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Abstract- Significant research has been dedicated to methods 
that estimate the available bandwidth in a network from traffic 
measurements. While estimation methods abound, less progress 
has been made on achieving a foundational understanding of 
the bandwidth estimation In this paper, we develGp a 
min-plus system theoretic formulation of bandwidth estimation. 
We show -that the problem as well as previously proposed 
solutions can be concisely described and derived using min-plus 
system theory, thus establishing the existence of a strong link 
between network calciilus and network probing methods. We 
relate difficulties in network probing to potential non-linearities 
of the underlying systems, and provide a justification Tor the 
distinctive treatment of FIFO scheduling in network probing. 

The benefits of knowing how much network .bandwidth 
is available to an application has motivated the development 
of techniques that infer the available bandwidth from traffic 
rneasurements [I], P I ,  [31, [41, [SI, [61, 171, 181, P I ,  [101, 
[ I  I], [12]. Even though the number of techniques available 
today is significant and much empirical experience has been 
gained, less progress has been made towards a foundational 
understanding of measurement based methods for estimating 
the available bandwidth. Recent stochastic analyses point out 
that an improved understanding of the principles of bandwidth 
estimation could lead to better methods [13], [14]. 

In this paper, we pursue a different avenue to reason about 
available bandwidth estimation. We view bandwidth estimation 
as the analysis of a deterministic min-plus linear system. 
This approach enables us to give mathematical derivations 
that show how existing bandwidth estimation methods infer 
information about a network. Also, we are able to reason 
which bandwidth estimation methods can extract the most in- 
formation from a network. Finally, we can show that some key 
difficulties encountered when measuring available bandwidth 
become evident in a system theoretic view, and that heuristics 
that are applied in practice can be explained in terms of min- 
plus system tlieory. 

We view bandwidth estimation as the problem of deter- 
mining an unl:nown function that describes the available 
bandwidth, based on measurements of a single sequence of 
probing packets or passive measurements of a single sample 
path of arrivals. Ciiven a Set of (deterministic) timestamps that 
iecord the transmission times of probing packets and their 
arrival times at the destination, we show how and how much 
information can be extracted about the network. 

We show that estimating the available bandwidth in a 
general network corresponds to solving a max-min optimiza- 
tion problem. The problem becomes more tractable when the 
network satisfies the property of 'min-plus linearity'. We show 
that many existing estimation techniques can be accurately 
characterized if we interpret them as analyzing a network with 
linear input-output relationships. We explain why available 
bandwidth estimation is difficult if the underlying network uses 
FIFO scheduling by showing that the input-output relation of 
FIFO systems is decomposable into a min-plus linear and a 
disjoint non-linear region. Here, the crossing of these regions 
coincides with the available bandwidth. 

The arguments in this paper draw from known relationships 
between linear system theory and the network calculus. The 
success in describing relatively complex probing schemes us- 
ing min-plus algebra hints at a possibly stronger link between 
bandwidth estimation and network calculus. A limitation of 
our work is that we only consider a single packet trace or 
sequence of probing packets. Since, in principle, a system 
theoretic approach does not preclude a statistical analysis, 
where each probe is interpreted as a random sample, we 
believe that this limitation can be eventually removed. 

The remainder of this paper is structured as follows. In 
Section 11, we discuss bandwidth estimation methods and other 
related work. In Section III, we review the min-plus linear 
system interpretation of the deterministic network calculus. In 
Section IV, we formulate bandwidth estimation as the solution 
to an inversion problem in min-plus algebra. In Section V, 
we derive solutions to compute the inversion, and relate them 
to probing schemes from the literature. In Section VI, we 
justify how these probing schemes can be applied in networks 
that are not min-plus linear. We present brief conclusions in 
Section W. 

The goal of bandwidth estimation is to infer from mea- 
surements a reliable estimate of the unused capacity at a 
multi-access link, a single switch, or a network path. The 
available bandwidth of a network is often specified as A = 
mini(Ci - Xi), where Ci and Xi are the capacity and total 
traffic, respectively, on link i of a network path. The majority 
of estimation methods monitor the transmission of control 
(probe) packets. We call these methods active monitoring or 
probing schemes. An alternative approach is to take passive 
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measurcmcnts by monitoring livc data traffic in a network. 
The latter group is the preferred approach for measurement 
based admission control (MBAC), which seeks to determine 
if a network has sufficient resources to support minimal 
service requirements [15], [16]. In comparison to passive 
measurements, probing schemes have an additional degree of 
freedom since they can determine the transrnission Pattern of 
probing packets. 

Active monitoring techniques typically generate probing 
traffic as packet pairs or packet trains. Packet pairs consist of 
two packets with a defined spacing, and packet trains consist 
of more than two packets. Since it was first suggested in 
[17], [18], packet pair probing has evolved significantly, and 
has been used for estimating the bottleneck capacity (e.g., 
Bprobe [I], CapProbe [IO]) as well as the available bandwidth 
(e.g., Spruce [2]). The rationale behind these methods builds 
on the relation of packet dispersion and available bandwidth 
resources, i.e., packet pairs with a defined gap may be spaced 
out on slow or  loaded links and thus carry information about 
the network path. Packet train methods (e.g., PBM [ l l ] ,  
Cprobe [I], pathrate [12]) seek to improve the accuracy of 
bandwidth estimation over packet pairs. 

More recently proposed schemes, including pathload [4], 
[5], pa~hvar [9], TOPP [3], PTRIIGI [6], pathchirp [7], and 
BFind [8], adaptively vary the rate of probing traffic to induce 
congestion in the network. This has been found to increase the 
fidelity of cstimation methods. For example, pathload uses 
a sequence of constant rate packet trains, and increases the 
transmission rate of consecutive trains until they converge to 
the available bandwidth. Pathchirp uses packet trains, referred 
to as chirps, with an exponentially decreasing inter-packet gap. 
Here, the network is probed over a range of rates similar to 
pathload, however, the rate scan is perfonned within a single 
packet train. 

Some estimation techniques are designed with an assump- 
tion that the network as a whole exhibits the behavior of a 
single queueing system with Cross traffic. Often it is assumed 
that the network behaves as a single FIFO system [2], [3], [6], 
[7], [19]. This is justificd by the particular packet dispersion of 
FIFO systems which is matched by empirical data [19]. Since 
a flow in an overloaded FIFO system may receive a share of 
the capacity that exceeds the available bandwidth, it has been 
found that the best estimates are obtained if the probing traffic 
increases the load close to, but not beyond, an overloaded state. 
An analytical investigation in [14], [20] showed that probing 
schemes can be further improved by accounting for the random 
fluctuations of traffic. 

We note that links between network calculus and bandwidth 
estimation, have been made before mostly in the context of 
MBAC [21], [22], [23]. 

111. MIN-PLUS LINEAR SYSTEM THEORY FOR NETWORKS 

This section reviews the linear system representation of 
networks and introduces needed concepts and notation. We 
consider a continuous-time setting. 

Input signal Output signnl 
(Arrivals) (Deparfures) 

A(t) 

Sysrem wifh impulse response 
(Network with service curve) 

Fig. 1. Linear Time-Invariant system and min-plus linear network. 

Classical linear system theory deals with linear time- 
invariant (LTI) systems with input signal A(t )  and output 
signal D(t)  (see Fig. I ) .  Linear means that for any two pairs 
of input and output signals ( A i ,  D l )  and (Az ,  Dz), any linear 
combination of input signals blAi ( t )  + bzAz(t) results in 
the linear combination of output signals bl Dl ( t )  + bzDz(t). 
Time-invariant means that for any pair of inputs and outputs 
( A ,  D) ,  a time-shifted input A(t - T )  results in a shifted output 
D(t - T ) .  

Let S ( t )  be the impulse response of the system, that is, the 
output signal generated by the system if the input signal is a 
unity (Dirac) impulse at time Zero. The basic property of an 
LTI system is that it is completely characterized by its impulse 
response, where the output of the system is expressed as the 
convolution of the input signal and the impulse response: 

CO 

D(t)  = A(r)S( t  - T ) ~ T  =: A * S( t ) .  
J_, 

A. Min-Plus Algebra in the Network Calculus 

A significant discovery of networking research fmm thc 
1990's is that networks can often be viewed as linear systems, 
when the usual algebra is replaced by a so-called min-plus 
algebra [24], [25], [26]. In a min-plus algebra [27], addition is 
replaced by a rninimum (we write infimum) and multiplication 
is-replaced by an addition. Similar to LTI systems, a min- 
plus linear system is a system that is linear under the min- 
plus algebra. This means that a rnin-plus linear cornbination 
of input functions inf{bi + Al( t ) ,  b2 + Az( t ) )  results in the 
corresponding linear combination of output signals inf{bl + 
D l ( t ) , b ~  + Dz(t)) .  In min-plus system theory, the burst 
function 

takes the place of the Dirac impulse function. 
Let S ( t )  be the impulse response, that is, the output when 

the input is the burst function 6(t) .  Any time-invariant min- 
plus linear system is completely described by its impulse 
response, and the output of any min-plus linear system can 
be expressed as a linear combination of the input and shifted 
impulse responses by 

As in [24], [25], [26] we use the convention that input and 
output signals in the min-plus linear system theory are non- 
decreasing non-negative functions. In analogy to LTI systems, 
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this operation is referred to as convolution of the min-plus 
algebra [27].' Conversely, if there exists a function S ( t )  such 
that D ( t )  = A * S ( t )  for all pairs ( A ,  D ) ,  then it follows that 
the system is min-plus linear. 

The min-plus convolution shares many properties with the 
usual convolution, e.g., it is commutative and associative. The 
associativity of min-plus convolution is of particular impor- 
tance since it implies an easy way of concatenating systems 
in series. Given a tandem of two min-plus linear systems Si ( t )  
and S2( t ) ,  the output can be computed iteratively as D ( t )  = 
( A * S l )  * S 2 ( t )  and, with associativity, D ( t )  = A* ( S i  *S2) ( t )  
holds. This leads to the important observation that the tandem 
system is equivalent to a single system with impulse response 
S ( t )  = s, * S2(t). 

The observation that some networks can be adequately 
modeled by a min-plus linear system led to the min-plus 
formulation of the network calculus [24], [25], [26]. Here, 
a system is a network element or entire network, input 
and output functions A and D are arrivals and departures, 
respectively, and the impulse response S, called the service 
curve, represents the service guarantee by a network element. 
Network elements that are known to be min-plus linear include 
a work-conserving constant rate link ( S ( t )  = C t ,  where C 
is the link capacity), a shaper ( S ( t )  = U + p t ,  where U 

is a burst size and p is a rate), and a rate-latency Server 
( S ( t )  = r  ( t  - d)+, where T is a rate, d is a delay, and 
( X ) +  = rnax(x, O)), and their concatenations. 

The relevante of the network calculus as a tool for the 
analysis of networks results from an extension of its formal 
framework to networks that do not satisfy the conditions of 
min-plus linearity. Nonlinear systems implement more com- 
plex mappings ll of arrival to departure functions D ( t )  = 
l l ( A ) ( t ) .  In the network calculus, these are replaced by linear 
mappings that provide bounds of the form D ( t )  2 A * S ( t )  
or D ( t )  5 A  * 3(t) ([26], pp. xviii). Here, S is referred to 
as a lower service curve and 3 is referred to as an upper 
service curve, indicating that they are bounds on the available 
service. In a min-plus linear system, the service curve S  is 
both an upper and a lower service curve ( S  = = T), which 
is therefore frequently referred to as emct service curve. 

B. Legendre transform in Min-Plus Linear Systems 

In linear system theory, the Fourier transform of f ( t ) ,  
denoted by Ff ( W ) ,  establishes a dual domain, the frequency 
domain, for analysis of LTI systems. In the frequency domain, 
the Fourier transform turns the convolution to a multiplication, 
that is, Ff ,g (w)  = Ff ( W )  . Fg(w).  

In min-plus linear systems, the Legendre transform, also 
referred to as convex Fenchel conjugate, plays a similar role. 
The Legendre transform of a function f ( t )  is dcfincd as 

C ( r )  = s u p { i ~  - f ( T ) ) .  
7 

Since r can be interpreted as a rate, one may view the domain 
established by the Legendre transform as a rate domain. 

'We re-use the symbol for notational simpliciiy. The contexi makes this 
slight abuse of notaiion non-arnbiguous. 

The Legendre transform takes the min-plus convolution to an 
addition [27], [28], that is? 

Other properties of the Legendre transform that we exploit in 
this paper are that, for convex functions f ,  we have 

In other words, a convex function f can be recovered from 
Cf by reapplying the Legendre transform [28]. In general, we 
only have 

C(C / )  I f and C ( L  f )  = convf , (4) 

where convf denotes the convex hull of f ,  defined as the 
largest convex function smaller than f .  

Another property that will be used is that the Legendre 
transform reverses the order of an inequality, i.e., 

The Statement is an equivalency when g is convex. Applica- 
tions of the Legendre transform in the network calculus have 
been previously studied in [21], [29], [30], [3 I] .  

IV. A MIN-PLUS ALGEBRA FORMULATION OF THE 
BANDWIDTH ESTIMATION PROBLEM 

We view a network as a time-invariant min-plus linear or 
non-linear system that converts input signals (arrivals) into 
output signals (departures) according to a fixed but unknown 
service curve S .  The service curve of the network expresses 
the available bandwidth, which can be a constant-rate or a 
more complex function. Measurements of a network probe, 
defined as a sequence of at least two packets, can be charac- 
terized by an arrival function AP(t) and a departure function 
DP(t), where the functions represent the cumulative number of 
bits Seen in the interval [0, t ] .  These functions are constructed 
from timestamps of the transmission and reception of packets, 
and from knowledge of the packet size. In Fig. 2  we illustrate 
a network probe consisting of five packets of equal size 
with fixed spacing between consecutive packets. The vertical 
distance between arrivals and departures can be viewed as a 
virtual backlog B ( t )  = AP(t) - DP(t). The horizontal distance 
can be viewed as a virtual delay W ( t ) .  

Representing the network by a rnin-plus linear system, we 
interpret a probing scheme as trying to determine from a 
specific sample of functions AP and DP an a priori unknown 
lower service F, such that D L A * 2" holds for all pairs 
( A l  D )  of arrival and departure functions. Since the estimate of 
the available bandwidth should not be overly pessimistic, the 
goal of a probing scheme is to select a maximal p ( t ) ,  i.e., 
there is no other lower service curve larger than SU(t)  that 
satisfies the definit i~n.~ One problem in devising a probing 

2 ~ h e n e v e r  possible, from now on we use shorthand notation f to mean 
' f ( t )  for all t  2 O', and L, io mean '&,(T) for all T 2 0'. 

3 ~ e  define a partial ordering of service curves, such ihat Si 5 Sz iff. 
Si(t)  5 Sz(t) for all t .  
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time 1 

Fig. 2. Example arrival and depai~ure function of  a probe of  five packets. 

scheme lies in the selection of the probing pattem, i.e., a 
function AP that reveals a maximal service curve. 

Taking a step back and looking at the overall problem, 
bandwidih estimation is trying to find a service curve 5" 
that has the best worst-case performance. This corresponds 
to expressing SU as the solution to the following optimization 
problem: 

MAXIMIZE 3 
SUBJECT T0 D(t)  2 inf,{A(r) + $(t - T)), 

Vt 2 0, for all pairs ( A ,  D). 

This problem has the structure of a max-min optimization, 
which is fundamentally hard. In addition, since service curves 
only form a partial ordering, there may not be an optimal 
solution, but only solutions that cannot be further improved. 

The bandwidth estimation problem is easier when the net- 
work can be described by a min-plus linear system. As we 
will see in Section W, some non-linear networks, such as 
FiFO systems, are min-plus linear under low load conditions. 
Recalling that a system is min-plus linear if it can be described 
by an exact service curve, the bandwidth estimation problem 
is reduced to solving the inversion of 

D(t)  = A * Su( t )  for all t  2 0. 

If we can take a measurement of AP and DP which solves 
the equation for Su,  then, due to min-plus linearity, we have a 
solution for all possible arrival and departure functions. From 
Section I n ,  we can infer that a solution is obtained by using the 
burst function of Eq. (1) as probing Pattern, i.e., AP(t) = 6(t) .  
This follows since the service curve is the impulse response 
of a min-plus system, that is, DP(t) = 6 * Su( t )  = Su(t) .  
However, sending a probe as a bunt  function is not practical, 
since it assumes the instantaneous transmission of an infinite 
sized packet sequence. While a burst function can be approxi- 
mated by a sufficiently large back-to-back packet train, a high- 
volume transmission of probes consumes network resources 
and interferes with other packet traffic. More importantly, 
the service curve of a burst function (or its approximation), 
may cause some networks that operate in a min-plus linear 
regime to become non-linear. The observation that large packet 
trains can lead to unreliable estimates has been noted in the 
literature [12]. 

In the next section, we present derivations for three band- 
width estimation methods in min-plus linear systems. We are 

able to relate two of these methods to previously proposed 
probing schemes. Some schemes can be applied to certain 
non-linear systems. 

We conclude this section with remarks on some general 
aspects of probing schemes and their representations in min- 
plus linear system theory. 

Timestamps and asynchrony of clocks: When clocks at 
the sender and receiver of a probing packet are perfectly 
synchronized, and the sender includes the transmission time 
into each probing packet, the receiver can accurately construct 
the functions AP and DP. In practice, however, clocks are not 
synchronized. When clocks have a fixed offset (but no drift), 
the arrival function AP can be viewed as being time-shifted by 
an unknown offset T. In the min-plus algebra a time-shift can 
be expressed by a convolution, i.e., AP(t - T) = AP * 6 ~ ( t )  
where bT(t) = 6(t - T ) .  Here, the convolution of arrival 
function and service curve becomes (AP * d T )  * 2, which 
due to associativity and commutativity of the convolution 
operation, can be rewritten as AP * (F * d ~ ) .  Hence, when 
the offsct is fixed but unknown, even an ideal probing schcmc 
can only compute a service curve that is a time-shifted version 
of the actual service curve of the network. Drifting clocks 
make the problem harder. Many bandwidth estimation schemes 
circumvent the problem of asynchronous clocks by retuming 
probes to the sender [I], [8], or by only recording time dif- 
ferences of incoming probes [2], [3], [4], [6], [7]. A moment's 
consideration shows that knowledge of the differences between 
the transmission and arrival of probing packets has the Same 
limitations as dealing with an unknown clock offset T between 
the sender and receiver of probing packets. 

Packet pairs: The amival and departure functions of a packet 
pair have each only three points, i.e., the origin and the two 
timestamps related to the packet pair. If it can be assumed that 
the service curve has a certain shape, e.g., a rate-latency curve 
S ( t )  = T .  ( t  - d)+, the service curve can be recovered. In the 
absence of such an assumption, packet pair methods may not 
be able to recover more complex service curves. 

In this section, we derive bandwidth estimation methods 
as solutions to finding an unknown service curve for a min- 
plus system. We make a number of idealizing assumptions. 
First, we consider a fluid Row view of traffic and service. 
This assumption can be relaxed at the cost of additional 
notation. Unless stated otherwise, we assume that the network 
represents a min-plus linear system. This assumption will be 
partially relaxed in Section W. We generally assume that 
accurate timestamps for transmission and arrival of probes 
are feasible. If measurements only record time differences 
between events or include an unknown clock offset between 
sender and receiver, the computed service curves need to be 
time shifted by some constant value. 

A. Passive Measurements 

We first try to answer the question: How much information 
about rhe available bandwidth can be extracted from passive 
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measurements of trafic? To providc an answer we first in- 
troduce the deconvolution Operator of the min-plus algebra, 

TABLE I 

PARAMETERS OF ON-OFF SOURCES. 

lution ( g  # f  0 ( f  * g ) ) ,  however, it has aspects of such an 
inverse. This is expressed in the following duality Statement 
from [26], which states that for functions f ,  g  and h, the The main drawback of this method is that it can only be 
following equivalency h o ~ d s : ~  applied to linear networks. For networks that do not satisfy 

min-plus linearity, i.e., that can only be described by a lower 
f < g * h  h 2 f D g .  (6) service curve ( D  2 A*S) or upper service curve ( D  5 A*z), 

which is defined for two funitions f  and g  by Scenario high load low load 

. . 

We will exploit this property to formulate the following only computes a (not useful) lower bound for an upper 

lemma. service curve 3. As another remark, note that Lemma I does 
not help us with designing a probing scheme, since it does not 

f @ g ( t )  = s u p { f  (t + 7 )  - 9 ( 7 ) ) .  
T 

The deconvolution operation is not an inverse to the convo- 

Lemma 1 For two non-decreasing non-negative functions g  provide guidance how to select the traffic AP for the network 
probes. und h ,  we have 

For illustration of the passive measurement scheme, we 

Proof. Let us define f  = g  * h and L = f 0 g .  From 
Eq. (6) we can conclude that f  < g  * h. By definition of f ,  
we see from Eq. (6) that h 2 f 0 g. By definition of L, this 
gives us h 2 h. From h 2 and f = g  * h we get_ f  2 g  * h. 
Combining the two Statements gives us f  = g  * h. Now, by 
inserting the definition h = f 0 g ,  we obtain f = g  * ( f  0 9 ) .  
Inserting the definition f = g * h  yields g* h = g* ( ( g *  h ) @ g ) .  
Reordering the expression using commutativity of the min-plus 
convolution completes the proof. H 
The lemma justifies the following passive measurement 
scheme. Let us denote the arrival and departure functions 
measured from a traffic trace of one or more flows by At' and 
Dt'. By assumption of linearity, we know that Dt' = At' * S 
holds, but the shape of S is unknown. Suppose we compute 
a function 3 from the trace as the deconvolution of the 
departures and the arrivals, i.e., we Set 

Then, we can conclude with Lemma 1 that 

Burstiness 
Number of sources 

Source peak rate [Mbps] 
Total average rate LMbps] 

With the duality property from Eq. (6) we obtain with Eq. (7) 
and Eq. (8) that 

S ~ S .  

high 
1 

200 
10 

Hence, the estimate of the Service curve S is a lower service 
curve, such that for all pairs of arrival and departure functions 
(A, D),  we have D 2 A * 3. Since, from Eq. (8), 
can completely reconstruct the departure function from the 
arrival function, we can conclude that 3 is the best possible 
estimate of the actual service curve that can be justified from 
measurements of At' and Dt', in the sense that it extracts the 
most information from the measurements. 

high 
1 

200 
20 

4We use shorihand noiation f = g * h 10 mean 'f ( t )  = ( g  r h)(t)  for all 
t  2 0'. 

ined 
5 

40 
'0 

now present numerical results of an (idealized) fluid flow 
scenario of a min-plus linear system, which is governed by 
a service curve S( t )  = ( b  + rt)  * (R[t - T]+) .  The system 
represents a network that regulates the ingress with a leaky- 
bucket with Parameters b  and r, and the service corresponds to 
a latency-rate service curve with delay T and rate R. We Set 
b  = 0.75 Mb, T = 25 Mbps, R = 100 Mbps, and T = 10 ms. 

As traffic trace, we use an arrival sample path that represents 
the aggregate amvals from a Set of statistically independent 
On-Off traffic sources. In the On state, a source generates 
traffic with a given peak rate, and in the Off state no data is 
generated. Every millisecond, an active source leaves the On 
state with probability p, and an Off source becomes active with 
probability q. This choice of traffic enables us to evaluate the 
sensitivity of the passive measurement method with respect to 
the burstiness of the trace, the fraction of available bandwidth 
that is utilized by the llows, and the length of the measurement 
period. 

The parameters are depicted in Table I. In the high Ioad 
setting, we Set p = 0.09 and q = 0.01, resulting in a total 
arrival rate of 20 Mbps. In low load, we Set p = 0.19 and 
q = 0.01, which leads to an average total traffic rate of 
10 Mbps. We control the bursdness of Lhe traffic by increasing 
the number of flows, and accordingly decrease the peak rate 
of each flow. Due to statistical multiplexing, an aggregate of 
multiple On-Off sources is less bursty than a single flow with 
the Same peak and average rate. In our plots burstiness levels 
of high, medium, and low correspond to a trace with 1, 5, and 
25 sources. 

In Fig. 3(a)-3(d) we show the estimates of the lower semice 
curves 3 obtained with the above method, and compare them 
to the actual service curve S, indicated as a thick (red) line 
in each graph. The length of the measurement is taken for 
1 second (plots on the left), 10 seconds (plots on the right). In 
aii plots, we See that burstier traffic leads to better estimates of 
the service curve. This is expected since the burstiest traffic, 
i.e., a burst impulse, can perfectly recover S (see Section IV). 

low 
25 

8 
l0 

med 
5 

40 
20 

low 
25 

8 
20 
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(a) High load, after I second. (b) High load, after 10 seconds. 

(C) Low load, after 1 second. (d) Low Ioad, afier 10 seconds. 

Fig. 3. Bandwidth estimation for passive measurcment of  a traffic trace. 

For the Same reason, the estimates improve when the traffic 
trace has a higher utilization of the available bandwidth. 
Observe that all estimates improve with increasing length of 
the evaluation period. This follows from the definition of the 
supremum in the min-plus deconvolution operation. 

Since the presented method is ideal in the sense that it 
computes the largest service curve (available bandwidth) that 
can be justified from a given traffic trace, our method will 
perform no worse than existing methods, e.g., from the MBAC 
literature 1151. 

B. Rale Scanning 

Next we consider probing schemes where sequences of 
packet trains are transmitted at different rates, such as 
pathload [4], [5]. We refer to these techniques as rate-scanning 
techniques. We provide a justification for this technique using 
min-plus system theory. 

Given arrival and departure functions A and D, using the 
earlier definition of backlog, the maximum backlog can be 
computed as 

Bnax = s u ~ { A ( t )  - D(t ) ) .  
t 

If the an-ivals are a constant rate function, that is, A(t)  = 
rt ,  and the network satisfies min-plus linearity, we can write 
B„, as a function of r as follows: 

Bmax(r) = sup{rt - inf(7.r + S( t  - T ) ) )  
t 7 

The first line uses that the departures in min-plus linear system 
theory can be characterized by D = A * S. The second 
line moves the infimum in front of the subtraction, where it 
becomes a supremum. The third line is simply a substitution. 

Recalling the definition of thc Legendre transform from 
Subsection III-B, the right hand side of the last equation can 
be written as the Legendre transform of S ,  that is, Bmax(r) = 
&(T) .  This relation has been observed in [29], [32], [3 I]. We 
take a further step by applying this relation in the reverse 
transform. Due to Eq. (3), we have for convex service curves 
S that 

Thus, every convex service cuwe can be recovered by mea- 
surements of the maximum backlog B„, by constant-rate 
probe traffic that is sent at varying rates. (For service curves 
that are not convex one recovers, using Eq. (4), a lower bound 
for the service cuwe.) The interpretation of rate scanning is 
that each constant bit rate stream with rate r reveals one point 
Bna,(r) of the service curve in the Legendre domain & ( T ) .  

In practice, a rate scanning method specifies a rate incre- 
ment, which Sets the increase of the rate between packet trains, 
a rate limit, which Sets the maximum rate at which the network 
is scanned, and the length of the packet trains. The sewice 
curve calculated via rate scanning consists of piecewise linear 
segments. The choice of the rate increment determines the 
length of the segments, and, in this way, the accuracy of the 
computed sewice curve. Without offering a proof or further 
data, we note that (under loose assumptions) rate scanning 
is capable of tracking a convex service curve, up to a time 
where the derivative of the service curve reaches the rate limit. 
The higher the maximum rate, the more information about the 
service curve is recovered. 

A criterion for picking the rate limit suggested by our 
derivations is to stop rate scanning when increasing the 
scanning rate does not yield an improvement of the service 
curve. This criteria may fail when the underlying network is 
not min-plus linear. Pathload [4], [5] is a prototypical example 
of a rate scanning method. It uses an iterative procedure which 
varies the rate r of consecutive packet trains until measured 
delays indicate an increasing trend. Such a trend is interpreted 
as reflecting that the rate has exceeded the available bandwidtli. 
In Section V1 we remark that this criteria can be justified in 
non-linear Systems that behave linearly at low loads. 

The number of packets in a packet train must be large 
enough so that the maximum backlog can be accurately 
measured. Under the assumptions of the rate scanning tech- 
nique, i.e., the arrival function is a constant rate function and 
the sewice curve is convex, the backlog B ( t )  is a concave 
function. Hence, if increases to the backlog caused by the 
packets of a train are sufficiently small, additional packets of 
the train do not provide new information. 

In Fig. 4(a) we present an example of the rate scanning 
approach for a fluid-flow service curve with a quadratic form 
S ( t )  = 0.4t2. In the example, rate scanning is performed at 
rates 10, 20,. . . ,80 Mbps. In Fig. 4(a), we plot the maxi- 
mum backlog observed for each scanning rate. The function 
Bmax(r) is constmcted by connecting the measured data 
points by lines. (For any rate r exceeding the rate limit we 
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We can re-write this as 

z C ~ L C D - C A ,  
as long as the difference C D ( r )  - C A  ( T )  is defined for all r.  A 

, ,  

sufficient condition is that C A ( T )  < co, since it prevents both 
rateiirnii transforms C D  and C A  from becoming infinite at the Same 

value of T .  Another application of Eq. (5) yields 

(a) Maximum Backlog B„,(T). (b) Results with different rate limiis. C(&) 5 L(LD - C A )  . 
Fig. 4. Service curve estimation with rate scanning. If the System is min-plus linear, that is, D = A * S ,  we get, 

y =  1.01 

y= 1.02 

I y=1.04 ,.' 
, ...' , , 

'0 20 40 60 80 100 
iimc [ms] 

(a) Rate Chirps. (b) Results with different spread fac- 
tors. 

Fig. 5. Service curve estimation with rate chirps. 

make the conservative assumption that BmaX(r)  = co. The 
assumption gives us a Legendre transform for all rate values.) 
In Fig. 4(b), we show the service curves that are obtained 
with different rate limits. The higher the rate limit, the more 
accurate the results. 

Note that both the plots of the backlog in Fig. 4(a) and 
the service curves in Fig. 4(b) consist of linear segments. 
Decreasing the increment of the rate will improve the accuracy 
of the service curve. If we compared the service curves from 
the rate scanning method with the previous subsection, we 
would observe that the rate scanning method with rate limit 
r„, generates similar results as passive measurement of 
constant rate traffic with the Same rate. The diffcrence of 
results would consist of inaccuracies due to the approximation 
of the service curve by linear segments. 

C. Rate Chirps 

The need of rate scanning to measure a possibly large 
number of packet sequences has motivated a method where 
measurements are done with a single packet train, with an 
exponentially decreasing inter-packet spacing. The approach, 
proposed in [7], takes inspiration from chirp signals in signal 
processing, which are signals whose frequencies change with 
time. We refer to this approach as rafe chirp, since the 
decreased gap between packets corresponds to an increase of 
the transmission rate. 

We will show that a rate chirp scheme can be justified 
by properties of the min-plus system theory, specifically, 
properties of the Legendre transform. 

Suppose we have a lower service curve 3 satisfying D 2 
A * 2 for all pairs (Al D ) .  Taking the Legendre transform we 
obtain with the order reversing property of Eq. (5) and with 
Eq. (2), that 

C D  < C A * ~ = C A + C ~ .  

C ( L s )  = C(CD - C A )  . 

If S is convex, then by Eq. (3), we have S = C(CD - C A ) .  
This provides us with a justificalion for pathchirp [7] as a 

probing method. If we depict the transmission of a packet chirp 
as a fluid flow function, we See that it grows to an infinite rate, 
thus, yielding a Legendre transform that is finite for all rates. 
By measuring arrivals and departures of the chirp, denoted by 
Achap and ~ ~ ~ ~ p ,  we can compute a function s by 

S ( t )  = C(CDehrp - CAel,rp)(t) . (9) 

If the network satisfies D = A*S for all arrivals, then the right 
hand side of Eq. (9) computes C(&). Then, with Eq. (4), we 
obtain S _< S ,  which tells us that 3 is a lower service curve 
that satisfies D 2 A * s for any traffic with arrival function 
A and departure function D. If, in addition, S is convex we 
have S = S, and we can recover the service curve. 

In practice, a rate chirp stops sending packets at some 
maximum rate. Suppose that packets of a chirp are transmitted 
in a time interval [0, t k a X ] ,  and that the observations of D are 
made in [0, t g a x ] .  To make a practical rate chirp comply with 
the formal requirements of the above equations, we define the 
following extension: 

The arrival function is simply Set to co past the last mea- 
surement. The departure function is continued at a rate that 
corresponds to its slope at the time of the last measurement. 
For convex service curves S ,  the above extensions are conser- 
vative. 

In Fig. 5(a) we show several rate chirps for a network probe. 
The rate chirp consists of a sequence of probing packets of 
1200 Bytes that are transmitted at an increasing rate, starting 
at 10 Mbps and growing to 200 Mbps. The rate is increased 
by reducing the elapsed time between the transmission of the 
first bit of two consecutive packets, by a constant factor y, 
which is called the spread factor in [7]. Larger values for y 
lead to shorter chirps that grow fast to the maximum rate. 
In Fig. 5(b), we show the service curves computed from the 
chirps in Fig. 5(a). The actual service curve is S ( t )  = 0.4t2, 
indicated as a thick (red) line in the figure. It appears that a 
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Fig. 6. Service curve esiimalion of  a FIFO network. 

path chirp with a smaller spread factor y, which transmits more 
packets over longer time interval, leads to better estimates of 
the service curve. 

VI. ESTIMATION I N  NONLINEAR SYSTEMS: THE FIFO 
SYSTEM 

Extending bandwidth estimation to Systems that are not min- 
plus linear, i.e., are not described by an exact service curve, 
raises difficult questions. First, the formulation of bandwidth 
estimation for general networks from Section IV shows that 
the structure of the estimation problem becomes hard. More 
so, since in networks with non-linearities the network service 
may depend on the network traffic, knowledge of the available 
bandwidth may not help with predicting network behavior, or 
may even be ill-defined. 

However, there are networks that can be decomposed into 
a min-plus linear and a disjoint non-linear region. These 
networks behave like a min-plus linear system at low load. 
Increasing the traffic rate beyond a threshold causes the 
network to enter the non-linear region. Given such a network, 
the goal of bandwidth estimation is to determine the available 
bandwidth of the linear region. 

Consider a FiFO system with capacity C, where all traffic in 
the network is transmitted as constant-bit rate traffic. Suppose 
the FIFO queue Sees (cross) traffic at a rate of r,, and probing 
traffic is sent according to A(t) = rt. As observed in [I91 and 
supported by simulation results therein, the departure function 
of thc probing traffic is 

If the probing rate is above the threshold C - r,, the capacity 
allocated to the probe and cross traffic is proportional to their 
respective rates. As a result, the probing traffic gets morc 
bandwidth when its rate is increased. 

In Fig. 6 we show the results of bandwidth estimation for a 
FIFO system obtained in an ns-2 simulation [33]. We assume 
a scheduler with link capacity of 50 Mbps. Both the ingress 
and egress links to the scheduler have a propagation delay of 
each 10 ms. The cross traffic consists of 10 R P  sources that 
send traffic over a 25 Mbps access link. Probing traffic is sent 
to the queue on a 100 Mbps link, permitting us to overload 
the queue. We show the results for a burst impulse, passive 

measurements, rate scanning, and rate chirp and compare them 
to the actual available bandwidth. Packet sizes are Set to 
800 Bytes. The burst function is approximated by transmitting 
back-to-back probes at the maximum rate of 100 Mbps. For 
passive measurements wc use as traffic 2 seconds from a high- 
bandwidth variable bit rate video trace [34] that has an average 
rate of 17.1 Mbps and a peak rate of 154 Mbps. Rate scanning 
is performed at increments of 4 Mbps, and the maximum rate 
is determined using the criteria given in [SI. For the rate chirp 
method, we run the publicly available ns-2 simulation code of 
pathchirp, with a minimum rate of 1 Mbps, a maximum rate 
of 80 Mbps, and a spread factor of y = 1.2. 

For FIFO, shown in Fig. 6, the burst impulse transmits at the 
maximum rate of 100 Mbps, and obtains most of the available 
bandwidth (80% would be consistent with Eq. (10), however, 
the TCP background traffic in the simulations does not have a 
constant bit rate.). The passive measurement method underes- 
timates and sometimes overestirnates the available bandwidth. 
This is due to the variability of the bit rate. All other schemes 
provide good estimates of the available bandwidth. In this 
example and for the chosen Parameters, rate scanning and rate 
chirps provided the Same results, even though neither scheme 
was tuned for this example. 

We now offer a min-plus system interpretation of bandwidth 
estimation for FIFO for constant rate traffic. Consider the 
function Sji jo(t)  = (C - r,)t. From the empirical departure 
characterization D of a FIFO system from Eq. (IO), we can 
verify that the following is satisfied for all t  2 0: 

D(t) = (rt)  * Sj i fo  , if r  5 C - r, 

D(t )  1 (rt)  * Sj i fo  , if r  > C - r, . 

Therefore, Sji jo is an exact service curve for A(t)  = rt 
when r  < C - r,, and Sj i fo  is a lower service curve when 
the anivals exceed the threshold value. In fact, S f i f o  is the 
largest lower service curve for a FTFO system, and a solution 
to the maximization in Section IV. Any function larger than 
Sf i jo  may not be a lower service curve for r  > C - r,. This 
also serves as a proof that a FIFO system is not min-plus 
linear for r  > C - r,. So, we can view a FIFO network as a 
system that is min-plus linear at rates r  5 C - r,, and crosses 
into a non-linear region when the rate exceeds the threshold. 
The crossing of these regions coincides with the available 
bandwidth S j i f ,  Since a probing rate above C - r, in a 
FIFO system is the turning point where a backlog is created, 
the heuristic in pathload and pathchirp to stop measurements 
when increasing delays are observed can also be justified in 
terms of crossing the non-linear region. 

We emphasize that the above Statements hold only for 
constant rate cross and probing traffic. For variable rate traffic, 
e.g., TCP cross traffic and a video trace in Fig. 6, the 
interpretation remains to be established. Revising the notion of 
min-plus linearity so that short-term fluctuations of traffic do 
not make the system non-linear, as long as the long-term rate 
does not exceed the available bandwidth, is an Open problem 
and a topic of future research. 
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