore, compensation can be de-
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manded from users requesting such features. Therefore, an immediate and preemptable reser-
vation is considered as ‘normal’ and increased fees are due for further service characteristics.
Although preemption is an integral part of the service model, in real operation it can be consid-
ered as an exceptional condition that does not occur regularly, because of careful capacity plan-
ning. Under this assumption, an alternative suggestion for pricing would be the airline model of
overbooking aircraft seats. This could be applied by charging the same price for preemptable
and non-preemptable requests and in case of preemption, a compensation would be paid by the

network provider.

Next, requirements to a pricing model for the basic scheme are formulated, considering the
service definition from Section 6.4.1. The effort of holding an advance request increases with
the amount of time it is booked ahead, because other requests are potentially blocked. Conse-
guently, the charge for a request should positively correlate to its hold-back timeri.eS{m-
ilarly, a positive correlation should apply for the duration of non-preemptable seerg@(d
its price. Such a pricing model additionally serves as barrier against highly problematic re-
guests, without completely prohibiting them in the resource layer. For example, a request for an
infinite duration of non-preemptable service is not excluded in the service definition, but given
a positive correlation, it results in an infinitely high price. As another example, a request in ad-
vance specifying no non-preemptable service duration provides no benefit to the user, but nev-
ertheless requires management effort by the system. Hence, a higher price than for an

immediate request should apply to discourage users from such requests.

The pricing model that is proposed in the following section is mainly intended to provide in-
formation for internal calculation of a network provider. In particular, prices only denote those
parts of the total price which are resource-dependent (see Section 6.2). An additional fixed fee

would cover the fixed costs per flow setup, for example for state maintenance in the system.

Pricing Model

In order to derive prices for service requests, an a-posteriori service description is needed,
which includes an additional parametkrexpressing the actual duration of the service invoca-
tion. The service description for a requésts then given by the 5-tuple 6,ev,d). The price
consists of three components reflecting actual resource usage by reservation and scheduling ef-
fort for advance respectively non-preemptable reservations. Following the justification in
Section 6.2.2, all price components are assumed to be linear in the amount of resources. Con-

sidering the requirements listed in the previous section, the price function looks as follows:
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p(r,s,e v g =a vd+a, Ws-1+a; ¥ {e-9 (36)

The first addition term expresses plain resource consumption during the actual service time and

would in reality probably be refined according to (6) on page 88. The second addition term ac-

counts for the hold-back time of an advance request, and the third addition term includes non-

preemptable service time into price calculation. Note that all addition terms in this formula de-

pend on the amount of resourcethat is being reserved. This is due to the fact that for each

price component the corresponding amount of effort is correlated to the amount of resources.

The coefficientsy, a, andag are subject to economic calculation of a network provider, which

is beyond the scope of this work. The following aspects explain how the above requirements are

fulfilled by this price formula:

» The price positively correlates to the hold-back time and for an infinite request, the price
becomes infinite through the second addition term.

» The price positively correlates to the non-preemptable service time and for an infinite
request, the price becomes infinite through the third addition term.

* A ‘useless’ advance request without any non-preemptable service is still subject to addi-

tional charges through the second addition term.

The basic claim of this work is that the generic service model in combination with this pricing
approach provides a higher flexibility than previous work, yet reasonable control of immediate
and advance reservation requests. The approach essentially precludes infinite service requests
by making them infinitely expensive. Thereby, the fundamental scheduling problem for ad-
vance service requests is partially delegated to self-regulation of the user. If desirable, it could
be combined with a partitioning approach as in [FGV95] in a sense that a (dynamically sized)

partition is priced differently.

6.4.3 Service Extension

In this section, the general applicability of this approach to advance service requests is demon-
strated by extending the service definition and also covering this extended service model by a
modified price calculation. The service extension is done by allowing modification of the non-

preemptable duration of an existing reservation request. In that sense, a modification can be
classified (see Figure 20) by the fact whether the new non-preemptable service duration is com-

pletely covered by the previous selection (case 1) or not (case 2). If yes, no special action has
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to be performed at the resource layer, whereas otherwise admission control has to be executed

on the modified request. However, both cases require activity in the policy module.

original request time

case 1: modified request (no AC) time

case 2: modified request (AC needed) time

AC: admission control

Figure 20: Modification of Advance Reservation Requests

Modified Service Request without Admission Control

As a specific example, consider the option that users are allowed to reduce the amount of non-
preemptable service time by lowering the end time paraneet@nis can formally be reflected
by an additional paramete’

e modified end of a non-preemptable service request, &vithe (37)

In order to cover this extended service by a policy module, the a-posteriori service description
has to be extended, as well. Besides includthimto the service description, the time of this
modification request is important, because the earlier the non-preemptable service time is re-
duced the more benefit (from better scheduling potential) the system has.

m: modification time of a service request (38)

Given the above considerations, the discount for such a modification should depend en both
andm. It should not affect the price components for resource consumption and hold-back time
from (36), but only the surcharge for non-preemption, i.e., the third price component from (36).
A discount formula has to adhere to some other requirements as well:

* if m=r, the discount should cover the whole surcharge

 the discount should never exceed the surcharge

» if m=g, the discount should be zero

* the discount should never fall below zero
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Using (36) as a basis, the discount can be expressed as follows:

discountr, e, €, m) = ag [v (b, (R -T="Du b, %%f% withb, +b,=1 (39
The last factordiscount factoy of this formula determines the discount in relation to the orig-
inal surcharge and consists of two components. The expression multiplgdieyotes the in-
fluence ofwhenthe request is modified, while the expression multipliedpgescribes byrow
muchthe non-preemptable time is reduced. The coefficiependb, allow weighting both as-
pects. The discount factor varies between 0 and 1. This discount formula satisfies all require-
ments listed above. A similar formula can be derived for deferring the start time without

modifying the end time of non-preemptable service.

Modified Service Request with Admission Control

If admission control is needed for a modified service request, it has to be treated differently by
the system. For admission control, the existing request has to be taken into account, such that it
IS not counted twice. Since admission control might fail, it seems most appropriate to consider
this as a new service request. With respect to policy control, this is suitable as well, because the
existing request can be deleted and charged, applying the discount calculation of the previous
section. In case of acceptance, a new price for the modified request can then be calculated from

scratch.

6.4.4 Application of Charging Mechanisms for Advance Service Requests

Both service and charging-related parameters of an advance service invocation have to be ex-
pressed in a signalling protocol. There are two options to include the technical parameters in
RSVP, either by creating separate service classes for which the extended service model is ap-
plied or by allowing the extended model for all service classes. For the first alternative, dedicat-
ed TSPEC and FLOWSPEC objects should be employed to carry the parameters, whereas the
second alternative can be realized by defining a new ADVANCE object for the preemption and

timing values.

The price parameters for advance service requests can be exchanged by DCPE and UCPE
objects as given in Section 6.3.2. The resource compa@idram (36) can be expressed as pre-
sented in Section 6.3.3. The hold-back and non-preemption price comp@geants a; are

needed as additional price parameters. Assuming that the complete price formula (36) is implic-
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itly included in the tariff description or explicitly referred to, the originator of a service request

has all information available to build the appropriate UCPE for its RESV message.

6.5 Auction-based Price Calculation

In this section, the goal is to demonstrate the applicability of the basic RSVP charging mecha-
nisms in the presence of a completely different price calculation scheme, which is given by car-
rying out auctions. In [RFS99], the authors describe a system empl®gitg Auctionsas a
specialized type of Second-Price auctions [Vic61] to sell flow-based network service to clients
in a multi-provider environment. Delta Auctions are characterized by the fact that winner deter-
mination does not take place at a fixed time, but rather continuously. Whenever a new bid ar-
rives, this is compared to existing ones and if it is high enough, the request is admitted. If
necessary, other requests have to be preempted. Since interrupting requests without providing
the opportunity to increase the bid is not very acceptable to customers, a delay phase is suggest-
ed, in which the originator of a request that is about to be interrupted can increase its bid. The
actually charged price (clearing price) for service invocations is given by the market clearing
price, i.e., the highest rejected bid. As mentioned in Section 6.2.2, such an auction scheme is
highly complicated, if varying amounts of multiple resources are requested atomically. There-

fore, only the bandwidth resource is considered in [RFS99].

Employing RSVP as signalling protocol and the policy elements in Section 6.3.2 for trans-
mitting price information, Delta Auctions can be carried out as follows. The field
<current price> of the DCPE carries the current clearing price as an information for end-sys-
tems. In <max price> the highest current bid can be stored, if desired. The end-systems request
services and store their bid into <payment>. Because of the periodic exchange of RSVP refresh
messages, this process is carried out continuously. By comparing their own bid with the current
clearing price, end systems can estimate the potential for being preempted and can react by ap-
propriately increasing their bid. Therefore, a dedicated delay period is not necessary before pre-

empting requests.

Such an auction can even be employed for multiple service classes including different QoS
parameters at the same time by internally applying the transformation into uniform resource pa-

rameters as described in Section 6.2.3 to incoming requests and bids.
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6.6 Summary of Results

In this chapter, the results from investigating the commercial aspects of a future multi-service
Internet have been presented. A set of requirements has been identified, which serve as the ba-
sic guidelines to design appropriate technology. Cost-based price calculation is not likely to be
the eventual method to determine actual sales prices, but an important prerequisite to carry out
reasonable short and long time calculation and planning. Therefore, a framework for cost-based
calculation has been developed and exemplified to create a calculation model for the IntServ
service model. This work has been published in [KSWS99a] and [KSWS99b]. A formal model
to perform distributed cost calculation is given. Then, a set of charging mechanisms has been
designed and verified to enable distributed cost-based price calculation. An earlier version of
this work has been published in [KSWS98a]. These mechanisms have been experimentally im-
plemented as a proof of concept [Bet99]. As well, the charging mechanisms are verified to al-
low for charging of advance service requests, based on a respective calculation model. This
model has been published in [KBWS99]. Finally, a completely different calculation approach,
namely auction-based price calculation, is selected, and it is explained how the protocol ele-

ments for charging also allow the employment of this model with RSVP.
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Chapter 7: Conclusion and Outlook

7.1 Summary

The focus of this thesis has been to investigate the issue of QoS signalling and charging for a
future, commercialized multi-service Internet. Particular goals have been set to examine the
suitability of RSVP to serve as a general QoS signalling protocol and to analyse the potential of
cost-based price calculation in multi-service networks. Both the focus and these goals are for-

mulated in Chapter 1 and motivated in Chapter 2.

In Chapter 3, existing work and fundamental knowledge about QoS and economics in pack-
et-switched communication networks is introduced and reviewed. The most prevalent conclu-
sion from existing work is a very high level of uncertainty about the optimal technology and
pricing strategy to deliver end-to-end QoS. This uncertainty is very likely to produce a hetero-
geneous scenario, in which different providers employ different approaches. Nevertheless, in-
ter-operation is a major requirement to deliver end-to-end services. Therefore, it is necessary to
develop sound and flexible signalling interfaces, which do not prohibit heterogeneity, and at the

same time provide for efficient realization of highly demanding services.

Such an architecture is presented in Chapter 4. It begins with a minimal general taxonomy
of signalling architectures. Then, an architecture is proposed, which employs RSVP as its main
signalling interface. Realizing certain shortcomings of the current specification of RSVP, ap-
propriate extensions have been designed, particularly to negotiate trunk service invocations be-
tween subnets while reducing the amount of state information for service advertisements. The
resulting design of RSVP enables to express requests for coarse QoS assurances for traffic ag-
gregates and at the same time, to specify per-flow fine-grained QoS invocations. Such a homo-
geneous design is deemed superior to a situation with multiple protocols, because it eliminates
functional redundancy. The applicability to a wide variety of scenarios is shown by a usage case

evaluation.

The number of opinions about RSVP appears to be in no way related to the amount of actual

knowledge and experimental results about RSVP’s performance. Only one publicly available
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implementation exists so far and, unfortunately, it turns out not to be a well-suited candidate for
further investigations. Therefore, a completely new design for an RSVP engine is described in
Chapter 5. The innovative basic design is accompanied by a number of implemented improve-
ments for the traffic and policy control interfaces and for timer handling. Furthermore, it allows

for an easy introduction of multi-threaded message processing. An implementation has been
created, which is publicly available and can hopefully serve as a basis for further examinations
and developments by other research groups. Extensive performance tests have been carried out
and are reported in this thesis. It turns out that the signalling for more than 50,000 flows can be
handled on standard PC hardware without problems. The experimental results for both fuzzy
timer handling and multi-threaded message processing have revealed limited but existing per-

formance gains, even on a standard workstation.

In Chapter 6, the commercial aspects of a multi-service Internet are investigated. Cost-based
price calculation is deemed an important prerequisite for capacity planning and sales price cal-
culation, therefore a framework and model for cost-based price calculation has been developed.
Afterwards, the design of charging mechanisms for RSVP is explained. These charging mech-
anisms are examined to allow for distributed cost-based price calculation. As another contribu-
tion, a model for integrating advance service requests into a network service by appropriately
pricing them is developed. The charging mechanisms for RSVP have been verified to enable

this as well as an auction-based model to sell QoS-enabled network transmission.

7.2 Conclusion

The major conclusion that can be drawn from the work reported in this thesis is that perform-
ance of RSVP is much better than appears to be generally assumed. Furthermore, although the
experimental results in this thesis have only shown limited additional performance gains, the
suggested improvements for an implementation design promise a significant potential to in-
crease performance of employing RSVP in high-end routers. Through the extensions presented
here, RSVP gains additional flexibility for a large variety of application scenarios. When com-
bined with recent results to design efficient classification algorithms and implement them using
cheap standard hardware, e.g. [DBCP97,WVTP97,KS98], even the realization of the IntServ

QoS model does not seem to be completely out of scope for the middle-term future.

It is certainly feasible to combine RSVP service invocations with the respective charging in-

formation. Furthermore, it is possible to carry out cost-based price calculation for multiple serv-
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ice classes and even distributed cost-based calculation. The advantages of charging and pricing
for service requests can be further exploited by increasing the service interface for network
services to cover advance requests, as well. A simple set of charging mechanisms can be used
to enable plain cost-based price calculation, as well as supporting the generalized service mod-
el. Even a completely different pricing approach, namely auction-based calculation, can be car-

ried out with these mechanisms.

7.3 Outlook

Many issues remain open for further work. There are ongoing efforts to develop QoS technol-
ogies, which incur less effort than flow isolation and flow-based scheduling. The economic as-
pects of providing multi-service network communication are not yet fully understood.
Especially, it is not clear what the precise trade-off is between coarse-grained QoS technology
in combination with overprovisioning on the one hand and the higher effort to realize fine-
grained QoS technology on the other. Charging mechanisms and calculation models as those
presented in this thesis have to be verified in large-scale realistic scenarios. Some more funda-
mental open issues are to design both mechanisms and algorithms for QoS path selection and

routing.

Also, it is a very interesting task to define a reasonable subset of RSVP, which might be de-
ployed sooner than the complete protocol specification. On the other hand, many further mech-
anisms have been specified for RSVP and it would be highly insightful to combine all of them
in one protocol implementation to eventually study the behaviour in a large-scale. Such a test-
bed should include the full gamut of RSVP signalling, COPS policy operations and a combina-

tion of flow-based and DiffServ-based packet forwarding technology.

At Darmstadt University of Technology, further work in this area will be carried out by
means of local, national and international research projects. The goal is to at least partially build
a testbed as outlined above and experimentally study real operation of the Internet’s next gen-
eration protocol suite and gain insight to assess the respective competing proposals. This work
will eventually lead to constructive proposals on how to consolidate the current alternatives for
QoS provision. Additionally, it is intended to actively participate in further activities on the de-

velopment of commercial service interfaces for Internet operation.
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Appendices

Appendix A - RSVP Overview

RSVP has been designed as the Internet’s resource reservation protocol to support the Integrat-
ed Services architecture [BCS94]. The following sections give an overview about its basic op-
erations, excluding the extensions and generalized usage scenarios presented in the main body

of the thesis.

Design Goals, Principles and Properties

By using RSVP, hosts are enabled to request a specific QoS from the network. RSVP propa-
gates the QoS request to all the routers along the path and additionally maintains state informa-
tion within routers and hosts to provide the requested service. It can therefore be regarded as a
state establishment and maintenance prot¢Z8IE*93]. The protocol is placed on top of IP,

thus not requiring any routing mechanisms in RSVP itself, but using unicast and multicast rout-
ing mechanisms provided by the network layer. RSVP does not transfer application data but op-
erates as a control protocol only. From the beginning, the protocol was designegrouii
communicatiomn mind, and so many design objectives are due to situations arising in multicast
data transfers. The designers of RSVP had several goals in mind9ZpE

heterogeneous receivers,

dynamic multicast group membership,

aggregation of resource reservations,

channel changing feature,

adaptation to network dynamics,

tunable and controllable protocol overhead,

N o o M w0 DN P

independence of other architectural components.

RSVP Operation

In RSVP a data stream is modeled as a simplex distribution tree rooted at the source and extend-

ing to all receivers. A source application, of which there can be many, begins participating in a
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group by sending a PATH message containing a flow specification to the destination address,
be it unicast or multicast. The PATH message serves two purposes:

* to distribute the flow specification to the receivers,

» to establish path state in intermediate RSVP agents to be used in propagating reservation

requests along the exact reverse routes.

RSVP does not restrict a source from transmitting data even when no receiver has installed
a reservation to it, however service guarantees are not enforced. Also, there may be some best-
effort receivers, while other receivers may use reserved resources for QoS-enabled transmis-
sion. In case of multicast communication, each receiver must first join the associated multicast
group in order to begin receiving PATH messages, yet this is a function of the multicast routing

protocol and therefore outside the scope of RSVP.

Each receiver may use information from PATH messages and any local knowledge (comput-
ing resources available, application requirements, cost constraints) to determine its QoS re-
guirements. It is then responsible for initiating its own reservation. For that, it generates a
RESV message which travels towards the sender along the reverse path of the RESV message.
This can be done because the intermediate RSVP-capable routers, which reserve network re-
sources along the subnet leading toward the receiver, can use the established PATH state to
propagate the reservation request towards the respective sender(s). Reservation message prop-
agation ends as soon as the reservation encounters an existing distribution tree with sufficient
resources allocated to meet the requested QoS, i.e., until the reservation request can be merged
into an existing reservation. This receiver-initiated reservation style shall enable RSVP to ac-
commodate heterogeneous receiver requirements and by the merging process it is designed to

be scalable for large multicast groups.

The RESV message contains information about the desired QoS and also a filter specifica-

tion. As well, it determines which out of the following three filters styles is applied:

« the fixed filter style, which can address a fixed number of senders and contains a specific
flow specification for each sender,

» the shared explicit style, which can address a fixed number of senders and contains a flow
specification for all of these senders,

 the wildcard filter style, which address all senders for a flow and contains a flow specifica-

tion that is the same for all of these senders.
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On their way to the sender, reservation requests have to pass local admission control tests in the
routers lying on their path. If the reservation is too demanding for one of these intermediate sys-
tems, it is rejected and the receiver that issued the reservation request, obtains an indication of
the reservation failure. This is essentially a one-pass or unilateral method of negotiation of the

service characteristics, however it is enhanced in RSVP by a mechanism called advertising.

The overall approach to QoS negotiation in RSVP is callate-Pass With Advertising
(OPWA) [SB95]. Sources of data flows periodically send so-called advertisement messages
which are actually contained in the PATH messages of the senddDSPECobjects. These
are used to advertise (beforehand) the end-to-end service that would result from any given serv-
ice request. On their way to the (potential) receivers, the advertisement messages accumulate
information about quantities such as latency, bandwidth and hop count in each router on the
path for several categories of service, thereby giving the receivers an idea of what kind of serv-
ice level they can expect. Thereby, the receiver’s task of forming reasonable reservation re-

guests is simplified by the OPWA mechanism.

Since RSVP transmits the PATH and RESV messages periodically, it maintains soft state in
the intermediate nodes. While PATH refreshes serve the automatic adaptation to changes in the
unicast routing or multicast distribution tree and install path state in any new branches of the
tree, RESV refreshes maintain established reservations and incorporate changed receiver reser-
vations, thereby accommodating for dynamic QoS changes. It should be noted that RSVP is no
call setup protocol, because reservation requests are issued in parallel to the data transfer, and

can hence be made at any time during the data transfer phase.

This refresh-based mechanism allows orphaned reservations and state to be automatically
timed out and recovered. However, the proper choice of the refresh interval is still an open is-
sue. This choice affects, of course, the protocol overhead and on the other hand the responsive-

ness of the protocol with respect to network dynamics and changing receiver requirements.

Design Goals Revised
In this section, each of the design goals mentioned at the beginning of this appendix is briefly

discussed with respect to its fulfillment.

Heterogeneous Receivers. Heterogeneous receivers are supported by the receiver-oriented
reservation model and the merging of reservations at the outgoing interface towards the next

hop.
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Dynamic Multicast Group Membership. Dynamic membership in a multicast group is sup-
ported by decoupling resource reservation from connectivity in combination with the soft-state

approach.

Aggregation of Resource Reservations. Aggregation of resource reservations is enabled
both for multiple next hops behind an outgoing interface and for multiple reservations, which

are sent towards common receiver(s) according to the reservation style.

Channel Changing Feature. Channel changing features have not been carried over into the
current specification of RSVP [BZB7].

Adaptation to Network Dynamics. By employing the OPWA model in combination with
the periodic exchange of refresh messages, RSVP is able to adapt to changes in the network,

even if a router is not explicitly informed about such changes.

Tunable and Controllable Protocol Overhead. By changing the period of refresh messag-
es, the robustness in the face of network dynamics can be traded off against the signalling over-

head induced by the protocol.

Independence of Other Architecture Components. Because RSVP can inter-operate with
arbitry routing and traffic control modules, it is independent of other components in an overall

router architecture.
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Appendix B - Relations for RSVP Engine

As mentioned in Section 5.2, the design of state objects within the RSVP engine is based on re-

lations describing protocol and respective state information. The full list of relations is present-

ed below.
SessionKey
Destination Address IP address
Protocol Id 0..G31)
Destination Port 0..%1)
SenderKey
Source Address IP address
Source Port 0..%-1)
InterfaceKey
Local Address IP address

U

Logical Interface Handle O ... $3-1)

HopKey

Interface Address IP address

0..¢%1)

Logical Interface Handl

(D

Session

Session SessionKey
Filter Style {WF,SE,FF}
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Path State
Session Address SessionKey
Sender SenderKey
Previous Hop HopKey
Incoming Interface InterfaceKey
Traffic Specification TSpec
Outgoing Interfaces List of InterfaceKeys

Reservation State

Session Address SessionKey
Next Hop HopKey
Outgoing Interface InterfaceKey
Applicable Senders FilterSpec

Reservation FlowSpec

Outgoing Interface State
Session Address SessionKey
Outgoing Interface InterfaceKey
Applicable Senders FilterSpec
Merged Reservation FlowSpec

Previous Hop State
Session Address SessionKey
Previous Hop HopKey
Forwarded Reservation List of FlowDescriptors
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Appendix C - Class Diagram of Traffic Control Interface

In the following diagram, only the classes and their relationships are shown in Coad/Yourdon

notation in order to clearly distinguish abstract classes. The list of attributes and methods is
omitted for reasons of brevity.

TrafficControl

o

[[ Traﬁic@o'mrmsm;\]

Scheduler

_

- [SchedulerNBMﬂ

[ smedulercscﬁ [ SchedulerHst [ sChedqervc@

Figure 21: Class Diagram of Traffic Control Modules

T

o
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Appendix D - IntServ Guaranteed Service Class

Guaranteed Service (GS) as specified in [SPG97] provides an assured level of bandwidth, a
firm end-to-end delay bound and no queuing loss for data flows that conform to a given traffic
specification (TSpec). The TSpec, which is essentially a double token bucket, i.e. two token
buckets in series, is characterized by the following parameters:
 the token bucket rate(in bytes/s),
» the token bucket depth(in bytes),
» the peak ratp (in bytes/s),
» the maximum packet si2d (in bytes), and
» the minimum policed uniin (in bytes).
Due to its mathematically provable bounds on end-to-end queuing delay it can be considered to
be of high importance for time-critical applications. The mathematics of GS are originally
based on the work of Cruz [Cru95] (refined by others, see e.g. [Bou98]) on arrival and service
curves. In case of the IntServ specifications the arrival curve corresponding to the
TSpec(/b,p,M) is

a(t) = min(M+ pt b+ rt) (40)

whereas the service curve for GS is
c(t) = R(t-— V)+ whereV = %+ D andRis the service rate (41)

assuming that the stability conditidR>r  holds. Here, @handD terms represent the rate-
dependent respectively rate-independent deviations of a packet-based scheduler from the per-
fect fluid model as introduced by ([PG93], [PG94]).

While the TSpec is a double token bucket it is sometimes more intuitive to regard the math-
ematical derivations for a simple token bucket(r,b) (which is equivalent to assuming an in-

finite peak rate). In this simplified case, the end-to-end delay bound is given by

==+=+D (42)

While for the more complex TSpec as arrival curve it applies that

(b-M)(p-R),M+C,

> =
p=Rxr dinax R(p-1 R D )
Rz p=r dmax=MF:C+D
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From the perspective of the receiver desiring a maximum queuing dgjay the rateR (in
bytes/s) that has to be reserved at the routers on the path from the sender follows directly from
(42) and (43):

for the simple token bucké#i(r,b) R = . b +—CD (44)
max
[l —
0 pIO MiM+c
% p—rb N p=R>r
for the completd Spec(b,p,M) R = E Ayt p_— --D (45)
[ M+C
[ R=p=r
0 dmax—D

While the buffer to guarantee a lossless service for the single token bucket is birttpybuff-

er formula for the TSpec’s double token bucket is more complicated:

[
Em+(p_R)(b_M)+C+RD p2R2r,9+DSb_M
g p—r R p—r
0 C . 0 C b—-M
B_E b+rER+DD R+D>p—r (46)
[
é M+p%+DE R>p>r

To illustrate the meaning of th@ andD terms, one can refer to their values in case of a PGPS
(Packetized General Processor Sharing) scheduler [PG93], because they also apply to many

other scheduling algorithms [Zha95]

C=M; D:% (47)

whereM is the maximum packet size of the floM, is the MTU andc is the speed of the link.

In real routers, there are potentially many other contributions to these error terms, e.g., link lay-
er overhead for segmentation and reassembly in the case of ATM or token rotation times for
FDDI or Token Ring.
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