
Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

1

dif-
h re-
rv-

, the
s, in

sing
e re-
ae-

ibed
col-
ed to
s-
hich

ient-

n be
rk is
n. We
ork

uite

ions
er is
Experimental Extensions to RSVP

Remote Client and One-Pass Signalling

Martin Karsten

Industrial Process and System Communications, Darmstadt University of Technology
Merckstr. 25 • D-64283 Darmstadt • Germany

Martin.Karsten@KOM.tu-darmstadt.de

Abstract. We present and evaluate two experimental extensions to RSVP in
terms of protocol specification and implementation. These extensions are target-
ed at apparent shortcomings of RSVP to carry out lightweight signalling for end
systems. Instead of specifying new protocols, our approach in principle aims at
developing an integrated protocol suite, initially in the framework set by RSVP.
This work is based on our experience on implementing and evaluating the basic
RSVP specification. The extensions will be incorporated in the next public re-
lease of our open source software.

1 Introduction

There have been numerous proposals for QoS signalling protocols, which exhibit
ferences along certain, partially interdependent, characteristics, for example wit
spect to participating entities, interaction mode, flexibility, generality, supported se
ices, among others. TheResource ReSerVation Protocol(RSVP) [1] provides a rich set
of functionality and has been chosen for standardization by the IETF [2]. However
basic specification of RSVP considerably has shortcomings in a variety of context
which the specific set of RSVP’s features are either over- or under-dimensioned.
• Embedded end systems often have strict limitations with regard to their proces

power and memory equipment. Therefore, it is imperative to keep the respectiv
quirements of any signalling protocol as low as possible. Running a full RSVP d
mon on such an end system might not be the appropriate configuration.

• A number of valid service models exist, in which the performance can be descr
as transmission rate over certain time intervals. In this case, RSVP’s ability to
lect path characteristics might not be needed. Furthermore, RSVP is design
support multi-point to multi-point communication. This design requirement impo
es a receiver-oriented reservation model and thus, a two-way session setup, w
might not be needed for simple unicast communication. Therefore, a sender-or
ed one-way reservation setup can be a sensible extension to RSVP.

The eventual goal of our work is to design an integrated protocol suite, which ca
broken down to a few well-defined subsets for specific scenarios. Our current wo
based on RSVP, because it seems to be a good candidate to start this investigatio
expect to either be able to actually design such a protocol suite within the framew
set by RSVP, or alternatively, to gain important insight to design such a protocol s
from scratch, if RSVP turns out not to be an appropriate basis.

The rest of this paper is structured as follows. In Section 2, we present two extens
to RSVP. A performance-related evaluation is presented in Section 3 and the pap
wrapped up with a conclusion and an outlook to future work in Section 4.

Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

2

rrent
sec-

pable
capsu-
orts.
ntral
ages.
ultiple
dded
en-

s to
the

f cli-
ecial
tion

PI

used
l ele-
and

of the
rt,
VP
ae-
gis-
, i.e.
2 RSVP Extensions

As discussed in Section 1, there are several circumstances under which the cu
RSVP specification is improvable to accommodate specific requirements. In this
tion, we present according protocol extensions for RSVP.

2.1 Remote Clients

RSVP defines two alternative methods to transmit messages between RSVP-ca
nodes. RSVP messages are either transmitted as raw IP packets or using UDP en
lation [2]. When using UDP encapsulation, packets are addressed to well-defined p
If multiple clients run on a single end system, this addressing scheme requires a ce
manager entity (usually the RSVP daemon) to receive and dispatch incoming mess
For outgoing messages, it seems to be possible to use the same port numbers by m
application processes, but this might not be supported on all platforms. For embe
devices, the effort of running a dedicated RSVP daemon might be prohibitively exp
sive, even if this daemon does not need the full functionality. An elegant solution i
define additional protocol mechanisms which allow an RSVP daemon running on
first RSVP-capable hop to administer and communicate remotely with a number o
ents. These clients in turn only need to implement RSVP stubs and except for the sp
addressing scheme, participate in the full RSVP signalling procedure. This interac
is shown asremote API in Figure 1.

The remote client extension can be realized through a new message type,InitAPI,
and reusing the LIH field of the RSVP_HOP object. In the notation of [2], the InitA
message is defined as follows.

<InitAPI Message> ::= <Common Header> [<INTEGRITY>]
<SESSION> <RSVP_HOP>

An additional flag in the SESSION object distinguishes whether a message is
to register or de-register a client. Of course, the detailed representation of protoco
ments could be chosen differently, if necessary for any purpose. Both registration
de-registration messages carry the local IP address of the client system as part
RSVP_HOP object. The LIH field of this object is used to carry the local UDP po
which is chosen arbitrarily by the clients. Clients communicate to the remote RS
daemon through a well-known port. In general, from the point of view of the RSVP d
mon, a client operates similar to a regular RSVP hop, distinguished only by the re
tration process and UDP communication. Client registration is done using soft state

Fig. 1. Remote Client Extension

RSVP
router

App 1
RSVP
stub

App 2
RSVP
stub

RSVP via
remote API

Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

3

med
and
order

e cli-
able
not ter-
-hop
ition-
tion

even
ch-

o-end

from
ished
on re-
a va-
rs for
phase

s are
ry sig-

here
t by
n by
e de-

such
to
n of
e sit-
we

he
ther

Resv

ame
be
ensi-

rmore,
clients have to regularly refresh their registration, otherwise all respective state is ti
out at the RSVP daemon. The periodic refresh is triggered by the RSVP daemon
other protocol messages are not refreshed between the daemon and the client in
to avoid complicated timer management at the client side. The application using th
ent API can optionally initiate retransmission of requests, if desired. In order to en
end-to-end consensus about established reservations, confirmation messages do
minate at the daemon as in [2], but are forwarded to the client. Of course, the first
RSVP node must be in the path between the client and the other end system. Add
ally, the client system is responsible for exerting traffic control on incoming reserva
requests and allocating resources. This is identical to regular RSVP processing and
mostly independent of the signalling protocol at all, but rather on the actual link te
nology and its dimensioning.

2.2 One-Pass Reservations

In its basic form, RSVP uses a bidirectional message exchange to set up an end-t
simplex reservation. This procedure is calledone-pass with advertising(OPWA) [2]
and used for the following purposes. In order to support heterogeneous requests
multiple receivers within a multicast group, reservations are requested and establ
from the receiver to the sender. The advertising phase is needed to route reservati
quests along the reverse data path to the sender. Furthermore, to flexibly support
riety of service classes and to enable precise calculation of reservation paramete
delay-bounded services, appropriate data are collected during the advertisement
and delivered to the receiver.

As discussed in Section 1, there are a number of scenarios in which both feature
not needed. In such cases, the original OPWA procedure represents an unnecessa
nalling overhead for both end systems and intermediate nodes. Additionally, t
might be situations where an initial (potentially duplex) reservation establishmen
the initiator is desirable as fast as possible, which can later optionally be overridde
appropriate signalling requests from the responder and in turn the initiator. We hav
signed a true one-pass service establishment mechanism, which allows to handle
situations. It fully interacts with traditional RSVP signalling, such that it is possible
optionally override an initial one-pass reservation with later requests. The operatio
a one-pass reservation as duplex request is shown in Figure 2. The figure shows th
uation for a responder overriding a reservation installed by the initiator. Below,
specify the protocol elements for this extension.

A new message type,PathResv, is defined to indicate that reservations based on t
transmittedTSpecshall be established through the transmission of this message. O
than the message type, the syntax is exactly the same as for aPathmessage. In order to
request a duplex reservation, the following object can optionally be added to a Path
message

DUPLEX_Object ::= <SenderReceivePort> <ReceiverSendPort>

The DUPLEX object carries the reverse port information, assuming that the s
transport protocol is used in both directions. Again, this specification can easily
changed or extended, if necessary for any purpose. The duplex extension is only s
ble, when symmetric paths can be assumed between two end systems and furthe

Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

4

ions

alling
in-

ck to
e not
ter-
mes-
k of
lling is
er re-
rectly
e sce-
P, it
-trip
leg-

l sys-

e [3].
exten-

arge
likely
s that
only for unicast communication. Consequently, duplex requests for multicast sess
must be ignored at intermediate nodes.

The advantages of such an extension are quite obvious. First, it reduces sign
complexity for end systems, by offering a one-pass request model without active
volvement of the responder. Optionally, a confirmation message could be send ba
the initiator, in order to assure the end-to-end service establishment, but we hav
implemented that, yet. By reducing the overall signalling effort to a single pass, in
mediate nodes are relieved from processing effort, as well, because of fewer total
sages. Thereby, this mechanism enables lightweight signalling in the framewor
RSVP. These advantages are increased even further when one-pass duplex signa
employed. Optionally, one-pass session establishment can be overridden by lat
quests from both initiator and responder. In this case, any state that has been indi
created through one-pass mechanisms is replaced by regular state. While this usag
nario eventually leads to the same overall signalling costs as using traditional RSV
allows for a faster initial session establishment, because only one half of the round
is needed. As a side effect, the remote API extension also allows to better integrate
acy and new RSVP-incapable end-systems, because no interaction with low-leve
tem services is needed to port it to such platforms.

3 Evaluation

The extensions presented in Section 2 have been implemented in our RSVP engin
In this section, we present and discuss the consequences of the proposed RSVP
sions. This investigation is focused on performance-related aspects.

3.1 Remote Clients

In order to evaluate the remote client extension, there is not much virtue in running l
scale performance experiments, because in reality, a first-hop RSVP node is less
to be challenged by requests from a lot of clients. In general, the number of session

Fig. 2. One-Pass Duplex Request with Subsequent Override

PathResvPathResv PathResv PathResv PathResv

Initial Reservation

ResvResv Resv Resv Resv

Override Reservation

Duplex Reservation

Initial Duplex Reservation

data flow

Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

5

er of
study
two
API
. We
sing
e of

bed-
con-
t the

bility

radi-
n is
ng,
on-
PCs

then
min-
ry al-
d the
load.
ains

Al-
con-
n by
om-
s res-
-pass
can be handled with this implementation can be estimated to be in the same ord
magnitude than what can be sustained at a regular router. It is more interesting to
the effects of the remote client extensions on actual client applications. We look at
interesting numbers, which give an indication that the usage of the remote client
probably does not constitute a severe difficulty, even on small embedded systems
have taken a very simple rate-based UDP sender and compiled it with and without u
the remote RSVP API. The library has been statically linked and we report the siz
executables as well as the size of memory allocation for various platforms.

These results listed in Table 1 remain to be interpreted in the context of real em
ded systems, but bearing in mind that the example client is a very simple program
sisting of less than 300 lines of code, it can be concluded from these numbers tha
increase in executable size and memory allocation due to enabling RSVP capa
does not seem prohibitively expensive.

3.2 One-Pass RSVP Signalling

In this section, we report a series of experiments comparing the performance of t
tional RSVP signalling with one-pass signalling. Because our RSVP implementatio
continually worked on and improved, we report new numbers for traditional signalli
instead of taking them from [4]. All experiments are carried out in the same envir
ment as reported in [4], namely a topology of 450MHz standard Pentium III based
running FreeBSD 3.4. For all experiments, we generate a number of sessions and
periodically create and delete sessions in order to simulate an average lifetime of 4
utes. In all experiments, we report the worst-case CPU processing load and memo
location at intermediate nodes. Each experiment has run for several minutes an
CPU load number has always stabilized around a value smaller than the peak
There are no memory leaks in our software, such that the memory allocation rem
stable for a given number of flows, as well.

The performance figures for traditional RSVP signalling can be found in Table 2.
though there are slight differences to the earlier numbers reported in [4], it can be
cluded that the results are quite similar in their essence. The main difference is give
a decreased variable memory allocation per flow of approximately 1450 bytes, c
pared to approximately 1850 bytes reported in [4]. In order to evaluate the one-pas
ervation mechanism, the same experiment has been run, but employing the one
reservation scheme. The results are given in Table 2, as well.

Table 1. Size of Client’s Executables and Memory Allocation in Bytes

Platform Linux 2.2 (Intel) FreeBSD 3.4 (Intel) Solaris 2.6 (Sparc)

Memory Type Footprint Data Footprint Data Footprint Data

with RSVP 96532 980K 171912 1180K 268736 1832K

without RSVP 12488 904K 83368 1016K 141736 1648K

Delta (RSVP) 84044 76K 88544 164K 127000 184K

Experimental Extensions to RSVP Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS’01, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.html

6

s, at
ex-
ance
sage

This
mi-

xten-
SVP
ment-
g ef-
rt.
sig-
ther
. By
r in-
ign-

eS-

erVa-
tem-

p/.

ter
Although the implementation has not been optimized for one-pass reservation
all, a significant improvement of the overall performance is visible. This can be
plained mainly by the lower amount of messages that are transmitted. The perform
of one-pass signalling is linear to the number flows, as expected, and the memory u
is decreased by more than 200 bytes per flow, compared to traditional signalling.
result is definitely promising with respect to further consideration and potential opti
zation of this mechanism.

4 Conclusions and Future Work

In this paper, we have evaluated two experimental extensions to RSVP. These e
sions are targeted at different scenarios, in which the current specification of R
does not provide an adequate set of functionality. The extensions have been imple
ed and tested to investigate their effect on RSVP’s implementation and processin
fort. It turns out that the extensions can be realized and used with acceptable effo

Since the eventual goal of this work is to investigate and design a flexible QoS
nalling suite, much additional work remains to be carried out. There are plenty of o
potential protocol mechanisms, for example in the field of reservation aggregation
experimental combination of such mechanisms in a common framework set by ou
itial RSVP implementation, we hope to gain further insight towards the goal of des
ing a flexible and modular signalling protocol suite.

References

[1] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource R
erVation Protocol.IEEE Network Magazine, 7(5):8–18, September 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205 - Resource ReS
tion Protocol (RSVP) – Version 1 Functional Specification. Standards Track RFC, Sep
ber 1997.

[3] M. Karsten. KOM RSVP Engine, 2001. http://www.kom.e-technik.tu-darmstadt.de/rsv
[4] M. Karsten, J. Schmitt, and R. Steinmetz. Implementation and Evaluation of the KOM

RSVP Engine. InProceedings of the 20th Annual Joint Conference of the IEEE Compu
and Communications Societies (INFOCOM’2001). IEEE, April 2001.

Table 2. Performance of Traditional and One-Pass Signalling

Experiment Settings Traditional Signalling One-Pass Signalling

Number
of Flows

Average
Lifetime

Load
(% CPU)

Memory
(in KB)

Load
(% CPU)

Memory
(in KB)

0 -- 0.00 2932 0.00 3004

20000 240 sec 24.56 31628 16.70 27288

40000 240 sec 49.56 60340 34.18 51588

60000 240 sec 74.56 89060 52.25 75888

80000 240 sec -- -- 70.17 100188

	Experimental Extensions to RSVP æ Remote Client and One-Pass Signalling
	1 Introduction
	2 RSVP Extensions
	2.1 Remote Clients
	2.2 One-Pass Reservations

	3 Evaluation
	3.1 Remote Clients
	3.2 One-Pass RSVP Signalling

	4 Conclusions and Future Work

