
Darmstadt University of Technology

Department of Electrical Engineering & Information Technology
Merckstraße 25 • D-64283 Darmstadt • Germany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: info@KOM.tu-darmstadt.de
URL: http://www.kom.e-technik.tu-darmstadt.de/

Multimedia Communications (KOM)

A Token-based Accounting Scheme for P2P-
Systems

Nicolas C. Liebau, Vasilios Darlagiannis, Andreas Mauthe, Ralf Steinmetz

Multimedia Communications Lab KOM, Darmstadt University of Technology, Germany
E-Mail: [Nicolas.Liebau|Vasilios.Darlagiannis|Andreas.Mauthe|

Ralf.Steinmetz]@kom.tu-darmstadt.de

KOM Technical Report 05/2004
Version 1.0
Juli 2004

- 2 -

Abstract
This paper presents a token-based accounting

scheme for decentralized autonomous systems, such as
peer-to-peer systems. The scheme uses tokens as proof
of resource usage or service usage. Conforming to the
peer-to-peer paradigm, the tokens are issued using a
decentralized mechanism. Within peer-to-peer the pro-
posed accounting scheme can be used to cope with the
shortage of information. Therewith, it constitutes the
basis for coordination and control mechanisms as well
as pricing for commercial scenarios in completely
decentralized systems.

The presented scheme is compared against an alter-
ative approach showing the advantage of the token-
based mechanism in terms of communication costs.

1 Introduction
The design of the first peer-to-peer (P2P) systems

was based on the assumption that participating peers
share their own resources with other peers while they
benefit from resources that are shared by others.
Through resource replication and utilization of other-
wise unused resources, P2P systems can provide higher
robustness and host more content/information at lower
costs than traditional client/server-based applications.
Actual P2P file sharing systems like eDonkey2000 [11]
or KaZaA [17] host huge amount of content in a reli-
able way. However, the time needed to retrieve a piece
of content from such a system is in most cases consid-
erably higher than in traditional client/server-systems.
Users of P2P file sharing applications are accepting this
performance constraint because they are retrieving con-
tent at virtually no cost. One reason for this reduced
performance of P2P systems in comparison to cli-
ent/server-systems is in the opportunistic behavior of
the participants who try to maximize there own utiliza-
tion. Participants try to benefit as much as possible
from the resources provided by the other members of
the system; however, they try to avoid providing
resources themselves. The most familiar example is the
free-riding phenomenon in P2P systems [1]. This
behavior pattern is fostered through the strong anonym-
ity and the enormous lack of information in P2P sys-
tems. Actions cannot be traced back to users. There-
fore, resource or service usage and provisioning is not
attributable to users. Thus, it is hard to give incentives
for resource provisioning, or, as a further step, to imple-
ment and enforce rules about participant behavior in the
system. The result is the aforementioned weaker per-
formance of P2P systems in comparison to a cli-
ent/server alternative. The weaker performance also
makes P2P systems unattractive for commercial appli-
cations.

To overcome this disadvantage the lack of available
information must be resolved. An accounting mecha-
nism for P2P systems is required to deliver the missing

information. Using this information coordination of the
available resources can increase the performance of a
system significantly. Coordination can be achieved e.g.
through the introduction of rules and rule enforcement
supported by the information an accounting mechanism
has been collecting. However, the design of such mech-
anisms for decentralized autonomous systems is not
trivial because the control mechanism cannot be decou-
pled completely from the accounting mechanism. The
absence of a controller that analyzes the gathered infor-
mation and coordinates the system entities requires that
the accounting mechanism includes the coordination
functionality. Thus, the accounting mechanism must
enable the ability to constraint the participants' behav-
ior.

For a distributed accounting system that also enables
coordination, it is required that the collected accounting
data is held in a robust und secure way so that no
important information is lost. Further, the accounting
information must be collected and held in a trustworthy
manner. If the information is used for system coordina-
tion participants my be tempted to modify information
for their own benefit. Moreover, the accounting mecha-
nism should be scalable and the net benefit of using it
should be positive across the complete system. If the
accounting mechanism should be used in different sce-
narios it should be flexible to support different kind of
coordination mechanisms.

To tackle the discussed problem this paper proposes a
token-based accounting mechanism. Tokens serve as
signed receipts for transactions between peers. Further,
tokens represent the transaction history of peers and
allow for monitoring and control of the account balance
of all participants in a system by means of appropriate
aggregation mechanisms.

The remainder of this paper is organized as follows.
Section 2 outlines the alternative approaches for
accounting mechanism in P2P systems and shows the
related work. Section 3 describes the proposed token-
based accounting mechanism. Section 4 focusses on
security aspects of the mechanism and section 5 gives
details about the current implementation. In section 6
the concept is validated against remote account-based
accounting mechanisms. In section 7 the conclusions
are presented.

2 Related Work
There are several design alternatives for distributed

accounting systems. Essentially accounting data is col-
lected in form of receipts. The information stored in a
receipt can vary from a single number to detailed trans-
action data. For the purpose of coordination for every
peer the data stored in its receipts is aggregated to an
account balance. The balance determines if a peer is
allowed to use further resources from the system or if it
first has to provide more own resources. However,

- 3 -

major characteristic that distinguishs different account-
ing schemes is the location of the stored receipts.
Local Accounts. Using local accounts, one receipt is
generated for each transaction and participating peer.
Receipts are stored locally on the peers. To enhance the
trustworthiness of receipts they can be signed by the
transaction partner. P2P accounting systems using local
accounts scale well because there is no communication
with further parties. Today local accounts are used e.g.
in eMule's credit system [12] to determine other peers'
position in the local download queue. This mechanism
tries to achieve local fairness; global coordination is not
its goal. With local accounts all information about a
peer is derived directly from the peer. Even if the
receipts are signed by the transaction partner, fraud is
easily possible through collaboration.
Remote Accounts. This alternative tries to overcome
the trust problem of local accounts by storing account-
ing information at third party peers. Each account is
located at set of "account peers" to achieve robustness.
The "account peers" are usually organized in a Distrib-
uted Hash Table (DHT) for efficiency reasons. In [3,
10, 27] this approach is applied. In [3] issued tokens are
used as a kind of a virtual currency, which is transferred
between the remote accounts during a transaction. For
trust reasons receipts can be signed either by transac-
tion partners or (ideally) by multiple trustworthy peers.
The trust level in such a system is high. This is
achieved through additional network traffic per transac-
tion for querying accounts, signing receipts, storing
receipts and keeping the accounts consistent.
Central Accounts. This alternative uses a central net-
work administrator to collect receipts and to distribute
the usage of network resources among the participants
in a fair way. For Grid Computing, for instance such a
system is presented in [5]. However, our goal is to
avoid central elements in P2P systems.
Token-based Systems. An alternative to using receipts
is to use tokens. Tokens are issued receipts. Peers spend
tokens with other peers to receive a service. If a peer
runs out of tokens the peer is not eligible for using more
system resources. The tokens must be protected against
forging and double spending. Storing tokens is not dif-
ferent from normal receipts. Often tokens are used as a
virtual currency. Doing so, the trust problem of local
storage is bypassed, because these tokens do not con-
tain any accounting information that might be altered.
Token-based systems require that the token issuer is
trustworthy. There are three alternatives for the token
issuer: (a) Each single peer can issue tokens. This way
the trust problem is bypassed. However, introducing
rules and rule enforcement become impossible because
there is no control on the amount of tokens issued. Such
an approach is shown in [19]. The authors claim that
eventually a completely free stable market will devel-
ope. Further, in [26] self-issued tokens are used for
accounting in grid computing. In [22] two systems

based on so called „Proof Of Works“ (POWs) are pre-
sented. (b) A central, trusted "bank" issues the tokens.
Mojo Nation uses this solution as well as some existing
micro payment schemes like eCash [24] or NetCash
[18]. A micro payment scheme especially tailored to
P2P systems is presented in [28]. The goal of this work
is to reduce the load on the central broker. However, the
use of a central entity is contrary to our goal of design-
ing a decentralized P2P system. (c) A quorum of peers
signs the tokens using a shared private key. If the pri-
vate key is kept secret such a system combines scalabil-
ity and trustworthiness. This solution is used in the pre-
sented approach.

3 The Token-Based Accounting System
Prerequisites. The token-based accounting system
assumes that users can clearly be identified through a
permanent id, (e.g. through a private/public key pair
proven through a certificate issued from a certification
authority). Depending on the application scenario,
alternative approaches like [7] are also applicable.
Apart from the certification authority it is intended to
avoid any central element.

Also we assume that the majority of peers in the sys-
tem do not act malicious.

Further, we assume the use of a reputation mecha-
nism in the P2P-system. This system is used to publish
fraudulent behavior that technical mechanisms cannot
detect. The reputation mechanism assigns a reputation
value to each peer that represents the trustworthiness of
the peer. A possible solution is e.g. presented in [16].

3.1 Overview.
The primary goal of the proposed system is to collect

accounting data and to enable system-wide coordina-
tion of resource service usage on basis of the collected
information. To enable the usage of receipts for coordi-
nation in a distributed system, the receipts must have
the basic characteristic of the resources and services
they represent, viz they must be scarce. Therefore, the
receipts must be issued. Accordingly, every user has a
limited amount of receipts it can use in transactions.
Thus, in the presented approach tokens are used rather
as issued receipts than as a virtual currency. As a result,
the tokens must not have the characteristics of micro
payments of anonymity and untraceability [6]. There-
fore, tokens have a clear owner that is contained in the
token. This enables storing the tokens locally. Other-
wise, if anonymity should be maintained, untraceable
tokens have to be stored at trusted remote accounts to
control double spending.

Each peer holds an account with a specific amount of
tokens clearly issued to it. A peer spends a token by
sending it to its transaction partner in order to receive a
service. Accordingly, when a peer provides a service it
collects foreign tokens from other peers. Peers cannot
spend foreign tokens. Using the token aggregation pro-

- 4 -

cess, peers exchange the collected foreign tokens
against new ones. To achieve trustworthiness new
tokens are signed with the system’s shared private key
using threshold cryptography [8]. Thus, a token must
be signed by a quorum of peers to become valid. The
token structure ensures protection against forgery, dou-
ble spending and being robbed. The three basic proto-
cols of the token-based accounting system are Token
Aggregation, Check for Double Spending, and Pay-
ment.

3.2 Token structure.
Figure 1 shows the infor-

mation contained in a token.
A new unused token con-
tains the first 5 information
fields starting from the top of
the figure. The issuing date
and time in milliseconds
together with the serial num-
ber and the owner id serve as
unique identification of a
token. This is required to
enable the detection of dou-
ble spending. Further, this
way double spending can be
traced to the owner. During
the creation of a batch of new
tokens the serial number is randomly selected for every
token. Thereby, guessing which tokens exist in the sys-
tem becomes hard. The account id is used to allocate a
token clearly to a specific application. Cross applica-
tion usage and trade of tokens is possible. This field is
optional. The fifth field contains the signature of the
information contained in the first four fields, signed
with the system's private key. This prevents forgery.

Since a token is basically a receipt, it contains further
information about the transaction for which a token is
used. The service consumer is the token owner.

Before the owner sends the token to the service pro-
vider, he also adds the service provider's id to the token
as well as information about the transaction (such as
transaction object, date and information about the qual-
ity of the service provisioning). The owner finally signs
the complete token using his private key. Subsequently
the contained information cannot be changed by the
service provider. The required information in a token is
the information needed for unique identification, the
system signature, the service provider as well as the
service provider’s signature. This prevents tokens from
being roobed. Because unused tokens contain the
owner, only the owner can spend them. Used tokens are
signed and contain the receiver of the token. Only the
receiver is allowed to exchange tokens against new,
own tokens.

3.3 Token Aggregation
The Token Aggregation process is used to exchange

foreign tokens a peer collected against new tokens
issued to that peer. The eight-step Token Aggregation
procedure is shown in Figure 2.

First the exchanging peer (EP) locates a "trusted
peer" (TP) (1). Trusted peers are eligible to exchange
tokens and possess one part of the system's private key
[8]. EP sends its N collected foreign tokens (Fn1, ...,
FnN) to TP (2). TP checks the foreign tokens for their
validity. Only tokens signed by the owner and spent
only once are valid for exchange.

Using the aggregation function M = A(Fn1, ..., FnN)
TP calculates the amount M of new tokens EP must
receive in return for the foreign tokens . The aggrega-
tion function is public and can take any form. TP now
creates M new, unsigned tokens (Un1, ..., UnM) (3).

To sign the new tokens with the system's private key
using threshold cryptography [8] TP now locates fur-
ther trusted peers (4). The number of required trusted
peers to sign a token is determined by the used secret
sharing scheme. The larger the quorum of trusted peers,
the more trustworthy is the system. EP is not allowed to
choose the quorum of trusted peers itself. This avoids
potential collaboration and fraud between the peers.

TP sends the new tokens to this quorum of trusted
peers (5). Each peer of the quorum signs now the
tokens with its part of the system's private key (6). The
resulting partial tokens (Pn1, ..., PnM) are transmitted
back to EP (7) . Finally, EP combines the partial tokens
to new complete tokens (Tn1, ..., TnM) (8).
The aggregation function is a core piece of the token-
based accounting mechanism. It adds an additional
degree of freedom because the token exchange rate can
be different than 1:1. The aggregation function can be
used to implement different usage policies and different
economic systems. For instance, the user's reputation
value can be taken into account to reward trustworthy
behavior or asymmetric DSL-links can be modeled so
that 1 MB upload worths more than 1 MB download.

Figure 1:Token
Structure

Figure 2:Token Aggregation Process

- 5 -

3.4 Check for Double Spending
To check for double spending a token must be clearly

identifiable. To facilitate the check in an efficient man-
ner. For every peer there exists a set of account peers,
the account holders. They are organized in a DHT man-
ner, such as Pastry [23] (see Figure 3).

Account holders hold a list containing the tokens cur-
rently issued to the peer for which they hold the
account. The list is filled with the required information
during token aggregation. After the new tokens have
been created (Figure 2, step 3), the trusted peer sends a
list of the new tokens to the exchanging peer’s account
holders (Figure 3, step 3).

During the token validity check of the token aggrega-
tion process, the trusted peer will ask the account hold-
ers responsible for a token, if the token is valid (Figure
3, step 2). The account holders will remove the token
from the list. Accordingly, if the token is not in the list,
it is an invalid token. Either it was spent before or it
was forged. The account holders will inform the trusted
peer, which will then discard this token. Also, the repu-
tation mechanism of the P2P system will be informed
about the incident.

In order to avoid attacks on messages to account
holders, every message sent to the account holders
must be signed with the sender’s private key. To keep
the list between the account holders consistent, all
account holders for one specific account exchange the
list whenever the set of account holders change. This is
at joins and leaves of peers of that set. Update is only
necessary, if the sender does not receive all confirma-
tion messages.

3.5 Transactions
At transactions the token-based accounting mecha-

nism can be used for resource usage, service usage, or a
combination of them. Resources in a P2P system are
bandwidth, storage capacity, CPU power, and content
[9]. A service is valued differently than resource usage.
A service for example detects water marks in pictures.
Since special software is needed to provide such a ser-
vice, it is valued higher than the sum of the used
resources. A token can contain information about the
used resources and value information of the service
itself. The information is added to a token before it is
sent to the service provider. By this means information

contained in a token can be used as basis for an external
payment mechanism.
Standard transaction. The standard transaction pro-
cess is shown in Figure 4. After a service has been
requested by the service consumer C, the service pro-
vider P informs C about the terms and conditions of the
service, including the number of tokens P expects in
return for the service. If C accepts the terms and condi-
tions, the service provisioning phase begins.

During this phase tokens can be transmitted before,
after, or during the service provisioning. For example a
token can be transmitted after 1 MB transferred or after
1 minute service received. Before a token is transmit-
ted, C retrieves the token from its local account and
fills in the required accounting information. C has no
intention to fraud on the information, because it influ-
ences only the token exchange of the P. Then C signs
the token with his own private key and sends it to P. P
checks the signature of the received token using C's
public key, which can be contained in the token as
owner id or transmitted with the service request. Thus,
it can be verified, that the token sender is also the token
owner.

P can choose not to continue to provide the service, if
the contained accounting data was incorrect. As a result
of a transaction C’s amount of own tokens decreases
and P’s amount of foreign token increases.
Trustable transaction. In a scenario where tokens are
used as virtual currency, a more trustworthy settlement
process might be required. Here, the transaction party
that delivers last has an incentive to cheat on the other
party. It still receives the full benefit but does not have
to deliver its part of the deal. Therefore, we have
designed and implemented a trustable payment proce-
dure that eliminates the incentive to cheat for the trans-
action partners. In addition, double spending of tokens
is not only detectable, but becomes impossible. Figure
5 shows the procedure.

After a service request is received, P notifies C about
the conditions and terms of the transaction, including
the required amount of tokens. C answers with the
token ids of the tokens it intends to spend with the
transaction. Now P contacts the account holders
responsible for C „AH(C)“ and checks if the tokens are
valid. AH(C) mark in the token list these tokens as
"planned to spend". Using the same tokens in another

Figure 3:Check for Double Spending Figure 4:Transaction

- 6 -

transaction becomes impossible. If all tokens are valid,
P informs C that the transaction phase can begin. C
starts the transaction by sending an unsigned token to P.
C loses the token. However, since it is not signed by C,
P cannot exchange it against own tokens. P has no
incentive not to provide the service. Therefore, P now
provides the agreed service. Because C already lost the
token, it has no intention keeping the token for itself. C
will sign the token and send it to P.

If C should fail to send the signed token, P can
present the unsigned token to AH(C). The possession
of the token proofs that the transaction had started and
the token will be removed from the list and is finally
lost for C. The aforementioned reputation system will
provide further incentives against malicious behavior.

On the other hand, if both peers are consenting to
cancel the transaction, C does not lose its tokens. The
"planned to"-mark just needs to be removed from the
tokens in the token list at AH(C).

4 Trust & Security Considerations
It is crucial for the use of an accounting mechanism

that the information it provides is correct. Therefore,
the token-based mechanism has been designed to pro-
vide a high degree of trust for distributed systems.
Robbery. The number of tokens available to a peer
influences its ability to benefit from the system. There-
fore, tokens were designed to eliminate robbery.
Tokens contain the owner id that cannot be changed
without detection through the system signature. Spent
tokens contain the token receiver secured through the
owner's signature.
Forgery. The system signature on each token ensures
that the basic token data cannot be changed and that no
peer can create tokens by itself. Thus, the system signa-
ture prevents forgery and is crucial for the trustworthi-
ness of the system. Accordingly, fraudulent collabora-
tion of trusted peers must be avoided. Therefore, the
choice of trusted peers to form the quorum for signing
tokens is not done by the exchanging peer. This allevi-
ates the problem of bribing. Further, peers can only
become trusted and receive a part of the shared system
private key, if their reputation is above a specific
threshold value. The actual threshold value depends on
the used reputation system. Further, threshold cryptog-
raphy provides different proactive mechanisms to

secure the key from being compromised. The key parts
will be updated periodically using proactive secret
sharing [21]. This makes the old key parts obsolete
without changing the actual key. The system’s public
key stays the same. Further, a new system will be cre-
ated periodically using the decentralized method pre-
sented in [4]. This is enforced through tokens being
valid only for a specific period of time. Therefore, the
unique token id contains the creation date and time.
Outdated tokens can be exchanged against new tokens
using the token aggregation process. If the system's pri-
vate key is kept secret the system can be considered
secure.
Double Spending. The verification for double spend-
ing relies on the data hold at the account holders. Thus,
users might try to corrupt their token list at the account
holders. This is avoided by not allowing peers to send
any queries or enquiries to the account list. Further, the
token list at the account holders is a positive list. If a
peer plans to double spend a token, it has to avoid that
the token is marked in the list as „planned-to-spend“
and later removed from it during token aggregation.
Though in both actions the peer is not involved.

Malicious peers trying to remove tokens from the
token list of another peer must guess token ids of exist-
ing tokens. That is very hard because and the creation
date and time in milliseconds and the random serial
number have to be guessed correctly. Therefore, this
kind of messages is obvious malicious behavior and
will be reported to the reputation system.

In P2P systems (even if using a DHT) it cannot be
guaranteed that a remote account at the account holders
is never lost. In such a case the account owning peer
would not be eligible to receive services anymore.
Since in the token-based system the tokens are stored
locally, users can secure themselves against loss by
making backup of their tokens. The loss of an account
at the account holders will just influence the ability to
check for double spending. Since a peer can not notice
if its remote account is lost, it must assume that double
spending would still be detected. Hence it will be dis-
couraged to cheat.

5 Implementation
The token-based accounting mechanism has been

implemented within the scope of the European project
„Market Management of P2P Services“ (MMAPPS).
MMAPPS builds a middleware for P2P systems sup-
porting commercial applications. The middleware
implementation is based on JXTA 2.2.1 [15]. Crypto-
based peer ids (CBIDs) are applied to enable clear iden-
tification of message senders. The token-based
accounting mechanism is used within an MP3-file shar-
ing application as an incentive mechanism. Tokens are
aggregated 1:1. As the utilized cryptography scheme
RSA with 1024 bit keys has been selected. The tokens
contain the user's public key as owner id.

Figure 5:Trustable Transaction Procedure

- 7 -

Messages. Users might be concerned about the traffic
volume token messages consume. Any additional new
token contained in a message increases its size by 540
byte. Used tokens contain as accounting information
the service level agreement id, content id, file name of
transferred file, and applied tariff. As provider id the
service provider's public key is included in the token. A
message containing one used token has a size of ca.
1800 bytes. Each additional used token in a message
increases the message size by ca. 1043 bytes. If we
compress the tokens with a normal zip-algorithm, mes-
sage sizes can be reduced with a factor of about 3.
Table 1 shows the details. The figures contain an XML-
overhead for message identification of ca. 140 bytes.

Secured TLS JxtaBiDiPipes are used to exchange
tokens between transaction partners and to transfer
tokens for the token aggregation procedure. Messages
with the account holders and the quorum of trusted
peers are exchanged using the JXTA Resolver Service.
These messages contain only token ids and are signed.
Depending on the amount of token ids sent, messages
have a size of about 400 bytes, including an XML-
overhead of 140 bytes. Performance figures on these
JXTA protocols are given in [14].

6 Comparison With Remote Accounts
In this section the performance of token-based

accounting mechanism is compared against a competi-
tive approach that uses remote accounts to hold the col-
lected accounting information. To facilitate the compar-
ison we focus on KARMA as presented in [27].

6.1 KARMA Overview
KARMA is an economic framework for P2P systems

focusing on security considerations. KARMA utilizes a
scalar value called karma to represent each peer’s bal-
ance of contributed/consumed resources. KARMA fol-
lows a Remote Accounts approach proposing Pastry as
its underlying DHT. Groups of nodes defined as bank-
sets keep track of the karma belonging to users. Each
bank-set is constructed of k peers. In every transaction
the bank-set is updated to account the karma spent or
collected. Users with negative karma are not allowed to
consume system resources. Figure 6 illustrates the steps
taken to complete a transaction.

6.2 Use Cases Analysis
The comparison of the two accounting approaches is

both qualitative in terms of offered functionality and
quantitative in terms of achieved performance. Perfor-
mance is expressed as the number and the size of the

messages required performing an operation. However,
for KARMA no data about message size is given.

Two main use cases are of interest in this compari-
son. i.e. the system maintenance procedure and the user
transactions.

6.2.1 Maintenance

The maintenance phase includes two different types
of activities that are realized in different ways in the
two systems. The first type includes maintenance
actions to handle the high churn rate of peers joining
and leaving. The second type involves maintenance
actions that handle security-related or economic aspects
such as preserving secrets or introduced inflation,
respectively.
KARMA. KARMA activates the maintenance proce-
dure when a peer belonging to a bank-set leaves the
system or when a new peer joins the system. In the first
case another peer replaces the departed one. In the lat-
ter the new peer is integrated into the correct bank-set.
In both cases a number of messages is exchanged to
restore the information hold by that peer and to redis-
tribute the assigned responsibilities.

KARMA introduces epochs to handle the infla-
tion/deflation problem. The complexity of this proce-
dure is O(n²), where n is the number of peers in the sys-
tem.
Token-based accounting. The maintenance of the
account holders in the token-based approach is similar
to the maintenance of the bank-set in KARMA.

The token-based accounting does not enforce a spe-
cific economic system. Of course a similar concept to
epochs could be applied to the token-based accounting
mechanism.

Additional costs arise from the requirement to keep
the system’s private key secret. This involves calculat-
ing key updates at one quorum of trusted peers and dis-
tributing new key parts afterwards to the rest of the
trusted peers.
Comparison. Table 2 summarizes the complexity of
the maintenance actions, where n denotes the total
number of peers in the system, k denotes the size of the

Table 1: Message Sizes in Bytes
New Tokens Used Tokens

first Token add. Token first Token add. Token
uncompressed 1.284 540 1.797 1043
compressed 976 ca. 140 1293 ca. 280

Figure 6:KARMA Transcation Procedure [27]

- 8 -

bank-sets, m denotes the number of trusted peers in the
system, and a (l, m) secret sharing scheme is used.

6.2.2 Transactions

The major part of traffic in P2P systems results from
transactions.
KARMA. A typical transaction in KARMA requires
the close interaction of the two bank-sets (that store the
accounting information of both the producer and the
consumer). The actions are illustrated in Figure 6.
KARMA utilizes three-way hand-shaking techniques to
ensure the validity of critical actions, such as Karma
transfer. Synchronization of the involved bank-sets
takes place after each Karma transfer. However, this
turns to be a costly procedure with questionable usage
for well organized attacks. Finally, KARMA introduces
an additional mechanism to ensure action synchroniza-
tion among the bank-set members.
Token-based Accounting. For comparison reasons we
calculate the transaction costs of the token-based
accounting mechanism as one trusted transaction with
check for double spending and an additional token
aggregation procedure.
Comparison. Table 3 summarizes the number of mes-
sages required in every step to complete the transac-
tion. k denotes the size of the bank-set or account
holder set. An (l, m) secret sharing scheme is used. To
compare the two approaches in a more realistic manner,
the amount of messages exchanged for up to 100 trans-
actions is shown in Figures 7 for KARMA and Figure 8
for the token-based accounting approach. For the latter
a quorum size was set to 7. Also, it must be assumed
that users do not exchange each foreign token immedi-
ately but do the exchange in batches. The calculations
assume a maximum batch size of 20 tokens. Further, a
transaction has a size of five tokens (each token send
separately) and no transaction has the same transaction
partners. That would reduce the needed amount of mes-
sages further.

The difference arises from the different use of the
account holders respectively the bank-set. In token-
based accounting a message sent to the account holders
does not require the proof of origin, like in KARMA. A
peer just needs to proof that it received specific tokens
from a peer. Therefore, the correctness of a message is
derived from its content. In contrast in KARMA the
correctness of a message is derived through the correct-
ness of the message sender. Further, account synchroni-
zation in the token-based approach is only needed if the
sender of an update message does not receive a confir-
mation. Therefore, just O(k) messages are needed dur-
ing a transaction.

7 Summary & Conclusions
One of the biggest challenges for a wider deployment

of P2P systems is to retrieve, collect and use informa-
tion about the resource utilization within the system. It
is crucial that the information is secure and reliable
while the core features of P2P (i.e. decentralization,
autonomy of peers, flexibility and dynamics) are still
maintained.

This paper presentes a flexible and trustworthy
token-based accounting mechanism for P2P-systems.
Its purpose is to collect accounting information of
transactions. This information can be used to coordi-
nate the behavior of the system’s entities to achieve a
higher system performance. Further, the collected
information can be used as basis for pricing and price

Table 2: Maintenance complexity
KARMA Token-based

epoch O(n²) --
node arrival O(k) O(k)
node departure O(k) O(k)
key update calculation [21] -- O(l²)
key update distribution [21] -- mO(l²)

Table 3: Transaction complexity
KARMA Token-based

1 Transfer Request O(k) Unsigned token transfer 1
2-4 Deposit/Que-
ry/Confirm O(k²) Signed token transfer 1

5-7 Inform/Que-
ry/Confirm O(k) Check for double spend-

ing O(k)

Pre-step synchroniza-
tion O(k) Aggregation: send tokes

to trusted peer 1

Post Synchronization O(k²) Update token lists O(k)
New tokens to quorum O(l)
New tokens to owner O(l)

Table 3: Transaction complexity

Figure 7:Transaction messages in KARMA

Figure 8:Transaction messages for token-based
accounting

- 9 -

finding processes. Moreover, this builds the foundation
for the development of a market within P2P systems.
Further, the collected accounting information could be
basis for a payment system to support commercial
applications.

Since the responsibility of creating tokens is dele-
gated to a randomly selected quorum of peers, fraudu-
lent behaviour is prevented. Only if all peers in the quo-
rum would be malicious, tokens can be forged. Further,
a trustable payment mechanism is available that does
not require to involve a third party. Thus, this approach
is especially scaleable.

The token-based accounting scheme is very flexible
through the introduction of the aggregation function.
Here the exchange ratio of use tokens against new
tokens can be defined by the usage policy. Hence dif-
ferent economic models can be implemented.

In comparison to an accounting mechanism using
remote accounts the token-based approach has clear
advantages in terms of the number of exchanged mes-
sages.

Acknowledgements
This work has been performed partially in the framework of the EU IST

project MMAPPS “Market Management of Peer-to-Peer Services” (IST-
2001-34201). The authors like to acknowledge discussions with all of their
project partners.

References
[1] E. Adar, B. A. Huberman: Free Riding on Gnutella, In: First

Monday, volume 5, number 10, October 2000.
[2] H. Appel, I. Biehl, A.Fuhrmann, M. Ruppert, T. Takagi, A.

Takura, C. Valentin: Ein sicherer, robuster Zeitstempeldienst
auf der Basis verteilter RSA-Signaturen; Technical Report, No.
TI-21/99, Technische Universität Darmstadt, 1999

[3] A. Agrawal, D. J. Brown, A. Ojha, S. Savage: Bucking Free-
Riders: Distributed Accounting and Settlement in Peer-to-
Peer Networks; Technical Report, CS2003-0751, UCSD, June
24, 2003.

[4] D. Boneh, M. Franklin: Efficient Generation of Shared RSA
keys; in Journal of the ACM (JACM), Vol. 48, Issue 4, pp.
702--722, July 2001.

[5] A. Barmouta, R. Buyya: GridBank: A Grid Accounting Ser-
vices Architecture (GASA) for Distributed Systems Sharing
and Integration; 17th Annual International Parallel & Distrib-
uted Processing Symposium (IPDPS 2003) Workshop on
Internet Computing and E-Commerce, April 22-26, 2003,
Nice, France.

[6] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.
In CRYPTO '88, vol. 403 of LNCS, pp. 319--327. Springer
Verlag, 1990.

[7] Crypto-ID Project, http://crypto-id.jxta.org/
[8] Y. Desmedt and Y. Frankel: Threshold cryptosystems; In Proc.

CRYPTO '89, volume 435 of LNCS, pages 307-315. Springer-
Verlag, 1989.

[9] R. Dingledine, M. J. Freedman, D. Molnar: Accountability; In
Peer-To-Peer: Harnessing the Power of Disruptive Technolo-
gies, O'Reilly & Associates, Chapter 16, pp. 217 - 340, 1st edi-
tion, March 15, 2001.

[10] D. Dutta, A. Goel, R. Govindan, H. Zhang: The Design of A
Distributed Rating Scheme for Peer-to-peer Systems; In: Pro-
ceedings of the Workshop on the Economics of Peer-to-Peer
Systems, Berkeley, California, June 2003.

[11] eDonkey2000; http://www.edonkey2000.com.

[12] eMule Project; http://emule-project.net/
[13] P. Golle, K. Leyton-Brown, I. Mironov and M. Lillibridge:

Incentives for Sharing in Peer-to-Peer Networks, WEL-
COM'01

[14] E. Halepovic, R. Deters: The Costs of Using JXTA. In: Proc. of
Third International Conference on Peer-to-Peer Computing
2003; pp. 160-167.

[15] Project JXTA: http://www.jxta.org.
[16] S. Kamvar, M. Schlosser, H. Garcia-Molina: EigenRep: Repu-

tation Management in P2P Networks; To appear in Proceed-
ings of the 12th International World Wide Web Conference,
May, 2003.

[17] KaZaA: http://www.kazaa.com.
[18] G. Medvinsky, B. C. Neuman: NetCash: A design for practical

electronic currency on the Internet; In Proceedings of 1st the
ACM Conference on Computer and Communication Security
November 1993.

[19] T. Moreton, A. Twigg: Trading in Trust, Tokens, and Stamps;
In: Proceedings of the Workshop on the Economics of Peer-to-
Peer Systems, Berkeley, California, June 2003.

[20] Project Mojo Nation: Peer-driven Content Distribution Tech-
nology; http://www.mojonation.net/, February 2000.

[21] T. Rabin. A simplified approach to threshold and proactive
RSA. In: Proceedings of Crypto, 1998.

[22] R. L. Rivest, A. Shamir: PayWord and MicroMint: Two Simple
Micropayment Schemes; Security Protocols Workshop, pp. 69-
87, 1996.

[23] A. Rowstron, P. Druschel: Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems;
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, pages 329-
350, November, 2001.

[24] B. Schoenmakers: Basic Security of the ecashTM Payment Sys-
tem; State of the Art in Applied Cryptography, Course on
Computer Security and Industrial Cryptography, Leuven, Bel-
gium, June 3--6, 1997 Revised Lectures, B. Preneel, V. Rijmen
(eds.), volume 1528 of Lecture Notes in Computer Science,
Berlin, 1998.

[25] A. Shamir: How to share a secret; in CACM, 22(11), pp. 612-
613, November 1979.

[26] W. Thigpen, T. J. Hacker, L. F. McGinnis, B. D. Athey: Dis-
tributed Accounting on the Grid; In Proceedings of the 6th
Joint Conference on Information Sciences, pp.1147-1150,
2002.

[27] V. Vishnumurthy, S. Chandrakumar, E. G. Sirer: KARMA : A
Secure Economic Framework for Peer-to-Peer Resource Shar-
ing; In: Proceedings of the Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, California, June 2003.

[28] B. Yang, H. Garcia-Molina: PPay: Micropayments for Peer-
to-Peer Systems; In: Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS), Washing-
ton D.C., October 2003.

