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ABSTRACT

Mobile ad hoc networks are a promising technology enabling
the spontaneous formation of communication networks with-
out dedicated infrastructure. However, ad hoc networks are
not yet ready for large-scale deployment, because several
unsolved research challenges persist.  Evaluation methods
such as analytical modeling, simulation, emulation, and real-
world experiments aid in addressing these challenges. Ap-
plying a single method alone often leaves doubt as to the ac-
curacy of the obtained results. Thus, there is a strong need
for tools that support the task of modeling, evaluation, and
analysis. These tools should allow for protocol validation,
performance analysis, and proof-of-concept implementation
using multiple evaluation methods. In this paper, we present
a new approach for conducting simulation, emulation, and
real-world experiments in mobile ad hoc networks using a
single tool that allows for vertical validation of experiments.
We explain the principles behind the architecture of our tool
and systematically assess its limitations.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design Network]: Architecture and Design

Wireless communication
General Terms: Design, Measurement, Performance

Keywords: Mobile ad hoc networks, simulation, emulation

1. INTRODUCTION
Mobile ad hoc networks (MANETS)
generation networks

envisioned as next
are a promising technology allowing
spontancous formation of communication networks without
dedicated infrastructure. However, MANETS are not ready
for large-scale deployment. The complexily arising [rom mo-
bile devices - which communicate in an ad hoc fashion via
a shared, unmanaged wircless medium - poses a varicty of
research chalienges, many of which arc as yet unsolved. Key
research areas include service discovery, network address-
ing, dependable routing, distributed media access, and ra-
dio interference. The development of efficient protocols and
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distributed algorithms is further complicated by cross-layer
interaction and the use of multiple interfaces.

1.1 Moetivation

Design, development, and investigation of MANETSs are
important research issues. Generally, for analysis and com-
parison of different protocols aud algoritlims four techuigues
are applied: (1) analytical modeling, (2) network simulation,
(3) network emulation, and (4) real-world experiments. The
potentials and limitations of these methods have been widely
discussed in literature, e.g., [8].

Analytical models require many simplifications and are
difficult or even impossible to deploy, while simulalion mad-
cls are often criticized for inaccuracies in capturing realistic
node mobility behavior and wireless medium characteristics
[13]. Furthermore, emulation cannot ensure accurate model-
ing of the wireless shared medium, while real-world testbeds
are typically very limited in scope and introduce high man-
agement overhead.

To adjust Lo the shortcomings of each method, it is abso-
lutely necessary Lo combine several methods to cross-validate
and verify the results. However, there is a lack of einulation
and real-world experiments that demonstrate the feasibility
of ad hoc protocols and the consistency of simulation and
real-world results. This is probably due to the complexity
of getting familiar with setup mechanisms and constraints
of multiple simulators, emulators, and real-world testbeds
in order to compare various simulation and real-world ex-
periments using same scenario setups. ‘The task gets even
more complicated if different protocol implementations and
monitoring Lools have to be taken into account during the
analysis of results.

To overcome these problems, [6] and [7] recommend com-
bining simulation with emulation and /or real-world testbeds
to perform measurements in all arcas imentioned above. Such
a system should have the following characteristics:

e A common code base for simulation, emulation, and
real-world testbed to avoid re-implementation of pro-
tocols and algorithms.

e A simple and identical setup of scenarios and monitor-
ing tools to promote the specification of comparable
experimental designs.

e A common set of metrics and tools for monitoring and
analysis to enhance the comparison of results.

However, it is a challenging task to devise a combined
framework for simulation, emulation, and real-world exper-
iments, which (1) observes the different {iming semantics of



simulation and real-time, (2) utilizes various mobile hard-
ware platforms as well as operating systems (OSs), and (3)
incorporates existing real-world applications and services.

1.2 Contribution

In this paper we present JiST/MobNet, a Swiss army knife
for combined simulation. emulation, and real-world experi-
ments in MANET research. We describe a virtual machine-
based real-time event concept based on Java in Simulation
Time (JiST) [4], which allows for transparent coordination of
simulation, emulation, and veal-world testbed components
In combination with our Mobile Networking (MobNet) ex-
tension, which is based on the Scalable Wireless Network
Simulator (SWANS) [5], we have built a cross platform ex-
perimentation framework for Windows and Linux.

In this paper we point out the advantages of using only a
single testbed architecture, and demonstrate how such a s
tem can be instrumented to gain new insights into realistic
modeling of MANETs. We evaluate the performance limits
of our design with respect to simulation and real-time mod-
els, and quantify the scalability of our solution. We present
results from running various simulations, emulations, and
real-world tests with synthetic as well as real traffic demon-
strating the power and flexibility of our system.

1.3 Outline

The remainder of this paper is organized as follows. In
Sec. 2 we give a brief overview of background coneepts and
related work in the area of simulation, emulation, and real-
world experiments. In Sec. 3 we explain our proposed archi-
tecture and illustrate some implementation details. In Sec, 4
we conduct an extensive study of our approach and discuss
the limitations of our solution. We close in Sec. 3 with a
summary of our lindings and an outlook for future work.

-

2. BACKGROUND AND RELATED WORK
This section presents the theoretical background and sur-
veys related work. We analyse drawbacks of existing simu-
lation and testbed systems with respect to a combined in-
vestigation of MANETSs and summarize our findings.

2.1 Terminology and Semantics

In this paper we utilize the following important terminol-
ogy in the context of simulation, emulation, and real-world
testbeds:

Entity: An entity is a self-contained simulation/emula-
tion component owning a temporal state. An entity
class provides an event interface that defines the bor-
ders for events. It may comprise multiple objects keep-
ng its state.

Event: An event is a time-based method call across en-
tity borders to the event interface of another entity.
Events are marked according to the time context of
the caller for processing them in chronological order in
the time context of the called entity.

The above terminology allows us to define network com-
ponents as collections of entities representing the commu-
nication layers, services. and applications of participating
devices. More terminology and semantics about emulation
of networks can be found in [11].

2.2 Network Simulation

Many wired and wireless network simulators have been
developed, so far. They differ with respect to program-
ming language and tools, but also to accuracy. performance.
and scaling of simulations. The most popular full featured.
open source, discrete event wireless network simulators in
research are NS-2/3 [1, 2], GloMoSim [22], JiST/SWANS
[4] and OMNeT++ [20].

While NS-2 was initially intended for wired networks, it
has been extended to support MANETs. The code of NS-2
is split mto C++ for its core engine and Tel for configu-
ration and simulation. This complicates development and
verification of new core models and protocols.  Morcover,
the split object concept and the inadequate packet design
result in huge menmory consumption making it very hard to
simulate more than a few hundred nodes. The generic mon-
itoring interface of NS
analyzing tools, e.g.. [14]. However, its inefficient design is
responsible for up to 80% of simulation and analysis time.

NS-2 has been applied in emulations [17]. but the draw-
hacks mentioned above become even worse in this domain.
While using NS-2 code for real-world tests or vice versa is
possible, e.g., [9], this approach lacks simplicity and plat-
form independence as additional OS dependent hooks and
tools are needed.

Currently, NS-3, the designated successor of NS-2. is un-
der development. It will resolve many of the aforementioned
drawbacks, but will remain platform dependent. Since the
core design of NS-3 is not compatible with NS-2, N5-2 com-
ponents cannot be reused in NS-3.

GloMoSim is a MANET simulator based on the discrete
event simulation capabilities provided by Parsec [3]. Tt opti-

-2 has spawned a number of advanced

mizes memory by so called node aggregation, which means
multiplexing multiple simulation nodes in a single Parsec
entity. This leads to lower performance costs but increases
code complexity. The language and aggregation concept
complicates the extension of GloMoSim for emulation and
real-world experiments.

JiST/SWANS consists of two main parts; the Java in
Simulation Time (JiST) kernel and the Scalable Wireless
Network Simulator (SWANS), both running on a standard
Java Virtual Machine (JVM). JiST provides discrete event
simulation semantics to a standard Java Runtime Engine
(JRIE). which allows easy development of simulation models
based on a pure entity concept. SWANS on top of JiST pro-
vides a basic (but very limited) set of simulation models and
protocols, and the capability to attach real-world Java appli-
cations. In [5] the JiST/SWANS approach has been shown
to out-perform popular simulators like NS-2 and GloMoSim.
Although, it seems to be no longer supported by its devel-
opers, it has gained some attention in the community.

2.3 Network Emulation

Wireless network emulation is an even wider field than
network simulation. A survey on emulation concepts and
testbeds for MANET research can be found in [12]. Wire-
less network enmulations provide very different characteristics
with respect to degree of abstraction, emulation accuracy:,
and scalability. This is mainly due to the real-time restric-
tion of emulation. Here we focus our description on MobiNet
[16] and Neman [19].

MobiNet is a MANE'T' emulator split in two parts, a con-
troller part called core nodes and a part hosting the actual



ad hoc nodes called edge nodes. One or even a set of core
nodes are used for emulating topology-specific and hop-by-
hop network characteristics, while the edge nodes generate
the network load and forward their packets to the core nodes.
Although MobiNet is sophisticated, its setup is complicated
and, therefore hard to scale for a higher number of simulated
nodes. With regards to our intention, it seems impossible to
reuse the MobiNet concept and code for real-world experi-
ments and simulations.

NEMAN uses a so called topology manager to manage
several virtual tun/tap network devices (see also Sec. 3.5).
Fach of these devices represents a virtual node within the
emulation. Processes attached to these interfaces implement
network services. Connections between two nodes are es-
tablished by tunnels between the corresponding virtual de-
vices. The advantage of NEMAN is its high performance
and the possibility of using real software within the emula-
tion. lowever. the lower layer modeling is oversimplified.
o.g.. interference or multi-path effects are not taken into ac-
count. Moreover, it is hard to adapt the NEMAN approach
for real-world experiments or simulations.

2.4 Real-world Experiments

Real-world experiments are very scarce due to the high
costs and the fact that OSs today are not equipped for plug-
gable network and routing layers as needed for MANET re-
search. Solutions such as the Ad hoc Protocol Evaluation
(APE) testbed [15] or TrueMobile [10] have to extend OS
capabilities. In addition, different OS dependent tools and
scripts are needed to control and monitor experimental se-
tups, making an adaptation for simulation impossible.

APE has two modes of operation. In the laboratory
mode. nodes are logically connected by a MAC filtering tool.
This cmulates simple binary conuectivity on fixed time in-
stances devived from predefined mobility scripts. Tn the field
mode, users are guided to move around by a visual tool. The
APE framework provides a set of automated scripts for traf-
fic generation control, as well as for collection, aggregation,
and evaluation of monitored data.

TrueMobile is an extension of the EmuLab Testbed [21]
for mobile wireless experiments. It is a kind of indoor testbed
using small mobile robots carrying wireless communication
nodes. Thus, a high accuracy of connection modeling can be
reached at the expense of scalability as well as high costs.

2.5 Summary

As we have secn in the previous discussion it is difficult
and time consuming to deal with all the different tools on
different layers necessary for setting up, monitoring, and an-
alyzing MANET experiments. Nevertheless, validation and
verification of simulation and emulation must be done to
obtain realistic and reliable results. A first attempt was
perforined by [18] in comparing different ad hoc emulation
and real-word testbeds and their experimental results. [7]
demonstrated significant differences in the results of different
simulation. emulation, and real-world systems when apply-
ing comparable scenarios. [6] pointed out that there are im-
portant divergences even between simulators due to different
implementations. Both blamed the lack of real experiments
that prove the feasibility of wireless protocols as one cause
of this problem.

To solve this problem, it is necessary to conduct not only
horizontal analysis, i.e., investigating different testbeds on

almost the same level of abstraction, but vertical analysis as
well. Obviously, this is even harder if different tools mea-
suring different metrics have to be taken into account.

Table 1: Capability of selected MANET research
tools to produce results applying methods (2-4).

tool simulation emulation real-world
GloMoSim ++ -- - -
NS-2/NS-3 -4 + 0
JiST/SWANS R o =i
JiST /MobNet +-+ ++ -
MobiNet - L _
NEMAN - 4=t +
APE - -+ +4
TrueMobile - + Sl

While it is possible to extend open source tools to sup-
port new research methods, none of the existing tools has
satisfying capabilities for producing results applying several
of them (Tab. 1).

3. TESTBED ARCHITECTURE

Our testhbed JiST/MobNet is based on the work of Rimon
Barr [4]. It consists of the JiIST kernel and rewriter, as well
as the actual MobNet simulation libraries and drivers, all
running on a standard Java Virtual Machine (JVM). This
approach is independent of the underlying OS and should
run on Linux, Windows and every other device providing
a full featured JVM. In addition, Java provides the benefit
of a standardized, highly-developed language. It is object-
oriented and supports reflection; reasoning about simulation
state at runtime is easy. Type-safety and garbage-collection
simplifies writing of extensions and drivers by reducing com-
mon programming errors. Well designed development tools,
e.g. the Eclipse framework, highly accelerate development,
prototyping, and integration of new code.

We extended the original JiST to enable high performance
simulations and emulations by supporting:

e real-time event execution without changing simulation
code or models, and

e parallel cvent excceution, to bencefit from multi-core
processor systems.

To reach these goals the original JiST kernel was refac-
tored to reduce the lines of code and to increase its quality
without changing its core function and behavior. The sim-
plified code enabled us to implement and investigate several
new JiST controllers for parallel event execution as well as
real-time event handling.

The MobNet simulation extension runs on top of the JiST
kernel and can be used to simulate a wide range of (even
large scale) wireless ad hoc network scenarios. In contrast to
SWANS, MobNet provides an advanced setup environment
for various simulation scenarios, artificial traffic generators,
on/ofl-line monitors, and analysis tools. The provided pro-
tocols and models in MobNet have been validated, corrected,
and improved compared to SWANS.

To facilitate MobNet to support emulation and real-world
testbeds, several extensions were introduced to enable inte-
gration of:



. standard applications, using the common socket inter-
face via a virtual tunneling device (tun wrapper), and

2. network devices, to allow for communication beyond
the border of the simulation/emulation system (pcap
wrapper).

These goals are achieved by implementing a protocol wrap-
per and a mediumn access layer wrapper using the Java Na-
tive Interface (JNI). They are mainly developed in Java us-
ing only a few lines of well docuinented C code. In the fol-
lowing the architecture of our systemn is described in more
detail.

3.1 JiST - Simulation Time Controller

JIST consists of four basic components (Fig. 1). The com-
piler and runtime environment are standard Java compo-
nents. The JiS'T rewriter is a dynamic class loader that mod-
ifies the Java classes while preserving their program logic. 1t
facilitates simulation semantics by defining simulation enti-
ties and creating event calls, which are handled by the JiST

kernel.
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Figure 1: JiST architecture with compiler, rewriter,
simulation kernel, and virtual machine showing JiST
components highlighted [5].
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The actual JiIST kernel with its controller and scheduler
transparently deals with all runtime aspects of the simu-
lation, i.e., thme-state abstraction and event call handling.
The JiST kernel is very cfficient, because it neither serial-
izes message objects nor deals with threads and processes.
Events between entities are automatically scheduled by the
JiS'T kernel and handled as simple method invocations.

Entities communicate by timeless messages, 1.e., messages
that do not change over time, using a highly cilicient zero-
copy semantic. The messages are passed via the JiST ker-
nel by reference. Message destruction is controlled by the
garbage collector. Due to these features the resulting simu-
lation code becomes very compact and intuitive. Thus, com-
ponents in JiST are much simaller and more efficient than in

GloMoSim or NS-2 [5].
3.2 JiST - Emulation Time Controller

As the original JiST only deals with event-based simula-
tion time, we also applied an event-based emulation time se-
mantic for our testbed. We modified the JiST kernel to uti-
lize the system clock for timing and to distinguish between
artificial delays, used for modeling computation times, and
timeouts. In simulation time, events are delivered as fast as
possible. In emulation time, events are delayed if the system
time has not reached the time at which the even is scheduled.
Thus, an accurate mapping of event execution times and de-
lays to system execution times is crucial. This time mapping
leads to several challenges and constraints that cannot be re-
solved easily.

In simulation systems. time depends only on simulation
progress; the actual computation time of events has no effect
on this progress. In contrast, in emulation systems, time
advances independently of emulation progress. Thus. if the
computation of an event takes longer than it should take in
reality, an accurate emulation is almost impossible. While in
simulation systems parallel events can be serialized without
effect, this is not possible in emulation systems. We define
the following time concepts:

Schedule Time: t..5eq defines the time at which an
event is actually scheduled and should be executed.

Execution Time: (... defines the time at which an
event is really executed — before or after the scheduled
time.

Computation Time: {.,p,;, defines the time needed for
computation of an event on real hardware.

Note, while Leomp is measured on the emulation system, it
is independent, from the estimated computation time of the
cmulated system. Based on these definitions we can formal-
ize delays to describe the accuracy in emulation systems.

Execution Delay: The delay between the actual sched-
ule teeneqd and begin of event execution in fepee is de-
fined as exccution delay dezee = texee — Lsched-

Scheduler Delay: In general, there is a basic scheduler
delay dyened when preparing an event for execution. be-
cause of context switching. It depends on the internal
clock and synchronization mechanisms of an emulation
system.

Serialization Delay: If there are more events with a
specific tsenea than available CPUs, events must be
serialized. The later events experience a serialization
delay dgeriar that is at least as long as the accumulated
> ta.comp of the previous executed events .

Computation Delay: If l.omp of an event takes too
long and, thus, exceeds the point in time te-peq when
a follow up event should be scheduled, the child event
experience a computation delay deomp = tparent.coec +

tparent.comp — Lehild.sched-

To regard the above delay challenges we evaluated three
design alternatives for event timing, i.e., system time, execu-
tion time, and schedule time. While base events are always
scheduled with system time, child events can be scheduled
in relation to teened Or tesee of parent events. In addition,
different delay compensation methods can be applied.

While designing the emulation controller we were most
concerned about the real-time constraints of the physical
layer and its high degree of parallelism when receiving mes-
sages. We expected an accumulation of diepiar that would
finally lead to a very high deomp for received events on higher
layers. To address these issues, we focused on a solution sim-
ilar to [17], where child events are scheduled in relation to
Lsched. In addition, we support three different delay models,
i.e., no-delay, real-delay, and sim-delay. This allows for re-
covering from delay accumulation and f(ine-grained control
of emulation scenarios with respect to hardware-dependent
delay assumptions.



To guarantee at least soft real-time constraints and to
avoid inaccuracies, it is necessary that events can be pro-
cessed with a high performance. As this yields a deep impact
on the number of nodes that can be emulated at the same
time, we decided to stay on a single-threaded real-time con-
troller to prevent negative effects from synchronization that
were observed in the sim-time controller. Nevertheless, it
can be shown that our approach already offers high perfor-
mance. The real-time kernel can be configured to warn or
to abort on violation of variable event-based limits.

3.3 MobNet - Simulation Extension

The original MobNet simulation extension runs on top of
the JiST kernel and can be used to simulate a wide range of
wireless ad hoc network scenarios. It is based on the TCP/IP
reference model and provides different application models,
transport and routing layer protocols, radio transmission.
reception and noise models, as well as mobility models. The
components are managed by the communication ficld, the
node manager providing diflerent node models, and a com-
mon traffic manager (Fig. 2).
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Figure 2: Component-based architecture of MobNet
simulation extension (right) and emulation/real-
world extension (left).

Each of these components is represented as a JiS'T entity
communicating via the kernel. Based on standard interfaces,
only relatively small components have to be created and
can be exchanged easily. Thus, it is very easy to improve,
simplify, or even exchange components. One needs only to
implement a new component with the specific APT to be
able to plug it in.

The setup of simulation scenarios is managed by the sim-
ulation driver. A simulation scenario owns a number of vir-
tual nodes, each connected to a common field layer. The
field layer simulates the wireless medium and can be invoked
with different fading and path loss models (Fig. 3).

3.4 MobNet - Emulation Extension

For emulation, the MobNet simulation extension was suf-
ficiently advanced. We developed a component that allows
standard software to communicate with the emulator using
the common socket interface. Similar to NEMAN [19], the
emulator provides virtual network devices that are bound to
the virtual nodes.

To generate these interfaces, we use the tun/tap-driver for
setting up virtual tunnels called tun device. A virtual tun-
nel acts on one side as network interface, on the other side
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Flgure 3 General JlST/MobNet architecture for

combined simulation (right nodes) and emulation
(left nodes) setup.

as pure file deseriptor. Thus, packets send to these inter-
faces are written to files and vice versa. Uscr applications
just open their socketls for sending and receiving on these
interfaces. The MobNet emulation reads/writes these mes-
sages Lo/from the related file deseriptor and forwards them
according its routing tables (Fig. 2).

Even so, Java does not provide the file descriptor needed
to open a tun device. Thus, we implemented a small JNI
interface to address this problem. It opens the tun device
and returns a Java file descriptor for reading and wriling.
‘T'he specific binding for applications is done via our socktun
library. Thus, it is possible for any application to open a
dedicated connection to a virtual node by using the prede-
fined tun device. In this way any number of applications
can be bound to the virtual nodes, which forward messages
via the emulated field layer (Fig. 3).

To handle incoming and outgoing messages concurrently
on the tun device, MobNet uses multi-threaded architecture.
As events can now oceur outside of the causality chain, the
JiST kernel must be synchronized for correct handling.

3.5 MobNet - Real-world Testbed

For the real-world approach, the emulation system is ex-
tended to use real network devices for communicating with
other ad hoc systems. Nevertheless, using raw network de-
vices with Java, as needed to bypass OS routing or device
driver manipulations, is challenging.

We decided to use the Packet Capture Library (pcap) pro-
vided by the wireshark package in combination with a small
JNT interface. The peap device allows native communication
to the network interface by sending and receiving packets as
byte arrays. Thus, we extended MobNet to support serial-
ization of all messages with respect to their correct packet
format and pass them Lo the real interface (Fig. 4).

] G| [ | [ ]
e N bl |
.g , real ‘7 ( real ; real ] _J % M

’ 2 l ‘ node f‘ (mulmm node g |

= L \‘ J

|

| 1iST ~ kemel " rrrrrrrrrrrrrr

-

J1\T kurnul ‘

’ ‘*’II

Figure 4: General JlST/MobNet arclutecture for
real-world setup.

This solution has some drawbacks. The function of the
pcap library depends on the capabilities of the network card
driver. Most drivers can only he used for sending IEEE



802.3 packets. Thus, a fine-grained control and observation
of IEEE 802.11 packets is impossible. Besides, the pcap li-
brary is inefficient and known to cause packet loss in combi-
nation with some drivers, but our approach provides enough
performance for a simple real-world node setup on laptops
or even PDAs (Fig. 4).

3.6 Summary

We highlighted the most important details of JiST/MobNet

a combined simulation, emulation. and real-world testbed
framework for MANET research. JiST/MobNet is largely
independent from the underlying OS using only (often al-
ready available) standard software components, i.e., Java,
pcap, tun/tap. No special kernel patches, exotic software,
or complicated configuration is necessary. This allows for
simple real-world setups to provide full MANET capabili-
ties on laptops.

4. PERFORMANCE EVALUATION

In this section we carefully evaluate the performance of
our design and identify limits as well as possible improve-
ments. In addition of black box tests for native commu-
nication, we develop several methodologies to evaluate the
overall testbed and gain new insights into the general emu-
lation problem. We present several results that demonstrate
the performance trade-offs of our testbed.

4.1 Methodologies

To evaluate the performance of the testbed system we de-
veloped a pluggable monitor component for the JiST kernel.
Sensing elements were placed in the controller to observe
event creation and processing. Based on these, we analysed
the observed events as follows:

Event Analyser: The event analyser analyses all aris-
ing events by counting them and calculating their ex-
ecution times. As it considers all event methods and
classes, it allows for identification of the most critical
events for emulation.

Queue Analyser: The queue analyser counts the events
arising for parallel execution in the scheduler queue.
The more parallel events exist, the more problematic
an adequate emulation becomes.

Delay Analyser: The delay analyser calculates the time
difference between event time and execution time, and
allows for identification of the overall performance of
the emulation system.

Delay Distribution: In addition to the delay analyser,
the delay distribution calculates a histogram of the
measured execution delay d...., also considering the
event methods and classes.

To measure the impact of the monitoring on the system
performance, we evaluated the execution time of the JiST
kernel with and without monitors (Tab. 2). The results
presented here are the mean of 50 runs with 1 million empty
evenls per run.

4.2 Interface Tests

To investigate the performance of the real-world commu-
nication using tun and pcap devices, we accomplished black

Table 2: Impact of measurement on system perfor-
mance of JiST kernel.

evaluation method execution time deviation
No Analyser 3046.8 ms +0.00%
Event Analyser 3083.3 ms +1.20%
Queue Analyser 3099.9 ms +1.74%
Delay Analyser 3124.4 ms +2.55%
Delay Distribution 3176.8 ms +4.27%

hox tests for the raw throughput of these devices on our
Core Duo System. E.g., for the tun device we measured
22.3 MByte/s in both directions with no packet loss and a
latency of 120 us, which is adequate to most necds.

4.3 Performance Evaluation

To demonstrate the potential of the system we conduct
several experiments to evaluate the implementation. All ex-
periments have been conducted on an Intel Core Duo System
with a 1.6 GHz CPU and 1.5 GB RAM. The nodes where ini-
tially placed in a symmetric grid in a way that only adjacent
stations can communicate with each other. The reference se-
tups for real-time simulation and emulation consists of a 9
nodes scenario (small) with 5 CBR streams in parallel and
a 100 nodes scenario (large) with 10 CBR streams. Each
CBR stream comprises 1 KByte/s using 512 byte packets.

s 9 nodes, 5 CBR
=== 100 nodes, 10 CBR
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Figure 5: Frequency of MobNet event classes within
JiST real-time simulations.

Fig. 5 shows the frequency distribution of event classes
within a real-time simulation. An event class includes dif-
ferent event methods on the same layer, e.g.. transmit and
receive on radio layer. Medium access and radio layer events
represent. more than 80% of all events. In larger scenarios
the radio layer (receive) is the dominating event class.

cvent computation time on a PHE 700 M1z ==

cvent computation time on a Core Duo 1.6 Gilz =

time [microseconds]

Figure 6: Average computation time f.,,, of Mob-
Net event classes within JiST real-time simulations.

Fig. 6 shows the average computation times fcomy of event
classes. [Bven though event classes include different event
methods, this provides a good first estimate, as more of-

ten occurring events are mostly faster. It can be seen that
frequently occurring lower layer events are executed very



fast. and should fulfill most delay constraints, e.g., sending a
small [EEE 802.11 message using 11 MBit/s needs around
1 mns. Most medium access layer events are even faster than
the very small slot time of 20 ps used for the backoff interval.
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Figure 7: Number parallel events in a real-time sim-
ulation (9 nodes and 5 CBR streams in parallel).

Fig. 7 shows the {requency and deviation of parallel events
in a smakl simulation. It can be seen, that at least 90% of all
events can be executed in parallel. This effect stems from the
broadeast behavior of the wireless medium in combined with
omission of transmission delays that are in general <1 pus.
Using this model, we can estimate the average computation
delay Leomp of an cvent peek to be 560 ps, and 1041 us for
the worst case uniq 30 parallel events peek not shown.
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Figure 8: PDF and CDF of d.... in a real-time sim-
ulation (9 nodes and 5 CBR streams in parallel).

IFig. 8 shows the probability distribution for event execu-
tion delays decee, i.e., the time between the actual schedule
and begin of event execution, in a small real-time simulation.
It can be seen that almost 90% of the events are executed
within 10 ms. Only a few events are delayed around 50 ms,
which cannot originate from parallel event peeks. We as-
sume that the observed deger results from the setup phase,
which is slowed down by bytecode rewriting, Just-In-Time
(JIT) compiler, and prolonged Garbage Collector (GC) cy-
cles >10 ms. This has to be analysed in future evaluations.
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Figure 9: PDF and CDF of d.... in a real-time sim-
ulation (100 nodes and 10 CBR streaims in parallel).

Fig. 9 shows an identical large real-time simulation. It
can be seen that the maximum as well as the average delay
time increases. Only 80% of events are executed in 100 mns,
even though the total real-time simulation execution time
complies with the 60 s setup time. While high execution
delays doree do not matter in real-time simulations, because
they are corrected by the time concept (see Sec. 3.2), high
dexec certainly affects emulation results. For large scenarios,
either the system performance has to be improved, or the
models will have to be simplified.
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Figure 10: PDF and CDF of d.x. in a real-time em-
ulation (9 nodes and 5 CBR. data flows in parallel).

Fig. 10 shows the results obtained for a small emulation
with 9 nodes and 5 CBR streams produced by Iperf accord-
ing to the small real-time simulation (Fig. 8). The results
show a high event peek at 1 ms, while some events are de-
layed for unexpected long times dere.. We assume this to
result from the missing real-time support by the OS, JIT
compiler, and GC. The effects might be reduced by class
pre-loading and pre-rewriting as well as running the GC af-
ter emulation setup.

4.4 Discussion

The performance evaluation of JiST/MobNet indicates a
good scalability of the cmulation testbed up to a few dozen
nodes. Nevertheless, such perforimance tests provide only
an indication of expected emulations accuracy. It should be
noted, that the above results were gained without tuning
the OS, the JRE, or the JiST kernel for real-time execution.
E.g., we observed scheduler delays ti.nca of up to 12 ms
without any further event pending, which must have been
induced by the OS, JIT compiler, or GC.

For a real-world testbed, where only a single node is run-
ning on cach physical machine, the performance require-
ments are low compared to the emulation testbed. Thus,
system performance can be assessed as adequate for this pur-
pose. We conducted several real-world experiments using 5
Intel Pentium-1I1 700 MHz Laptops and external PCMCIA
network cards without any problem; the results cannot be
presented here due to space constraints.

5. CONCLUSION AND OUTLOOK

In this paper we presented JiST /MobNet
simulation, emulation, and real-world testbed for MANETS.
We explained the challenges and principles behind our ap-

a combined

proach and discussed its benefits. Turthermore, we derived
the key features for using a discrete event simulation tool
in an emulation and real-world domain. We described the
challenges of providing correct and well-performing event ex-
ecution in all domains as well as the communication mech-
anisms across domain borders. Based on these findings, we



presented the actual design, implementation, and evaluation
of our testbed.

There are several other emulation and testbed systems.
However, to the best of our knowledge, JiST/MobNet is the
only system allowing for simulation, emulation, and real-
world experiments based on the same source code with com-
mon setup and monitoring environment. At the same time,
JiST /MobNet is scalable, well performing, and can be easily
extended with new protocols and services.

For the future we plan to develop more advanced single-
and multi-threaded JiST controllers providing (1) busy-loops
for short wait-cycles and (2) optimistic ahead-of-time cvent
execution. In addition, event-chain optimized MobNet mod-
els are envisioned to improve emulation performance. We
plan to examine these advances in combination with more
advanced OS and Java soft and hard real-time support.
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