
[LDMSt05] Nicolas Liebau, Vasilios Darlagiannis, Andreas Mauthe, Ralf Steinmetz; Token-based
Accounting for PZP-Systems; Kommunikation in Verteilten Systemen (KiVS),
Kaiserslautern, März-2005, S. 16-28.

Token-based Accounting for P2P-Systems

Nicolas C. Liebaul, Vasilios Darlagiannisl, Andreas Mauthel und Ralf
Steinmetz1

Multimedia Communications Lab, KOM
Darmstadt University of Technology, Germany

E-Mail: CNicolas.LiebauIVasilios.Dar1agiannisIAndreas.MautheI
Ralf.Steinmetz]Qkom.tu-darmstadt.de

Abstract This paper presents a token-based accountiiig scheme for de-
centralized autonomous systems, such as peer-to-peer systems. The scheme
uses tokens as proof of resource or service usage. Conforming to the
peer-to-peer paradigm, the tokens are issued using a decentralized mech-
anism. Within peer-to-peer systems the proposed accounting scheme can
be used to overcome information deficits. Thus, it constitutes the basis
for coordination and control mechanisms as well as for pricing in com-
mercial scenarios in fully decentralized systems. The presented scheme is
compared against an alterative approach showing the advantage of the
token-based scheme in terms of communication costs.

1 Introduction

The design of the first peer-to-peer (P2P) systems was based on the assump
tion that participating peers share their own resources with other peers while
they benefit from resources that are shared by others. Through resource repli-
cation and utilization of otherwise unused resources, P2P systems can provide
higher robustness and host more content/information a t lower costs than tra-
ditional client/server-based applications. Actual P2P file sharing systems like
eDonkey2000 [2] host huge amount of content. Users of P2P file sharing ap-
plications are accepting performance constraints compared with client/server
systems because they are retrieving content a t virtually no cost. One reason for
this reduced performance of P2P systems is in the opportunistic behavior of
the participants who try to maximize there own utilization. Participants try to
benefit as much as possible from the resources provided by the other members of
the system; however, they try to avoid providing resources themselves. The most
familiar example is the free-riding phenomenon in P2P systems [4]. This behav-
ior pattern is fostered through the strong anonyrnity and the enormous lack of
information in P2P systems. Actions cannot be traced back to users. Therefore,
resource or service usage and provisioning is not attributable to users. Thus,
it is hard to give incentives for resource provisioning, or, as a further step, to
implement and enforce rules about participant behavior in the system. The re-
sult is the aforementioned weaker performance of P2P systems in comparison
to a client/server alternative. The weaker performance also makes P2P systems
unattractive for commercial applications.

To overcome this disadvantage the lack of available information must be re-
solved. An accounting mechanism for P2P systems is required to provide the
missing information. Using this information, coordination of the available re-
sources becomes feasible in order to improve the overall system performance.
Coordination can be achieved e.g. through the introduction of rules and rule
enforcement supported by the information an accounting mechanism has been
collecting. However, the design of such mechanisms for decentralized autonomous
systems is not trivial because the control mechanism cannot be decoupled com-
pletely from the accounting mechanism. The absence of a controller that ana-
lyzes the gathered information and coordinates the system entities requires that
the accounting mechanism includes the coordination functionality. Thus, the ac-
counting mechanism itself must enable the ability to constraint the participants'
behavior.

For a distributed accounting system that also enables coordination, it is re-
quired that the collected accounting data is held in a robust and secure way
so that no important information is lost. Further, the accounting information
must be collected and held in a trustworthy manner. If the information is used
for system coordination, participants may be tempted to modify information for
their own benefit. Moreover, the accounting mechanism should be scalable and
the net benefit of using it should be positive across the complete system. If the
accounting mechanism is supposed to be used in different scenarios it should be
flexible to Support different kinds of coordination mechanisms.

To tackle the discussed problem this paper proposes a token-based accounting
scheme. Tokens serve as signed receipts for transactions between peers. Further,
tokens represent the transaction history of peers and allow for monitoring and
control of the account balance of all participants in a system by means of ap-
propriate aggregation mechanisms.

2 Related Work

There are several design alternatives for distributed accounting systems. Essen-
tially, accounting data is collected in form of receipts. The information stored
in a receipt can vary from a single number to detailed transaction data. For the
purpose of coordination, for every peer the data stored in its receipts is aggre-
gated to an account balance. The balance determines if a peer is allowed to use
further resources from the system or if it first has to provide more own resources.
However, a major characteristic that distinguishes different accounting schemes
is the location of the stored receipts.

Local Accounts. Using local accounts, a receipt is generated for each traris-
action and participating peer. Receipts are stored locally on the peers. To en-
hance the trustworthiness of receipts they can be signed by the transaction
partner. P2P accounting systems using local accounts scale well because there
is no communication with further parties. Today local accounts are used e.g. in
eMule's credit system [3] to determine other peers' position in the local down-
load queue. This mechanism tries to achieve local fairness; global coordination is

not its goal. With local accounts all information about a peer is derived directly
from the peer itself. Even if the receipts are signed by the transaction partner,
fraud is easily possible through malicious collaboration.

Remote Accounts. This alternative tries to overcome the trust problem
of local accounts by storing accounting information a t third party peers. Each
account is located a t Set of "account peers" to achieve robustness. The account
peers are usually organized in a Distributed Hash Table (DHT) for efficiency
reasons. In [5,11,19] this approach is applied. In [5] issued tokens are used as
a kind of a virtual currency, which is transferred between the rernote accounts
during a transaction. For trust reasons receipts can be signed either by trans-
action partners or (ideally) by multiple trustworthy peers. The trust level in
such a system is high. This is achieved through additional network traffic per
transaction for querying accounts, signing receipts, storing receipts and keeping
the accounts consistent.

Central Accounts. This alternative uses a central network administrator
to collect receipts and to distribute the usage of network resources among the
participants in a fair way. For instance, for Grid Computing such a system is
presented in [6]. However, our goal is to avoid central elements in P2P systems.

Token-based Systems. An alternative to using receipts is to use tokens.
Tokens are issued receipts why their availability could be limited. Peers spend
tokens with other peers to receive a sewice. If a peer runs out of tokens the peer
is not eligible for using more system resources. The tokens must be protected
against forging and double spending. Storing tokens is not different from normal
receipts. Often tokens are used as a virtual currency. Doing so, the trust problem
of local storage is bypassed, because these tokens do not contain any accounting
information that might be altered. Token-based systems require that the token
issuer is trustworthy. There are three alternatives for the token issuer: (a) Each
single peer can issue tokens. This way the trust problem is bypassed. However,
introducing rules and rule enforcement become impossible because there is no
control on the amount of tokens issued. Such an approach is shown in [15].
The authors claim that eventually a completely free stable market will develop.
Further, in [18] self-issued tokens are used for accounting in Grid Computing.
(b) A central, trusted "bank" issues the tokens. Mojo Nation uses this solution
as well as some existing micro payment schemes like NetCash [13]. A micro
payment scheme especially tailored to P2P systems is presented in [20]. The
goal of this work is to reduce the load on the central broker. However, the use of
a central entity is contrary to our goal of designing a decentralized P2P system.
(C) A quorum of peers signs the tokens using a shared private key. If the private
key is kept secret such a system combines scalability and trustworthiness. This
solution is used in the presented approach.

3 The Token-Based Accounting System

Prerequisites. The token-based accounting system assumes that users can
clearly be identified through a permanent id, (e.g. through a private/public key

pair proven through a certificate issued from a certification authority). Depend-
ing on the application scenario, alternative approaches like [I] are also applicable.
Apart from the certification authority it is intended to avoid any central element.

Further, we assume the use of a reputation mechanism in the P2P system.
This system is used to publish fraudulent behavior that technical mechanisms
cannot detect. The reputation mechanism assigns a reputation value to each peer
that represents the trustworthiness of the peer. A possible solution is presented
e.g. in [12].

3.1 Overview

The primary goal of the proposed system is to collect accounting data and to
enable system-wide coordination of resource service usage based on the collected
information. To enable the usage of receipts for coordination in a distributed
system, the receipts must have the basic characteristic of the resources and
services they represent, i.e. they must be scarce. Therefore, the receipts must
be issued. Accordingly, every user has a limited amount of receipts it can use in
transactions. Thus, in the presented approach tokens are used rather as issued
receipts than as a virtual currency. As a result, the tokens rnust not have the
characteristics of micro payments of anonyrnity arid untraceability [8]. Therefore,
tokens have a clear owner that is contained in the token. This enables local tokens
Storage. Otherwise (if anonymity should be maintained) untraceable tokens have
to be stored a t trusted remote accounts to control double spending.

Each peer holds an account with a specific amount of tokens clearly issued
to it. A peer spends a token by sending it to its transaction partner in order to
receive a service. Accordingly, when a peer provides a service it collects foreign
tokens from other peers. Peers cannot spend foreign tokens. Using the token
aggregation process, peers exchange the collected foreign tokens against new
ones. To achieve trustworthiriess new tokens are signed with the Systems shared
private key using threshold cryptography [10]. Thus, a token niust be signed by a
quorum of peers to become valid. The token structure ensures protection against
forgery, double spending and stealing. The three basic protocols of the token-
based accounting system are Token Aggregation, Check for Double Spending, and
Payment.

3.2 Token Structure

Figure 1 shows the information contained in a token. A new unused token con-
tains the first 5 information fields starting from the right hand of the figure. The
issuing date and time in milliseconds together with the serial number and the
owner id serve as unique identification of a token. This is required to enable the
detection of double spending. Further, this way double spendirig can be traced
to the owner. During the creation of a batch of new tokens the serial number
is randomly selected for every token. Thereby, guessing which tokens exist in
the system becomes hard. The account id is used to allocate a token clearly to a
specific application. Cross application usage and trade of tokens is possible. This

field is optional. The fifth field contains the signature of the information con-
tained in the first four fields, signed with the system's private key. This prevents
forgery.

Transaciion Data

Figure 1: Token Structure

Since a token is basically a receipt, it contains further information about the
transaction for which a token is used. The service consumer is the token owner.

Before the owner sends the token to the service provider, it also adds the
service provider's id to the token as well as information about the transaction
(such as transaction object, date and information about the quality of the ser-
vice provisioning). The owner finally signs the complete token using its private
key. Subsequently, the contained information cannot be changed by the service
provider. The required information in a token is the information needed for
unique identification, i.e. the system signature, the service provider as well as
the service providers signature. This prevents tokens from being stolen. Because
unused tokens contain the owner, only the owner can spend them. Used tokens
are signed and contain the receiver of the token. Only the receiver is allowed
to exchange tokens against new, own tokens. A token has no intrinsic value; it
rather presents an accounting event. The value of a token is determined in the
token aggregation process.

3.3 Token Aggregation

The Token Aggregation process is used to exchange foreign tokens a Peer col-
lected for new tokens issued to that peer. The eight-step Token Aggregation
procedure is shown in Figure 2 (a).

First the exchanging peer E P locates a trusted peer T P (1). Trusted peers are
eligible to exchange tokens and possess one Part of the system's private key [10].
E P sends its N collected foreign tokens (Fn i , ..., F n N) to T P (2). T P checks the
foreign tokens for their validity. Only tokens signed by the owner and spent only
once are valid for exchange.

Using the aggregation function M = A(Fn1, ..., F ~ N) T P calculates the
amount M of new tokens E P must receive in return for the foreign tokens. The
aggregation function is public and can take any form. T P now creates M new,
unsigned tokens (Uni, ..., UnM) (3).

To sign the new tokens with the system's private key using threshold cryp-
tography [10] T P now locates further trusted peers (4). E P is not allowed to

choose the quorum of trusted peers itself. This alleviates the problem of poten-
tial collaboration and fraud. The number of required trusted peers to sign a token
is determined by the used secret sharing scheme. The system's trustworthiness
increases proportional with the size of the quorum of trusted peers.

T P sends the new tokens to this quorurn of trusted peers (5). Each peer of the
quorurn signs now the tokens with its part of the system's private key (6). The
resulting partial tokens (Pn i , ..., P n M) are transmitted back to EP (7). Finally,
EP combines the partial tokens to new complete tokens (Tni, ..., TnM) (8).

I t is irnportant to mention that the aggregation function adds an additional
degree of freedom to the system. With an appropriate aggregation function spe-
cific econornic systerns can be implernented.

, Set of account Set of account

rigned
Tokens

P". - mir

(a) Token Aggregation Process (b) Check for Double Spending

Figure 2: Token Operations

3.4 Check for Double Spending

To check for double spending a token must be clearly identifiable. To facilitate
the check in an efficient manner, for every peer (the account owners) there is
a Set of account holding peers, i.e. the account holder set. The account holder
peers are organized in a DHT rnanner, such as Pastry [17] (see Figure 2 (b)).
Account holders hold a list of tokens currently issued to the account owner. The
list is filled with the required information during token aggregation. After riew
tokens have been created (Figure 2 (a), step 3), T P sends a list of these new
tokens to the exchanging peers account holders (Figure 2 (b), step 3).

During the token validity check of the token aggregation process, T P will ask
the account holders responsible for a token, if the token is valid (Figure 2 (b),
step 2). The accourit holders will rernove the token frorn the list. Accordingly, if
the token is not in the list, it is an invalid token. T P will discard such a token and
the P2P systern's reputation mechanism will be informed about the incident.

In order to avoid message manipulation, every rnessage sent to the account
holders rnust be signed with the senders private key. To keep the list between the
account holders consistent, all account holders for one specific account exchange
the list whenever the set of account holders change. This takes place only when
peers of that set join or depart frorn the system. Consistency checks are only
necessary, if the sender does not receive all codrrnation messages.

3.5 Transactions

During transactions the token-based accounting system accounts for resource
usage, service usage, or a combination of both. Sewice usage is valued differently
than resource usage. A service for example detects water marks in pictures. Since
special software is needed to provide such a service, it is valued higher than the
sum of the used resources. A token can contain information about the used
resources and value information of the service itself. The information is added
to a token before it is sent to the service provider. By this means information
contained in a token can be used as basis for an external payment mechanism.

S tandard transaction. The standard transaction process is shown in Fig-
ure 3 (a). After a service has been requested by the service consumer C, the
sewice provider P informs C about the terms and conditions of the service, in-
cluding the number of tokens P it expects in return for the service. If C accepts
the terms and conditions, the service provisioning phase begins.

During this phase tokens can be transmitted before, after, or during the ser-
vice provisioning. For example a token can be transmitted after 1 MB transferred
or after 1 minute service received. Before a token is transmitted, C fills in the
required accounting information. C has no intention to falsify the information,
because it influences only the token exchange of P. Then C signs the token with
its own private key and sends it to P. P checks the signature of the received
token using C's public key, which can be contained in the token as owner id
or transmitted with the service request. Thus, it can be verified, that the token
sender is also the token owner.

P can choose not to continue to provide the service, if the contained account-
ing data was incorrect. As a result of each transaction C's own token balance
decreases and P's foreign token balance increases.

Trustable transaction. In a scenario where tokens are used as virtual cur-
rency, a more trustworthy settlement process might be required. Here, the trans-
action party that delivers last has an incentive to cheat the other party. It still
receives the full benefit but does not have to deliver its part of the deal. There-
fore, we have designed and implemented a trustable payment procedure that
eliminates the incentive to cheat for the transaction Partners. In addition, dou-
ble spending of tokens is not only detectable, but becomes impossible. Figure 3
(b) shows the procedure. After a sewice request is received, P notifies C about
the conditions and terms of the transaction, including the required amount of
tokens. C answers with the token ids of the tokens it intends to spend for the
transaction. Now P contacts the account holders responsible for C AH(C) and
checks if the tokens are valid. AH(C) mark in the token list these tokens as
"planned to spend". Using the Same tokens in another transaction becomes im-
possible. If all tokens are valid, P informs C that the transaction phase can
begin. C starts the transaction by sending an unsigned token to P. C loses the
token. However, since it is not signed by C, P cannot exchange it against own
tokens. P has no incentive not to provide the service. Therefore, P now provides
the agreed service. Because C already lost the token, it has no intention keeping
the token for itself. C will sign the token and send it to P. If C should fail to

send the signed token, P can present the unsigned token to AH(C). The posses-
sion of the token proofs that the transaction had started and the token will be
removed from the list and is finally lost for C. The aforementioned reputation
system provides further incentives against such malicious behavior. On the other
hand, if both peers are consenting to cancel the transaction, C does not lose its
tokens. The "planned to spendn-mark just needs to be removed from the tokens
in the token list a t AH(C).

.-.-.-.-.-.-,-.

L.. -..--.. .*
ACCOUR Balance ~ccourn Balan?~

Service Request

tl Tokens (<&I)

Ready i t
, 9

(a) Normal Transaction (b) Trustable Transaction

Figure 3: Transaction Procedures

4 Trust & Security Considerations

It is crucial for the use of an accounting mechanism that the information it pro-
vides is correct. Therefore, the token-based system has been designed to provide
a high degree of trust for distributed systems.

Robbery. Tokens were designed to eliminate robbery. Tokens contain the
owner id that cannot be changed without detection through the system signature.
Spent tokens contain the token receiver secured through the owner's signature.

Forgery. The system signature on each token ensures that the basic token
data cannot be changed and that no Peer can create tokens itself. Thus, the
system signature prevents forgery and is crucial for the trustworthiness of tlie
system. Accordingly, fraudulent collaboration of trusted peers must be avoided.

This can be achieved if in a quorum of trusted peers is a t least one trustworthy
peer. The probability of a quorum consisting of a t least one good Peer can be
determined using the hypergeometric distribution. The resulting probability p
defines the trust level of the system according to:

T number of trusted peers
, where t quorum size

p, percentage of good peers

Figure 4 shows the required quorum size for specific trust levels. Moreover,
because the trusted peers are not aware which other peers belong to a quorum,
having only bad peers in a quorum does not mean that this results in fraud. The
chosen trusted peers niust also collaborate. Thus, the quorum peers must know
which other peers have been chosen for the quorum.

(a) Trust Level 99.0 (b) Trust Level 99.9

Figure 4: Required Quorum Size for Trust Levels by Percentage of Good Peers

Furthermore, peers can only become trusted and receive a part of the shared
system private key, if their reputation is above a specific threshold value. Ac-
cordingly, the proportion of bad peers among the trusted peers can be assurned
less than the proportion of bad peers in the whole system. The actual trust
threshold value depends on the used reputation system.

Additionally, threshold cryptography provides different proactive rnechanisms
to secure the key frorn being comprornised. The key parts will be updated period-
ically using proactive secret sharing [16]. This makes the old key parts obsolete
without changing the actual key. The system's public key remains the same.
Further, a new system key will be created periodically using the decentralized
method presented in [7]. This is enforced through tokens being valid only for a
specific period of time. Therefore, the unique token id contains the creation date
and time. Outdated tokens can be exchanged for new tokens using the Token
Aggregation process. If the system's private key is kept secret the system can be
considered secure.

Double Spending. The verification for double spending relies on the data
hold a t the account holders. Thus, users might try to corrupt their token list a t
the account holders. This is avoided by not allowing peers to send any queries
or enquiries to the account list. Rule breaches are reported to the reputation
system. F'urther, the token list a t the account holders is a positive list. If a peer
plans to double spend a token, it has to avoid that the token is rnarked in the
list as planned-tespend and later rernoved frorn it during token aggregation;
though in both actions the Peer is not involved.

Malicious peers trying to remove tokens frorn the token list of another peer
must guess token ids of existing tokens. That is very hard because the creation
date and time in milliseconds and the random serial number have to be guessed
correctly. Therefore, this kind of messages is obvious malicious behavior and will
be reported to the reputation system.

In P2P systerns (even if using a DHT) it cannot be guaranteed that a remote
account a t the account holders is never lost. In such a case the account owning
peer would not be eligible to receive services anymore. Since in the token-based
system the tokens are stored locally, users can secure themselves against loss by

making a backup of their tokens. The Ioss of an account a t the accourit holders
will just influence the ability to check for double spending. Since a peer can not
notice if its remote account is lost, it must assume that double spending would
still be detected. Hence, it will be discouraged to cheat.

5 Performance Analysis

We have implemented the token-based accounting system based ori JXTA 2.2.1
[14]. Measurements of message sizes were used to simulate the accounting scheme
with the simulator presented in [9].

To study the performance of the token-based accounting system two use cases
have to be distinguished - costs for maintenance and costs for transactions.

Maintenance. Maintenance costs arise from keeping the remote accounts
consistent and from the requirement to keep the Systems private key secret. This
involves calculating key updates a t one quorum of trusted peers and distributing
new key parts aftenvards to the rest of the trusted peers. Table 1 summarizes
the complexity of the maintenance actions, where k denotes the size of the bank-
Sets and a (t, T) secret sharing scheme is used, where T denotes the number of
trusted peers in the systern.

Table 1: Account Holder Set & System Key Maintenarice Complexity

l~ccount ConsistencviSvstem kev related owerationsl
I . , ., I

I node arrival lO(k) lktv u ~ d a t c calculations10(t2~ 1 1 , . I I \ ,

node departurel O(k) lkey update distributionl O(t2)

Transactions. For the analysis we assume a conservative ratio of 67% good
peers in the system. Further, we set a trust level of Oll% which results in a
quorum size t of 6 trusted peers. Furthermore, we set the account holder Set size
k to 4. We model a file sharing scenario, where for 1 MB download 1 token is
required and the average file size s is 5 MB. Users exchange tokens in different
batch sizes b. The trustable transaction procedure is used. If n transactions are
carried out the average number of accounting messages M sent in such a scenario
results in:

M(n: k,t , b) = n(2s + 2k) + ? (I + 2k: + 2k + 2t)
For 100 transactions exchanging 500 tokens with a batch size of 20 results

in 3125 messages. Simulating this scenario the token-based accounting system
creates an additional overhead of less than 1% (for the mentioned example it is
less than 3,5 MB overhead for file transfers of 500 MB). Figure 5 (a) shows the
generated traffic for different batch sizes and up to one million transactions. As
it can be expected, the overall traffic generated by the token-based accounting
system is reduced as the batch size increases. However, the effect levels off after
a batch size of 20. Figure 5 (b) shows the influerice of increased quorum size.
The effect is not strong. Even with a very high trust level (t=18) the system still
generates not more than 1% of overhead. The effect of size of account holder Set
for the generated traffic is very small and therefore the graph is omitted here.

,D

D 2m rm sw sai iwa
11Wl lW l lüal 14-1 l s s S l

NO. O<'l-MOm
m a ; d n * l m d n n i)

(a) by batch size (b) by quorum size

Figure 5: By Token-Accounting Scheme Generated Traffic

6 Summary & Conclusions

One of the biggest challenges for a wider deployment of P2P systems is to re-
trieve, collect and use information about the resource utilization within the sys-
tem. It is crucial that the information is secure and reliable while the core features
of P2P are still maintained.

This paper presents a flexible and trustworthy token-based accounting scheme
for P2P-systems. Its purpose is to collect accounting information of transactions.
This information can be used to coordinate the behavior of the system's entities
to achieve a higher system performance. Further, the collected information can
be used as basis for pricing and price finding processes. Moreover, this builds
the foundation for the development of a market within P2P systems. Further,
the collected accounting information could be the basis for a payment system to
support commercial applications.

Since the responsibility of creating tokens is delegated to a randomly selected
quorum of peers, fraudulent behavior is prevented. Only if all peers in the quorurn
would be malicious, tokens can be forged. Also, a trustable payment mechanism
is available that does not require to involve a third party. Thus, this approach
is especially scalable.

The token-based accounting scheme is very flexible through the introduction
of the aggregation function. Here the exchange ratio of used tokens against new
tokens can be defined by the usage policy. Thus, different economic models can
be implemented.

The further steps to investigate next are detection of the need for a system
key update or system key creation procedure. Also the economic behavior of the
system with respect to inflation and deflation will be evaluated using simulations.

References

1. Crypto-id project. http://crypto-id.jxta.org/, 2004.
2. edonkey2000. http://www.edonkey20OO.com, 2004.

3. emule project. http://emule-project.net/, 2004.
4. E. Adar and B. A. Huberman. Free riding on gnutella. First Monday, volume 5,

number 10, Oktober 2000.
5. A. Agrawal, D. J . Brown, A. Ojha, and S. Savage. Bucking free-riders: Distributed

accounting and settlernent in peer-to-peer networks. Techiiical Report CS2003-
0751, UCSD, June 2003.

6. A. Barmouta and R. Buyya. Gridbank: A grid accounting services architecture
(gasa) for distributed systems sharing and integration. In 17th ZPDPS, Workshop
on Internet Computing und E-Commerce, Nice, France, April 22-26 2003.

7. D. Boneh and M. Franklin. Efficient generation of shared rsa keys. Journal of the
ACM (JACM), 48(4):702-722, July 2001.

8. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO '88,
volume 403 of LNCS, pages 319-327. Springer Verlag, 1990.

9. V. Darlagiannis, A. Mauth, N. Liebau, and R. Steinmetz. An adaptable, role-based
simulator for p2p networks. In Proceedings of MSV'04, pages 52 - 59, Las Vegas,
Nevada, USA, june 2004.

10. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO '89, voluine
435 of LNCS, pages 307-315. Springer-Verlag, 1989.

11. D. Dutta, A. Goel, R. Govindan, and H. Zhang. The design of a distributed rating
scheme for peer-to-peer systems. In Proceedings of the Worlcshop on the Economics
of Peer-to-Peer Systems, Berkeley, California, June 2003.

12. S. Kamvar, M. Schlosser, and H. Garcia-Molina. Eigenrep: Reputation manage-
ment in p2p networks. In Proceedings of the 12th International World Wzde Web
Confemnce, 2003.

13. G. Medvinsky and B. C. Neuman. Netcash: A design for practical electronic cur-
rency on the internet. In Proceedings of the Ist ACM CCS Conference, November
1993.

14. Sun Microsysterns. Project jxta.
15. T. Moreton and A. Twigg. Trading in trust, tokens, and stamps. In Proceedings

of the Workshop on the Economics of Peer-to-Peer Systems, Berkeley, California,
June 2003.

16. T. Rabin. A simplified approach to threshold and proactive rsa. In Proceedings of
Crypto, 1988.

17. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM Middleware, pages
329-350, Heidelberg, Germany, November 2001.

18. W. Thigpen, T. J. Hacker, L. F. McGinnis, and B. D. Athey. Distributed accounting
on the grid. In Proceedings of the 6th JCIS? pages 1147-1150, 2002.

19. E. G. Sirer V. Vishnumurthy, S. Chandrakumar. Karma : A secure economic
framework for peer-to-peer resource sharing. In Proceedings of the Workshop on
the Economics of Peer-to-Peer Systems, Berkeley, California, June 2003.

20. B. Yang and H. Garcia-Molina. PPay: Micropayrnents for Peer-to-Peer Systems.
In Proceedings of the 10th ACM CCS Conference, Washington D.C., October 2003.

