
Experimental Extensions to RSVP - Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS'O1, Springer LNCS
Copyright (C) Springer-Verlag
hitp://www.springer.de/comp/lncs/index.html

Experimental Extensions to RSVP -
Remote Client and One-Pass Signalüng

Martin Karsten

Industrial Process and System Communications, Darmstadt University of Technology
Merckstr. 25 D-M283 Damstadt . Gemany

Martin.Karsten@KOM.tu-darmstadi.de
zu = B
01 Abstract. We present and evaluate two experimental extensions to RSVP in

terins of protocol specitication and implementation. These extensions are target-
2 d ed at apparent shortcomings of RSVP to carry out lightweighi signalling for end 'z systems. lnstead of specifying new protocols, our approach in principle aims at
Orn
O! + developing an integrated protocol suite. initially in the framework set by RSVP.
0 This work is based on our experience on impleinenting and evaluating the basic
X

LZ RSVP specification. The extensions will be incorpoiated in the next public re-

5; lease of our Open source software.

C
: 0 0 1 Introduction
5 - a
; W O There have been numerous proposals for QoS signalling protocols, which exhibit dif- g,: .z f ferences along certain, partially interdependent, characteristics, for example with re-

C 0 spect to participating entities, interaction mode, flexibility, generality, supported sew-
33 ices, among others. The Resource ReSerVation Protocol (RSVP) [I] provides a rich set

3:: of functionality and has been chosen for standardization by the IETF [2]. However, the
-.G
amc basic specification of RSVP considerably has shortcomings in a variety of contexts, in
C C 2 which the specific set of RSVP's features are either over- or under-dimensioned.

E-,w .- Embedded end Systems often have strict limitations with regard io their processing
G-0 power and memory equipment. Therefore, it is imperative to keep the respective re-
PS 3
X.& L quirements of any signalling protocol as low as possible. Running a full RSVP dae-

u Z & mon on such an end system might not be the appropriate configuration.
52 .G
U+ h A number of valid service models exist, in which the performance can be described

L? . -W as lransmission rate over certain time intervals. In lhis case, RSVP's ability to col-
m m .
Xg lect path characteristics might not be needed. Furthermore, RSVP is designed to

.E 5 E support multi-point to multi-point communication. This design requirement impos-
Y C 3 $8 es a receiver-oriented reservation model and thus, a two-way Session setup, whjch

might not be needed for simple unicast communication. Therefore, a sender-onent-
ed one-way reservation setup can be asensible extension to RSVP.

The eventual goal of our work is to design an integrated protocol suite. which can be

- broken down to a few well-defined subsets for specific scenaios. Our current work is

5 based on RSVP, because it seems to be a good candidate to start this investigation. We

Y expect to either be able to actually design such a protocol suite within the framework
set by RSVP, or alternatively. to gain important insight to design such aprotocol suite
from scratch, if RSVP turns out not to be an appropriate basis.

The rest of thispaper is stmctured as follows. In Section 2, wepresent twoextensions
to RSVP. A performance-related evaluation is presented in Section 3 and the paper is
wrapped up with a concIusion and an outlook to future work in Section 4.

Experiniental Extensions to RSVP- Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS'OI, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/compllncs/index.html

2 RSVP Extensions

As discussed in Section 1, there are several circumstances under which the current
RSVP specification is improvahle to accommodate specific requirements. In this sec-
tion. we present according protocol extensions for RSVP.

2.1 Remote Clients

RSVP defines two alternative methods to transmit messages hetween RSVP-capable
nodes. RSVP messages are either transmitied as raw 1P packets or using UDP encapsu-
lation [Z]. When using UDP encapsulation, packets are addressed to well-def ned ports.
If multiple clients mn on a single end system. this addressing scheme requires a central
manager entity (usually thc RSVP daemon) to receive and dispatch incoming messages.
For outgoing messages, it seems tobe possihle to use the same port numbers hy multiple
application processes. hut this might not he supported on all platforms. For embedded
devices. the effort of running a dedicated RSVP daemon might he prohihitively expen-
sive, even if this daemon does not need the full functionality. An elegant solution is to
defne additional protocol mechanisms which allow an RSVP daemon running on the
first RSVP-capahle hop to administer and communicate remotely with a numher of cli-
ents. These clients in turn only need to implement RSVP stuhs and except for the Special
addressing scheme, participate in the full RSVP signalling procedure. This interaction
is shown as renrote API in Figure I.

stuh .
RSVP via - -. - - J

router remote API - "- -
RSVP :

App 2 1 stuh .

Fig. 1. Remote Client Extension

The remole client extension can be realized through a new message type, InirAPI,
and reusing the LIH field of the RSVP-HOP ohject. In thc notation of [2]. the InitAPI
message is defned as follows.

< I n i t A P I Message> : : = <Common Header> [<INTEGRITY>]
<SESSION> <RSVP-HOP> -

An additional flag in the SESSION object distinguishes whether a message is used
to register or de-register a client. Of Course, the detailed representation of protocol ele-
ments could be chosen differently, if necessary for any purpose. Both registration and
de-registration messages cany the local IP address of the client system as part of the
RSVPHOP ohject. The LIH field of this ohject is used to cany the local UDP port,
which is chosen arhitrarily by the clients. Clients communicate to the remote RSVP
daemon through a well-known port. In general, from the point of view of the RSVP dae-
mon, a client operates similar to a regular RSVP hop, distinguished only hy the regis-
tration process and UDP communication. Client registration is done using soft state, i.e.

Experimental Extensions 10 RSVP- Remote Client and One-Pass Signalling
Mariin Karsten
10 appear in Proceedings of IWQoS'OI, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/compAncs/index.html

clients have to regularly refresh their registration, otherwise all respective state is timed
out at the RSVP daemon. The periodic refresh is triggered by the RSVP daemon and
other protocol messages are not refreshed between the daemon and the client in order
to avoid complicated timer management at the client side. The application using the cli-
ent API can optionally initiate retransmission of requests, if desired. In order to enable
end-to-end Consensus about estahlished reservations, confirmation messages do not ter-
minate at the daemon as in [2], but are forwarded to the client. Of coune, the first-hop
RSVP node must be in the path between rhe client and the orher end systern. Addition-
ally, the client systern is responsible for exerting traffic control on incoming reservation
requests and allocating resources. This is identical to regular RSVP processing and even
mostly independent of the signalling protocol at all, but rather on the actual link tech-
nology and its dimensioning.

2.2 One-Pass Reservations

In its basic form. RSVP uses a bidirectional message exchange to set up an end-10-end
simplex reservation. This procedure is called one-pass with advertising (OPWA) [2]
and used for the following purposes. In order to support heterogeneous requests frorn
multiple receivers within a multicast group, reservations are requested and established
from the receiver to the sender. The advertising phase is needed tu route reservation re-
quests along the reverse data path to the sender. Furthermore, ta flexibly support a va-
riety of service classes and to enable precise calculation of reservation Parameters for
delay-bounded Services, appropriate data are collected during the advertisement phase
and delivered to the receiver.

As discussed in Section 1, there are a number of scenarios in which hoth features are
not needed. In such cases, the original OPWA procedure represents an unnecessary sig-
nalling overhead for hoth end systems and intermediate nodes. Additionally, there
rnight he situations where an initial (potentially duplex) reservation establishment by
the initiator is desirahle as fast as possihle, which can later optionally be uvemdden hy
appropriate signalling requests from the responder and in turn the initiator. We have de-
signed a t m e one-pass service establishment mechanism, which allows to handle such
situations. It fully interacts with traditional RSVP signalling, such lhat it is possihle to
optionally ovemde an initial one-pass reservation with later requests. n i e operation of
a one-pass reservation as duplex request is shown in Figure 2. The figure shows the sit-
uation for a responder overriding a reservation installed by the initiator. Below, we
specify the protocol elements for this extension.

A new message type, PathResv, is defined to indicate that reservahons hased on the
transrnitted TSpec shaIl be established through the transmission of tbis message. Other
than the message type, the syntax is exactly the same as for a Path message. In order to
request aduplex reservation, the foilowing ohject can optionally he added to aPathResv
rnessage

DUPLEX-Object : : = <SenderReceivePort> <ReceiverSendPort>

n i e DUPLEX ohject carries the reverse port information, assuming that the sarne
transpon protocol is used in both directions. Again, this specification can easily he
changed or extended. if necessary for any purpose. The duplex extension is only sensi-
ble. when symmeuic paths can he assumed between two end systems and furthermore,

Experimental Extensions to RSVP - Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS'O1, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp~lncs/index.html

daia iiow
4 b

Initial Reservaiion Duplex Reservation

Rerv Resv Resv Resv Rcrv - .-- -- - -

Override Reservation Iniiial Duplex Reservaiion

Big. 2. One-Pass Duplex Request with Subsequent Ovemde

only for unicast communication. Consequently, duplex requests for multicast sessions
must be ignored at intermediate nodes.

The advantages of such an extension are quite obvious. First. it reduces signalling
complexity for end Systems, by offering a one-pass request model without active in-
volvement of the responder. Optionally, aconfimation message could be send back to
the initiator, in order to assure the end-to-end service establishment, but we have not
implemented that. yet. By reducing the overall signalling effort to a single pass, inter-
mediate nodes are relieved from processing effort, as well. heeause of fewer total mes-
sages. Thereby, this mechanism enables lightweight signalling in the framework of
RSVP. These advantages are increased even further when one-pass duplex signalling is
employed. Optionally, one-pass session establishment can be ovemdden by later re-
quests from both initiator and responder. In this case, any state that has been indirectly
created through one-pass mechanisms is replaced by regular state. While this usage sce-
nario eventually leads to the same overall signalling costs as using traditional RSVP, it
allows for a faster initial session establishment, because only one half of the round-trip
is needed. As a side effect, the remote API extension also allows to betier integrate leg-
acy and new RSVP-incapable end-systems, because no interaction with low-level sys-
tem services is needed to portit to such platforms.

3 Evaluation

The extensions presented in Section 2 have been implemented in our RSVP engine [3].
In this section, we present and discuss the consequences of the proposed RSVP exten-
sions. This investigation is focused an perfomance-related aspects.

3.1 Remote Clients

In order to evaluate the remote client extension, there is not much virtue in running large
scale performance experiments, because in reality, a fust-hop RSVP node is less likely
to be challenged by requests from a lot of clients. In general, the number of sessions that

Experimental Extensions to RSVP - Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS'OI, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/comp/lncs/index.htrnl

can be handled with this implementaiion can be estimated to be in the same order of
magnitude than what can be sustained at aregular router. lt is more interesting to study
the effects of the remote client extensions on actual clicnt applications. We louk al twu
interesting numbers. which give an indication that the usage of the remote client API
probably does not constitute a severe difficulty, even on small embedded systems. We
have taken a very sirnplc rate-basedUDP sendrr and compiled it with and without using
the remote RSVP API. The library has been statically linked and we report the size of
executables as well as the size of memory allocation for vanous platforms.

Table 1. Size of Client's Executahles and Memory Allocation in Bytes

Tbese results listed in Table I remain to bc interpreted in t l ~ e contrxt of real embed-
ded systems, but bearing in mind that the example client is a very simple program con-
sisting of less than 300 lines of code, it can be concluded from these numbers that the
incrcasc in executable size and memory allocation due to enabling RSVP capability
does not seem prohibitively expensive.

3.2 One-Pass RSVP Signalling

In this section. we report a series of experiments comparing the performance of tradi-
tional RSVP signalling with one-pass signalling. Because our RSVP implementation is
continually worked on and improved. we report new numbers for traditional signalling,
instead of taking them from [4]. All experiments are carried out in the same environ-
ment as reported in [4], namely a topology of 450MHz standard Pentium 111 based PCs
tunning FreeBSD 3.4. For all experiments, we generate a number of sessjons and then
periodically create and delete sessions in order to simulate an average lifetime of 4 min-
utes. In all experiments. we repon the worst-case CPU processing load and memory al-
location at intermediate nodes. Each experiment has tun for several minutes and the
CPU load number has always stabilized around a value smaller than the peak load.
There are no rnemory leaks in our software. such tliat the meinory allocation remains
stable for a given number of tiows, as well.

Tbe perfomance figures for uaditional RSVP signalling can be found in Table 2. Al-
though thcrc are slight d i fkences to the earlier numbers reponed in [4], it can be con-
cluded that the results are quite similar in their essence. ' h e main difference is given by
a decreased variable memory allocation per flow of approximately 1450 bytes, com-
pared to approximately I850 bytes reported in [4]. In order to evaluate the one-pass res-
ervation mechanism, the same experiment has heen tun, but employing the one-pass
reservation scheme. Tbe results are given in Table 2, as well.

Experimental Extensions to RSVP-Remote Client and One-Pass Signalling
Martin Karsten
to appear in Proceedings of IWQoS'OI, Springer LNCS
Copyright (C) Springer-Verlag
http://www.springer.de/compAncs/index.html

Table 2. Performance of Traditional and One-Pass Signalling

Although the implementation has not been optimized for one-pass reservations. at
all, a significant improvement of the overail performance is visible. This can be ex-
plained mainly by the lower amount of messages that are transmitted. The performance
of one-pass signalling is linear to the number flows, as expected, and the memory usage
is decreased by more than 200 bytes per flow, compared to traditional signalling. This
result is definitely promising with respect to further consideration and potential optimi-
zation of this mechanism.

4 Conclusions and Future Work

In this Paper, we have evaluated two experimental extensions to RSVP. These exten-
sions are targeted at different scenarios, in which the current specification of RSVP
does not provide an adequate set of functionality. The extensions have been implement-
ed and tested to investigate their effect on RSVP's implementation and processing ef-
fort. It turns out that the extensions can be realized and used with acceptable effort.

Since the eventual goal of this work is 10 investigate and design a flexible QoS sig-
nalling suite. much additional work remains to be carried out. There are plenty of other
potential protocol mechanisms, for example in the field of reservation aggregation. By
experimental combination of such mechanisms in a common framework set by our in-
itial RSVP implementation, we hope to gain further insight towards the goal of design-
ing a flexible and modular signalling protocol suite.

References

[I] L. Zhang, S. Deering, D. Estrin, S. Shenker, andD Zappala. RSVP: A New ResourceReS-
erVatiOn Protocol. IEEE Network Magazine, 7(5):%18, September 1993.

121 R. Braden, L. Zhang, S. Berson, S. Herzog. and S. lamin. RFC 2205 - Resource ReSerVa-
LionProtoc~l (RSVP) -Version 1 Functional Specification. StandardsTrack RFC. Septem-
ber 1997.

[3] M. Karsten. KOM RSVP Engine. 2001. hltp://www.kom.e-technik.1~-darmstadt.de/rsvp/.
[4] M. Karsten. J. Schmitt, and R. Steinmetz. Implementation and Evaluation of the KOM

RSVP Engine. In Proceedings of the ZOlh Annual Joini Conference of rlie lEEE Computer
and Communicalions Socierier (INFOCOM'2001). IEEE, April 2001.

