
Chapter 8
Peer-to-Peer Overlays for Online Games

Max Lehn, Christian Groß, Tonio Triebel

In the past decade, a number of researchers have focused their work on peer-to-peer
technologies for networked multi-player games [10, 4, 2, 8, 3, 14]. Since the usage
of such a peer-to-peer overlay has a direct impact on the quality of experience of a
game, it becomes apparent that performance evaluation and comparison is an impor-
tant issue. The major challenge results from the fact that each approach is tailored to
a different purpose and has to be evaluated with an individual technique in mind that
is specific to the overlay. Thus, it is not a trivial task to compare the performance of
different solutions. In order to solve this problem, overlays must be separated into
different classes of equivalent functionalities. As introduced in Chapters 2 and 3,
a class can be defined by a common interface. Systems that implement this inter-
face are comparable. As a concrete example, systems for interest management and
game event dissemination are used in this chapter. A common interface, a represen-
tative scenario, a workload and metrics are defined, and an exemplary benchmark is
implemented and executed, comparing three different overlays.

8.1 Interface Definition

The first step in the creation of a benchmark is the definition of a common inter-
face. The functionality that should be evaluated must be defined, and a suitable set

Max Lehn
Technische Universtität Darmstadt, Databases and Distributed Systems Group, Darmstadt,
Germany, e-mail: mlehn@dvs.tu-darmstadt.de

Christian Groß
Technische Universtität Darmstadt, Multimedia Communications Lab, Darmstadt, Germany,
e-mail: chrgross@kom.tu-darmstadt.de

Tonio Triebel
Universität Mannheim, Mannheim, Germany, e-mail: triebel@informatik.
uni-mannheim.de

1

mlehn@dvs.tu-darmstadt.de
chrgross@kom.tu-darmstadt.de
triebel@informatik.uni-mannheim.de
triebel@informatik.uni-mannheim.de
rst
Textfeld
Max Lehn, Christian Groß, Tonio Triebel:Benchmarking Peer-to-Peer Systems. In: Wolfgang Effelsberg, Ralf Steinmetz, Thorsten Strufe, vol. LNCS, no. 7847, chap. Peer-to-Peer Overlays for Online Games, p. 143-167, Springer, June 2013. ISBN 978-3-642-38672-5.

2 Max Lehn, Christian Groß, Tonio Triebel

of instructions must be chosen. Systems that are able to implement these instruc-
tions can then be benchmarked. For peer-to-peer gaming overlays, there is no such
standardized functionality yet. However, looking at the network design of massively
multiplayer online games (MMOGs), a first interface can be derived.

According to Fan et al. [6], the design of an MMOG can be categorized into six
network issues: interest management, game event dissemination, NPC1 host alloca-
tion, game state persistence, cheating mitigation and incentive mechanisms. All of
them are relevant to most MMOGs. However, interest management and game event
dissemination are of major importance for the quality of experience of a networked
game, since they build the basic set of services. In addition, the major part of the net-
work traffic is generated by them. Thus, this chapter focuses on an interface based
on interest management and game event dissemination. These two aspects are com-
monly addressed as one issue by information dissemination overlays (IDO). In order
to be able to define a formal interface we first take a closer look at the functionalities
of each of the two.

Interest Management Every player has a different view of the game world,
which defines the parts of the world she can see and the events she can perceive.
Interest management decides which information is necessary to build such a per-
sonal view. An area of interest (AOI) defines the region from which a player
needs to receive game event information. Typically, the AOI is centered at the
player’s position and bounded by his vision range (VR).

Game Event Dissemination The game event dissemination system has to ensure
that each player receives all relevant game events within his AOI. Real-time
games require low latencies in the event dissemination to keep the players’ views
up-to-date. Since the AOI is bound to game world positions, the dissemination
systems are typically based on the proximity in the game world.

In order to choose a suitable set of instructions for the interface, it is necessary to
consider the software architecture of a game. An exemplary architecture consists of
a game instance containing the local game logic and a network engine managing the
network communication. From the benchmarking point of view, the network engine
implements the SUT, and the game instance applies the workload. The network en-
gine regularly gets updates of the local player’s state (particularly its position, i.e.,
its current game world coordinates) from the game instance and disseminates them
to all interested players. Depending on the particular IDO, the position information
is also used to build the overlay topology. The request and dissemination frequency
is chosen by the network engine so that it can adapt the generated update traffic
when necessary (e.g., in case of congestion). The network engine notifies the game
instance about updates on neighboring players within the AOI and about their posi-
tions. Game actions other than player movements are pushed by the game instance
to the network engine at the time when they occur. Those messages do not have
a semantic meaning to the network engine; they have to be delivered reliably and
without modification.

1 NPC: non-player character

8 Peer-to-Peer Overlays for Online Games 3

Figure 8.1 sketches the abstract view of the basic layers of a networked game.
The player interacts (through a user interface) the with the game instance. The net-
work engine synchronizes the game state using the underlying IP network.

Player

Game Instance

Network Engine

IP Network

Fig. 8.1: Schematic view of the layers of a networked game.

8.1.1 A Minimal Interface

A minimal interface for such systems could look as follows. Please note that, for
simplicity reasons, only the most relevant subset of the actual functions is described
here. Generally, there need to be functions for joining and leaving the network, as
in any typical peer-to-peer system. Since some peer-to-peer overlays are structured
based on the positions of the players in the virtual world, the join function transmits
the starting position of the joining player:

void join(Position p);
void leave();

The core functionality of the basic interest management as described above looks as
follows:

void setPosition(Position p);
List<Neighbor> getNeighbors();
void setAOISize(int radius);

setPosition updates the local player’s position. getNeighbors returns the
current set of neighbors within the player’s AOI; each Neighbor provides at least
the last known position of the corresponding player. Optionally, the local AOI size
can be adjusted using setAOISize. Finally the game event dissemination needs
only one additional function, which serves as a broadcast for arbitrary game data to
all peers in the AOI:

4 Max Lehn, Christian Groß, Tonio Triebel

void disseminate(Data d);

8.2 Non-functional Requirements

The most important non-functional requirements for network infrastructures for
games in general are a high responsiveness, a high view consistency, good fairness,
and low network costs. Responsiveness typically relates to a low update latency.
View consistency means that all players get the same information of all parts of the
game world that the respective player can see according to the game logic. A high
responsiveness in terms of state updates of the game world elements generally leads
to a high view consistency. A high view consistency among all players in turn is a
positive factor for fairness. Fairness describes how uniformly both the gaming ser-
vice quality (i.e., the aspects described above) and the costs are distributed among
the players. Finally, the peers should have a low cost in terms of bandwidth uti-
lization, processing power, memory, etc. Since in most cases bandwidth is the most
limiting factor, the other factors will be ignored in this scenario.

8.3 Workload

The generation of a typical workload is a fundamental part of a benchmark. It de-
termines the quality of the results as well as the flexibility of the benchmark. Thus,
in order to achieve a high quality, the workload needs to fulfill three requirements.
Firstly, it must be reproducible, so that the test scenario is exactly the same for each
evaluated overlay, and the test can be repeated a number of times with the same re-
sults. Secondly, it must be scalable, so that it allows to simulate an arbitrary number
of players. And lastly, the workload used for benchmarking should be as realistic as
possible to allow making meaningful statements about the quality of an overlay of
the game.

Fulfilling these three requirements is not a trivial task, since a real (massively)
multiplayer gaming session is a complex combination of interdependent processes.
Network and node properties like churn rate or connection quality influence the load
as well as the way in which players interact with the game world. Both processes
have to be modeled in order to reflect critical situations of the SUT (e.g., a massive
join on the network level and a high player density on the game level). Node behav-
ior is not application-specific, and its common modeling is discussed in the general
workload Section 3.4.

In contrast, modeling a player’s behavior depends on various game features. It
requires an understanding of game events that generate network messages as well
as models for human interaction in games. Generally, four common game workload
generation techniques can be identified: (real) human players, traces from real game
sessions, mobility models, and AI players (also called Bots) playing a game. Each of

8 Peer-to-Peer Overlays for Online Games 5

these approaches has advantages and disadvantages, and they fulfill the above stated
workload requirements to different degrees. While human players obviously create
a realistic (because real) workload, it is hardly possible to replay a game in a com-
parable way with human players. Needless to say, it is moreover difficult to find a
representative and large-enough set of humans to play a certain game at a given time
for a test run. Traces, in contrast, exactly replay an earlier gaming session, allowing
for an exact comparison of different systems under test. However, since traces de-
scribe one specific gameplay instance, there is no direct way to scale a given trace
in terms of number of players or game world size. For a parameterizable workload,
a common approach are mobility models. These models define simple rules for the
movements of each participant. The main limitation of mobility models in the con-
text of online games is their inability to generate player interactions such as shooting
at each other. Although position updates are a major component of a gaming work-
load, player interaction cannot be neglected. A more sophisticated technique is to
use AI players playing a complete game. This application-aware approach incorpo-
rates the whole game logic of a specific game and is thus the most complex option. It
also takes interaction among players into account and thus allows the generation of
all possible event types of a real game, such as shooting or in-game communication.
The degree of realism of the latter two approaches depends on the scenario and the
tuning of each particular model.

Figure 8.2 summarizes of the four workload generation techniques based on the
involved layers of a game. In each case, the network engine is the system under
test. The dark gray boxes indicate the layers on which the workload is generated.
Figure 8.3 provides a (simplified) overview of the fulfillment of the workload re-
quirements.

The following sections go into further detail of techniques for a synthetic and an
application-based generation of a benchmarking workload.

Human
Players

Game Logic

Network
Engine

IP Network

Mobility
Models

Network
Engine

IP Network

AI
Players

Network
Engine

IP Network

Game
Instance

Traces

Network
Engine

IP Network

Fig. 8.2: A schematic comparison of game workload generation techniques by the
involved layers

6 Max Lehn, Christian Groß, Tonio Triebel

Human
Players

Traces
Mobility
Models

AI
Players

? ?

Scalable

Reproducible

Realistic

Fig. 8.3: A comparison of game workload generation techniques by workload re-
quirements

8.3.1 Synthetic Workloads

The synthetic generation of a gaming workload is based on models for player move-
ment and interaction. These models can be plugged onto an overlay implementation
using the common interface described above. Thus they emulate game events with-
out having a concrete implementation of a game instance. The degree of realism is
lower than with application-aware models, but they can be implemented easily and
be used to get a rough performance estimation.

A standard player mobility model is the random waypoint model in Figure 8.4.
Each player repeatedly selects a random point in a given coordinate range and navi-
gates to the point with a constant velocity. Such a model can be gradually extended
to include interactions like random shooting or random dying. In addition, certain
game effects like portals can be modeled as well. Portals enable players to ‘teleport’,
i.e., to suddenly change their position in the game world. This effect causes stress
on the system as neighborhood relations change unpredictably and need to be up-
dated immediately in order to assure a smooth playing experience. When the portal
effect is enabled, players jump to a random point in the game world, as shown in
Figure 8.4.

8.3.2 Application-based Workloads

For the application-based generation of a workload, there are two different ap-
proaches, static traces and context-sensitive AI players. Traces are complete records
of all actions, e.g., movement and interaction, performed by all players in a real
gaming session. Such traces are not scalable to any number of players other than the
actual number of participants when they were created. On the other side, they pro-
vide a reproducible workload which is perfectly realistic. AI players are a context-
aware way to generate a workload. They are sensitive to the situations as they occur
in the game, and they are able to react to them. The player behavior is recreated

8 Peer-to-Peer Overlays for Online Games 7

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Y
-a

x
is

X-axis

(a) Schematic plot for one player for the random
waypoint model without portal effects

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Y
-a

x
is

X-axis

(b) Schematic plot for one player for the ran-
dom waypoint model with portal effects en-
abled

Fig. 8.4: Random waypoint model with and without the portal effect

much more realistically than in the case of mobility models. In particular, they also
allow to model the natural attributes of the players. If implemented well, adjust-
ing the parameters of the AI player allows to imitate even higher level patterns like
aggressiveness or skill level. In order to implement such a behavior it is necessary
to model two general aspects: The first aspect are the static constraints dictated by
the game itself. For example, they influence how fast players can move, where they
can go and how they can interact. These constraints are mostly invariant, they can
be used as workload parameters in order to create different variations of the work-
load. The second aspect are the natural attributes of the players. Some players may
be playing more aggressively or defensively, or they can either beginners or highly
skilled. It is obvious that the former aspect is much easier to reproduce, but both
aspects need to be simulated to create a truly realistic workload. In the following
section an example for a concrete implementation of such an AI player is given.

8.3.3 Example AI

This section sketches the conception and development of an AI-based game work-
load. As a reference, Planet PI4 [17, 11] is used. It is a spaceship first-person shooter
(FPS). In order to get an impression of the game the scenario of Planet PI4 is briefly
illustrated, and the parameters for the workload adjustment are presented. Figure
8.5 shows a screenshot of the Planet PI4 implementation.

8 Max Lehn, Christian Groß, Tonio Triebel

Gameplay Scenario

The game scenario of Planet PI4 consists of n players. Each player is assigned to
one of m teams. They compete with other teams. The game world is a 3D space in
which the spaceships can freely move in all directions.

Strategic points of interest (POI) are randomly scattered within a bounded region
of the game world. An example of a POI is a base that can be captured by the teams.
For each base a team possesses, it gains points and/or other kinds of rewards such as
weapons and energy. Once captured, a team has to defend a base by keeping players
from other teams out of the base’s range. To capture a base, it is necessary to stay
within the range of the particular base with at least one player and to prevent players
of other teams to enter that range.

The POI (bases) have two important aspects concerning workload generation:

• The distribution of players in the game world is influenced by the POIs. Par-
ticularly, attractive POIs will generate hotspots in player density, while spaces
between the POI are expected to have rather low player densities.

• The borders of the region containing the POI are natural borders of the effective
game world without the need for artificial boundaries. Although players could
move far beyond the borders, there is no incentive to do so. Limiting the effective
size of the game world is necessary to be able to control the (average) player
density.

This game scenario provides several parameters that can be utilized to adjust the
workload.

Workload Parameters

• Players and teams. Each player corresponds to a peer in the network. So, the
number of players (n) in the game equals the number of peers. The players are
divided into m (almost) equally sized teams.

• POI (bases). The bases that have to be captured by the teams cause hotspots in
the player density. The hotspot magnitudes can be controlled by adjusting the
values (i.e., the benefit for the possessing team) of each base separately. Each
base has a range in which it can be captured and a minimum time it takes to
transfer the ownership of the base to the capturing team.

• Gameplay region. The gameplay region is the region within which the bases are
located, thus, in which the gameplay happens. Together with the total number of
players, its size influences the average player density. The height of the region
may be set relatively small to obtain a flat, thus pseudo-2D game world. Pseudo-
2D mode is used for gaming overlays that are designed for a 2D world.

• Ships’ capabilities. The intensities of game activities, such as moving and shoot-
ing, are heavily influenced by the corresponding capabilities of the players’
spaceships. A very important factor is the maximum velocity. All position
changes affect the players’ AOI and, thus, require updates in the gaming overlay.

8 Peer-to-Peer Overlays for Online Games 9

The ship’s maximum forward velocity limits the rate of AOI changes. Addition-
ally, the ship’s inertia limit the maximum acceleration. Missile fire events have to
be delivered reliably, forming a different category than position update messages.
Their rate is limited by the maximum missile firing frequency. Furthermore, the
missile range determines the maximum area of influence of each player.

Fig. 8.5: Screenshot of the prototype game Planet PI4

The game scenario and the parameters reflect the static part of the workload. In
order to model the dynamic part, artificial intelligence (AI) players called bots can
be used.

AI Implementation

The goal of implementing an AI is to enable a purposeful behavior of the computer-
controlled players (bots). For the workload generation this means that the bots be-
have in a way that initiates the transmission of network messages in the same way
as real players would. Such network messages are mainly triggered by in-game ac-
tions. These actions reflect the characteristics of the player’s gaming behavior. This
includes simple reactions to game events as well as behaviors with a more high-level
motivation, like strategies and team play.

An adequate model can be achieved by a goal-oriented AI, since goals can be
mapped to behaviors easily. A powerful and easy-to-implement solution are behav-
ior trees (roughly comparable with hierarchical finite state machines (HFSM) [12,
p. 318–331]). The goals of a behavior tree can be simple or complex. Complex goals

10 Max Lehn, Christian Groß, Tonio Triebel

are composed of a sequence of simple sub-goals where each sub-goal is necessary
for the goal. The leaf goals of the tree form the interface to the game world. They
can gather information about the current game state and interact with the world
using concrete actions. Combining goals in such a way allows for intuitive model-
ing of simple and complex behaviors. The desirability of each goal is periodically
evaluated based on the current game state. The goal with the highest desirability
score gets executed. For the example scenario a simple implementation with three
complex goals based on five sub-goals consist of the following goals:

Go To Position (sub-goal): This goal sets the current speed of the ship to the
maximum and steers it towards the destination.

Find Highest Threat (sub-goal): This goal analyzes the enemies that are inside
the area of interest. It determines the opponent that poses the highest threat based
on distance, angle and shooting frequency.

Attack Opponent (sub-goal): This goal follows the enemy target to take it
down. Since an appropriate strategy depends on the distance to the target, we im-
plemented the following strategies: If the target is out of the firing range, approach
the target at full speed. If the target is in range, decrease speed, keep following the
target and start shooting. If the target is too close, try to flank it by applying lateral
thrust to fly around the enemy ship and keep shooting.

Combat(complex): This goal is a sequence of the goals “Find Highest Threat”
and “Attack Opponent”.

Find Base (sub-goal): The goal checks all bases in the AOI and determines the
one that is most desirable to capture. The decision depends on the distance to the
base and its current state. Bases that are controlled by the enemy are more interesting
to capture than neutral ones.

Capture Base (complex): This goal is a sequence of the goals “Find Base” and
“Go To Position”.

Find Waypoint (sub-goal): This goal determines an interesting area for explo-
ration. This is done either by selecting a completely random waypoint or by select-
ing a random point of interest (e.g., bases and repair points).

Exploration (complex): This goal acts as the default behavior. It explores the
map until a more meaningful goal arises. It is a sequence of the goals “Find Way-
point” and “Go To Position”.

8.3.4 Workload Calibration

The complexity of gaming workloads, and therewith the complexity of the work-
load generation techniques, induces a high number of possible workload scaling
dimensions. This complicates the selection of a representative workload mix and
thus requires a particularly careful selection of parameter settings. One option to
approach this need is a calibration of the artificial workloads with recordings from
real game sessions.

8 Peer-to-Peer Overlays for Online Games 11

For this approach, it is necessary to define a similarity metric for game recordings
and to measure the distance of artificial workloads to the targeted real workloads
[16]. There are, however two main challenges to overcome. First, game sessions
of different sizes must be comparable, because the goal is the scalability of the
workload beyond what is achievable in a controlled environment with real players.
Second, a sensible compromise between realism (i.e., a high similarity with real
workloads) and generality of the workload has to be found. Good solutions to this
problem are still an object of active research.

8.4 Metrics

This section describes the metrics used to capture the SUT characteristics. To be
independent from a concrete SUT implementation, we focus on macro metrics, i.e.,
metrics that can be measured on top of the SUT interface (see Section 8.1). In con-
trast to micro metrics, which refer to internals of specific systems, only macro met-
rics enable a comparison of all systems implementing the given interface.

Definitions

We use the following symbols for specifying the metrics:

• P(t) as the set of all peers participating in the overlay at time t.
• T as the global set of sampling timestamps.
• vis(p) as the vision radius of peers p ∈ P(t), which is considered to be constant

over time.
• pos(p,q, t) as the position of peer p perceived by peer q at time t. We define that

pos(p, t) = pos(p, p, t) is the ‘true’ position of peer p.
• N(p, t) = {q ∈ P(t) | ∆ pos(p,q, t)≤ vis(p)} with

∆ pos(p,q, t) = ‖pos(p,q, t)− pos(p,q, t)‖2 as the ideal set of neighboring peers
for a given peer p ∈ P(t) at time t. Note that this definition of a neighborhood
differs from the definition given in Chapter 2 in that it defines the neighbors of the
vision range, which are not necessarily the same as the neighbors of the overlay
topology.

• M(p, t) as the set of neighboring peers known to a given peer p ∈ P(t) at time t.
• cen(p, t) as the centroid of the perceived positions of peer p by the neighbors

q ∈M(p, t) at time t. The centroid is calculated as

cen(p, t) =
∑q∈M(p,t) pos(p,q, t)

|M(p, t)|
.

• wcc(t) as the weakly connected component at time t. It describes the maximum
subset of nodes in the connection graph such that two arbitrarily chosen nodes
from the subset are connected via an undirected path.

12 Max Lehn, Christian Groß, Tonio Triebel

Performance Metrics

The following metrics are measured per peer in constant time intervals, resulting in
a set of samples.

• Using confusion matrices, one can divide the neighborhood set of a peer p into
the four categories shown in Table 8.1. Based on the confusion matrix, the met-
rics recall and precision are defined. Recall, thus, describes the ratio between
the known relevant neighbors (M∩N) and all relevant neighbors (N) in a node’s
neighbor set. Precision defines the fraction of relevant peers ((M ∩N) / M). In
case of an ideal system both recall and precision are equal to 1.

q ∈M(p, t) j /∈M(p, t)
q ∈ N(p, t) true positive, t p(p, t) false negative, f n(p, t)
q /∈ N(p, t) false positive, f p(p, t) true negative, tn(p, t)

Table 8.1: Confusion matrix for peer p

We define the the following metrics based on the neighborhood relation of the
peers:

• The mean position error at peer p:

err(p, t) =
∑q∈M(p,t) ‖pos(p,q, t)− pos(p, t)‖2

|M(p, t)|
.

Note that this metric only includes the neighbors actually known by peer p.
• The dispersion of the perceived position of peer p relative to the centroid

cen(p, t):

spos(p, t) =

√
∑q∈M(p,t) (‖pos(p,q, t)− cen(p, t)‖2)

2

|M(p, t)|−1
.

In an ideal system the dispersion is zero as the actual position of the peer pos(p, t)
and the centroid of the perceived positions of cen(p, t) are identical.

Cost Metrics

• tra f (p, t) as the traffic in bytes per second at peer p at time t. The traffic is
measured in order to quantify the costs of a system. We assume other costs such
as CPU, memory, storage, and energy to be uncritical as most of the modern
gaming PCs provide sufficient local ressources for playing games.

8 Peer-to-Peer Overlays for Online Games 13

Global Metrics

The following metric is calculated on the neighborhood relations among the peers:

• The Global Connected Component Factor (gccf), which is defined as follows:

gcc f (t) =
|wcc(t)|
|P(t)|

.

It is 1.0 in case that there exists a path between any two arbitrarily chosen nodes
in the network. In other words, the overlay is not partitioned. In case of a partition
the gccf describes the share of the biggest partition of the total network.

8.5 Example Implementations

Current P2P-based systems that provide the functionality described above can be
classified into Distributed-Hash-Table-based (DHT) and unstructured approaches.
SimMud [10], Mercury [1], and MOPAR [18] belong to the first category. They
disseminate position updates among nodes using a Publish/Subscribe approach on
top of a DHT. The virtual world is split into regions. Each region is assigned to a
peer who is responsible for managing the subscriptions. Nodes subscribe to a set of
fixed regions or an arbitrary part of the virtual world.

MOPAR [18] is a hybrid system, combining a DHT and unstructured P2P. The
virtual world is divided into hexagonal zones. MOPAR defines three roles for nodes
for each cell. The home node is responsible for the corresponding cell. The assign-
ment is done via a DHT mapping, so that a node is most likely not located in the
cell for which it is responsible. The master node, located in each cell, distributes the
messages for its cell, which are received by the slave nodes.

Mercury [1] provides multi-attribute range query capabilities, using concepts of
DHTs. It creates multiple so-called attribute hubs, one for each attribute of the
schema. For a virtual world, there would be typically one attribute for each dimen-
sion. Each attribute hub is organized similar to a ring of a conventional DHT. Mer-
cury’s range query capabilities allow querying for players and sending messages to
the players in a certain region of a two- or three-dimensional virtual world.

In unstructured systems, such as pSense [14] or VON [8], peers directly exchange
information about the surrounding peers and their current position. Each peer main-
tains an individual set of neighbors in its AOI.

pSense [14] provides means for localized multicast, which enables fast and effi-
cient dissemination of a participant’s position within a given area of interest. Based
on the area of interest, each peer has two lists of neighboring peers. Peers in the
near node list are within the area of interest of a given local node. The sensor node
list contains up to eight peers in different directions that are just outside the area of
interest. Their purpose is to maintain the connectivity of the network by introducing
approaching neighbors. In case that sufficient bandwidth is available on the local

14 Max Lehn, Christian Groß, Tonio Triebel

node, position updates are sent in rounds to all peers in both lists. Otherwise, only
a subset of the surrounding neighbors get the updates directly. Nodes receiving the
position update check whether they can forward the position update to the nodes
that were omitted by the original sender.

VON [8] solves the neighbor discovery problem by maintaining a Voronoi dia-
gram based on the peers’ positions in the virtual world. According to the area of in-
terest, peers surrounding a given local peer are divided into boundary and enclosing
neighbors, which are notified with position updates from the local peer. Boundary
neighbors inform a local node about new potential neighbors.

8.6 Benchmarking Results

Having introduced the game basics, possible workloads and metrics, this section
presents an exemplary benchmark implementation, execution, and analysis using a
workload generated from a mobility model. Thereby, we investigate the characteris-
tics of the tested systems with respect to performance, validity, costs, and fairness.
The goal of this evaluation section is to demonstrate the feasibility of our bench-
marking methodology and give a first impression of the characteristics of the tested
systems. Four different systems for spatial information dissemination, satisfying the
functional interface as described in Section 8.1, were implemented and tested. The
systems are: the unstructured approaches (i) VON [8] and (ii) pSense [14], (iii) the
content-based Publish/Subscribe approach Mercury [1], which is built on top of the
Chord DHT, and (iv) a simple client-server-based approach (C/S), which serves as
a performance reference. The client-server approach works as follows: All nodes
participating in the game are connected to a central server and send their position
updates every 200 ms. From these position updates the server computes an updated
neighbor set per peer and disseminates this information to all peers in the network
every 200 ms. All SUTs have been implemented in the discrete event-based overlay
simulator PeerfactSim.KOM [15]. The results of this section are based on previous
work [7].

The workload is varied in four scenarios:
Baseline. Initially, a constant baseline workload setup is defined, representing

an environment with idealized conditions, which gives an impression on the system
behavior under such conditions. The baseline parameters are shown in Table 8.2.
The parameter values haven been chosen based on the work by Schmieg et al. [14].
For the baseline workload, a simple random waypoint model is used. The update
frequency of five units per second was chosen based on an analysis of MMOGs
conducted by Chen et al. [5]. The simulation setup is as follows: Initially, 250 nodes
join the system within eight minutes of simulated time. Afterwards, a stabilization
phase of two minutes takes place. The measurement interval starts at minute ten and
lasts until the end of the simulation after thirty minutes.

To investigate the performance and validity, the neighbour set recall (recall(p, t))
and precision (precision(p, t)) as well as the position error (err(p, t)) and the per-

8 Peer-to-Peer Overlays for Online Games 15

ceived position dispersion (spos(p, t)) are measured. Precision is less relevant than
recall, since – besides a potential traffic penalty – false positives in the neighbour set
usually do not hurt the application. The traffic tra f (p, t) quantifies the operational
costs. Fairness according to service quality is measured by F(recall), F(precision),
F(err), and F(spos), where F(x) is Jain’s Fairness Index, as described in Chapter 3.
Cost fairness is measured by F(tra f).

Parameter Value
Game World Size 1200 x 1200 units
Area of Interest radius 200 units
Number of nodes 250
Simulation duration 30 min
Movement model Random waypoint model
Movement speed 20 units/s
Update frequency 5/s
Underlay model GNP Latency Model [13]
Upload capacity 16 kB/s
Download capacity 128 kB/s

Table 8.2: Baseline Parameter Setup

Scalability. For investigating the scalability of the system, the workload is varied
both horizontally and vertically. The former scales the total number of nodes while
preserving the virtual world size. Horizontal scaling thus affects the player density
in the virtual world. Vertical scaling is realized by increasing the player velocities,
resulting in a higher fluctuation of AOI neighbors and potentially higher position
errors. We define a system to be scalable up to a certain workload level if the perfor-
mance, validity, and costs do not exceed or drop below predefined thresholds. These
thresholds, however, are application-specific.

Stability. The stability of the SUT is investigated in a heavy churn scenario with
an exponential session length with an average of 50, 25, and 10 minutes. The rel-
evant metrics for stability are the same as for validity and fairness. While it is ex-
pected that the system responses are valid at all times, a degradation of fairness is
an indicator for upcoming stability problems. A low fairness in terms of costs re-
flects potentially overloaded nodes, whereas a low service quality fairness indicates
possibly starving nodes.

Robustness. In order to test the robustness of the system, a massive join, a mas-
sive crash and a packet loss scenario are applied. For the first scenario, 50% and
100% new peers join the system at once. In the second scenario, the percentage of
failing peers is set to 25% and 50%. For the packet loss scenario, loss rates are set
to 5%, 10%, and 25%. The system is considered stabilized after a massive join or
leave of nodes when the moving average of 10 seconds of a given metric stabilizes
at a constant level. A similar method has been suggested by Jain in order to detect a

16 Max Lehn, Christian Groß, Tonio Triebel

steady state in a set of measurements [9]. In the message loss scenario, the relevant
metrics are the same as for validity and performance.

8.6.1 Results

This section briefly discusses the results of the simulated benchmark runs using our
synthetic gaming workload.

Baseline

The results for the baseline benchmark are shown in Table 8.3. When looking at
the average recall (r̂ecall) of all four systems, one can notice that VON provides
the lowest neighbour detection rate, whereas the remaining three systems show a
recall of above 0.9. With respect to the position error (êrr), however, VON shows
the best performance with a position error of around two units, which is about half
of the position error of the C/S-based approach. The reason for the good perfor-
mance of VON is that updates are disseminated directly over one hop, whereas the
C/S approach always needs two hops (Player A to Server and Server to Player B).
Mercury shows the worst performance with respect to the position error as updates
are disseminated over multiple hops in the DHT.

System Unit C/S pSense VON Mercury

r̂ecall 1 0.9791 0.9304 0.8304 0.9162
F(recall) 1 1.0000 1.0000 0.9586 0.9989
êrr units 5.2043 9.8512 2.0186 13.5779
F(err) 1 0.9558 0.9865 0.6921 0.8146
t̂ra fup kB/s 0.2181 15.5601 3.5732 5.5020
F(tra fup) 1 1.0000 1.0000 0.8469 0.8435
̂tra fdown kB/s 2.3199 15.5601 3.5733 5.4955

F(tra fdown) 1 0.9965 0.9995 0.8471 0.8554

Table 8.3: Results for the baseline benchmark averaged over time and peers

VON shows a position error fairness index of 0.69, which indicates that the po-
sition error that peers in the VON overlay perceive is unequally distributed. In con-
trast, the C/S-based approach as well as pSense show a fairness value above 0.95
and, thus, provide a good service fairness. Concerning upload traffic, pSense utilizes
the full available bandwidth of 16 kB/s, because position updates include the entire
receiver list with all neighboring peers in the vision range. As expected, the C/S
approach consumes the least bandwidth, because a node sends its position updates
only to the server instead of multiple neighboring peers, and the server bandwidth

8 Peer-to-Peer Overlays for Online Games 17

is not taken into account. When investigating the cost fairness of all systems, one
notices that VON and Mercury distribute the load less equally than the C/S approach
and pSense.

Scalability

Figure 8.6 shows the results for the scalability benchmark using horizontal scaling
(number of nodes), followed by Figure 8.7, showing the results using vertical scal-
ing (node speed). When scaling horizontally, the upload bandwidth consumption of
pSense is growing rapidly with the increasing number of peers and reaches the pre-
defined maximum of 16 kB/s. With more than 400 nodes, VON’s upload consump-
tion also reaches the 16 kB/s maximum, and VON is no longer capable of keeping
the neighbour sets up to date. This results in a rapidly decreasing recall and at the
same time in a rapidly increasing position error. As VON remains in this state of
saturation, the overlay structure collapses, resulting in a recall of almost zero. Mer-
cury also shows a recall decreasing below the clearly unacceptable value of 50%
with 500 nodes. The position errors of pSense and Mercury increases linearly with
an increasing number of peers. Under the assumption that the server has sufficient
bandwidth, the C/S results remain constant.

Figure 8.7a shows the relation between the node speed (vertical scaling) and
the global connected component factor. As one can observe from the plot, the four
systems remain fully connected up to a node speed of 250 units per second. Above
this threshold, the connectivity of VON starts to deteriorate, whereas the remaining
three systems remain fully connected. The reason for this deterioration is that a VON
node p does not maintain connections to other nodes beyond its vision range vis(p).
In the case where that the node speed exceeds the vision radius per second (200
units/s), VON is unable to detect new bypassing nodes because the relative speed of
two nodes passing each other is twice the average node speed. With respect to recall,
all four systems show a similar behavior as their recall drops with an increasing node
speed, as shown in Figure 8.7b. All four systems show a linearly increasing position
error up to a speed of 200 units/s (Figure 8.7c). Above this value, all peer-to-peer-
based systems experience higher fluctuations in the position error. VON’s position
error does not increase further as its overlay structure has completely collapsed.

Stability

The results of the stability benchmark for different levels of node churn are shown in
Table 8.4. With respect to recall, C/S, Mercury, and pSense remain stable with an in-
creasing churn rate, whereas the recall of VON is dropping to 0.864 at ten minutes
mean session length. Another interesting observation relates to the position error.
The C/S approach achieves a position error of around 5.4 units whereas pSense and
Mercury have position errors of about 9.2 and 11.5 units, respectively. VON shows
the best performance with a position error of about 3 units. The reason for this is,

18 Max Lehn, Christian Groß, Tonio Triebel

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900 1000
U

p
lo

a
d
 T

ra
ff
ic

 p
e
r

N
o
d
e
 [
k
B

/s
]

Number of Online Nodes

C/S
pSense

VON
Mercury

(a) Average upload bandwidth consumption depending
on the number of online nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
v
e
ra

g
e
 R

e
c
a
ll

Number of Online Nodes

C/S
pSense

VON
Mercury

(b) Average recall of the neighbor sets depending on the
number of online nodes

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

P
o
s
it
io

n
 E

rr
o
r

[u
n
it
s
]

Number of Online Nodes

C/S
pSense

VON
Mercury

(c) Average position error depending on the number of
online nodes

Fig. 8.6: Results of the scalability benchmark using horizontal scaling by increasing
the number of nodes

8 Peer-to-Peer Overlays for Online Games 19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700
G

lo
b
a
l
C

o
n
n
e
c
te

d
 C

o
m

p
o
n
e
n
t
F

a
c
to

r

Speed [units/s]

C/S
pSense

VON
Mercury

(a) Global connected component factor in relation to the
average speed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

A
v
e
ra

g
e
 R

e
c
a
ll

Speed [units/s]

C/S
pSense

VON
Mercury

(b) Average recall of the neighbor set as a function of
the speed

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

P
o
s
it
io

n
 E

rr
o
r

[u
n
it
s
]

Speed [units/s]

C/S
pSense

VON
Mercury

(c) Average position error of the neighbor set as a func-
tion of the speed

Fig. 8.7: Results of the scalability benchmark using vertical scaling by increasing
the node speed

20 Max Lehn, Christian Groß, Tonio Triebel

again, the dissemination of position updates in one hop (VON) and two hops (C/S),
as already described in Section 8.6.1. pSense shows the highest position error, be-
cause position updates are sent redundantly, saturating the upload bandwidth, which
in turn causes the loss of update messages. Similarly to the recall results, Mercury’s
multi-hop dissemination leads to higher position errors.

System Unit C/S pSense VON Mercury
Mean Session Time min 50 25 10 50 25 10 50 25 10 50 25 10

r̂ecall 1 0,977 0,976 0,973 0,929 0,928 0,925 0,974 0,957 0,864 0,939 0,939 0,940
F(recall) 1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,992 0,955 0,970 0,942 0,880
êrr units 5,412 5,416 5,403 9,705 9,270 8,955 3,311 2,918 2,652 11,670 11,519 11,922
F(err) 1 0,959 0,959 0,958 0,987 0,985 0,984 0,893 0,877 0,845 0,958 0,933 0,873
t̂ra fup kB/s 0,219 0,219 0,219 15,631 15,607 15,583 9,578 9,031 7,036 7,560 6,908 5,882
F(tra fup) 1 1,000 1,000 1,000 1,000 1,000 1,000 0,993 0,981 0,931 0,766 0,773 0,734
̂tra fdown kB/s 2,107 2,056 1,936 15,211 15,172 15,094 9,337 8,801 6,853 7,206 6,417 5,160

F(tra fdown) 1 0,997 0,996 0,995 1,000 0,999 0,999 0,993 0,981 0,931 0,941 0,922 0,886

Table 8.4: Averaged results of the stability benchmark for different levels of churn

Figure 8.8 shows the results for the stability benchmark with portal effects en-
abled. As shown in Figure 8.8a, VON’s recall is dropping over time as the frequent
jumps of nodes causes VON to lose those contacts, and it becomes unable to rein-
tegrate a node into the virtual world after it uses a portal. This loss in connectivity
is also visible in Figure 8.8c, which shows the Global Connected Component Fac-
tor gcc f (t) as a function of time. VON is constantly losing connectivity over time
due to players using the portals. In contrast, the recall of Mercury and pSense re-
main constant at a level of 0.9 and remain fully connected with a Global Connected
Component Factor of 1.

Concerning the position error err(t), all systems remain constant at a certain
level. VON shows the lowest position error of about three units, followed by the C/S
approach with an average position of about five units. This is close to the theoretical
minimum given the speed of 20 units/s and an update frequency of 5 per second.

When comparing the position error results with the results obtained during the
churn workload, C/S, pSense, and VON provide the same performance. Only Mer-
cury shows a position error twice as high as in the minimum churn workload.

In terms of upload traffic, which is shown in Figure 8.8d, pSense again consumes
the most bandwidth due to updates being sent redundantly to surrounding neighbors.

Figure 8.9 shows the results for the single point movement model, where all play-
ers in the game world move towards a single point and meet there at the same time.
The movement model was configured such that one contraction cycle (minimum
density→ maximum density→ minimum density) takes ten minutes of simulated
time. This results in a much lower node speed of about three units/s in comparison
to the speed in the baseline benchmark. When investigating the recall of the four
systems, it can be observed that VON’s and Mercury’s recall degrade in the moment
of maximum density of nodes (t = 300s). When the nodes de-contract, resulting in
a decreasing node density, VON and Mercury are able to recover, resulting in an

8 Peer-to-Peer Overlays for Online Games 21

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000

A
v
e
ra

g
e
 R

e
c
a
ll

Time [s]

C/S
pSense

VON
Mercury

(a) Average recall with portal effects enabled

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

A
v
e
ra

g
e
 P

o
s
it
io

n
 E

rr
o
r

[u
n
it
s
]

Time [s]

C/S
pSense

VON
Mercury

(b) Average position error with portal effects
enabled

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

G
lo

b
a
l
C

o
n
n
e
c
te

d
 C

o
m

p
o
n
e
n
t
F

a
c
to

r

Time [s]

C/S
pSense

VON
Mercury

(c) Global Connected Component Factor with
portal effects enabled

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

A
v
e
ra

g
e
 U

p
lo

a
d
 T

ra
ff
ic

 [
k
B

/s
]

Time [s]

C/S
pSense

VON
Mercury

(d) Average recall for the nodes neighbor set for
different levels of message loss

Fig. 8.8: Selected results of the stability benchmark using the portal workload
scheme

increasing recall of almost 1 and a position error drop of about one unit. Looking at
the upload and download utilization, which are shown in Figure 8.9c and 8.9d, it
can be observed that VON shows the highest sensitivity to the node density induced
by the single point movement model. Again, pSense fully utilizes the upload and
download bandwidth. In contrast, Mercury’s bandwidth usage remains almost con-
stant at 6 kB/s. As one would expect, all three peer-to-peer-based systems show a
symmetrical upload and download usage, whereas the clients’ bandwidth utilization
of the C/S approach is highly asymmetrical.

Robustness

Figure 8.10a shows the recall as a function of time (err(t)) in the 100% join sce-
nario. While pSense shows a small temporary drop in recall, VON and Mercury are
not able to handle the increase of nodes and level out at around 60%. Figure 8.10b
shows the CDF of the position error right after the the massive join. VON’s position

22 Max Lehn, Christian Groß, Tonio Triebel

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

A
v
e
ra

g
e
 R

e
c
a
ll

Time [s]

C/S
pSense

VON
Mercury

(a) Average recall for the single point move-
ment model

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200

A
v
e
ra

g
e
 P

o
s
it
io

n
 E

rr
o
r

[u
n
it
s
]

Time [s]

C/S
pSense

VON
Mercury

(b) Average position error of nodes for the sin-
gle point movement model

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

A
v
e
ra

g
e
 U

p
lo

a
d
 T

ra
ff
ic

 [
k
B

/s
]

Time [s]

C/S
pSense

VON
Mercury

(c) Average upload bandwidth usage for the sin-
gle movement model

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

A
v
e
ra

g
e
 D

o
w

n
lo

a
d
 T

ra
ff
ic

 [
k
B

/s
]

Time [s]

C/S
pSense

VON
Mercury

(d) Average download bandwidth usage for the
single movement model

Fig. 8.9: Selected results of the stability benchmark using the single point mobility
scheme

error is much higher and also has a higher variation than the position error of the
other systems. The higher spread can also be observed as a lower value of F(err) in
Table 8.4. Finally, Figure 8.10c shows the recall in the 50% crash scenario. Again,
pSense’s recall drops only for a few seconds. Both VON and Mercury, however,
drop and remain at a significantly lower level than they would be able to achieve
with 250 nodes without a crash (cf. Fig. 8.6b).

8.6.2 Discussion of the Benchmark Results

This section discusses the overall results and compares the findings with the re-
sults and evaluation methodologies of the respective papers. In the original VON
paper[8], the authors evaluated their approach with respect to scalability, validity,
and robustness, which the authors call reliability. For evaluating the scalability of
their approach, the authors increased the number of nodes in the game world and

8 Peer-to-Peer Overlays for Online Games 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v
e
ra

g
e
 R

e
c
a
ll

Time [s]

100% new peers join

C/S
pSense

VON
Mercury

(a) Average recall with massive join from 250
to 500 nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
(X

<
=

x
)

Average Position Error [units]

C/S
pSense

VON
Mercury

(b) CDF of the average position error after a
massive join from 250 to 500 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v
e
ra

g
e
 R

e
c
a
ll

Time [s]

50% peer crash

C/S
pSense

VON
Mercury

(c) Average recall with massive crash from 250
to 125 nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

P
(X

<
=

x
)

Average Position Error [units]

C/S
pSense

VON
Mercury

(d) CDF of the average position error after a
massive crash from 250 to 125 nodes

Fig. 8.10: Selected results of the robustness benchmark using the massive join and
massive leave workload

measured the load on the nodes in the system. Besides looking into the number of
nodes, this benchmark has shown that the speed of the nodes also has a significant
impact on the system performance. The authors already mention that a “problem
arises when a node moves faster than what boundary neighbors can notify”. Indeed,
the performance of VON degrades significantly at higher levels of node speed. Fur-
thermore, the mobility model has a significant impact on the the robustness, stability,
and scalability capabilities of the tested overlay and should also be varied for the per-
formance evaluation. Looking into robustness, VON was originally evaluated under
different levels of message loss. This benchmark adds an evaluation under massive
join and leave of peers, which also plays an important role; it has shown to be a
discriminating factor.

In its original publication, pSense has been evaluated with respect to the scal-
ability by increasing the number of nodes. In addition, the authors considered the
performance vs. cost trade-off. Comparing results and methodology of the pSense
paper with the above results, this work has complemented the tests with an evalu-
ation under an increasing speed of the nodes or a varying mobility model. Further-

24 Max Lehn, Christian Groß, Tonio Triebel

more, the authors did not look into the stability and robustness capabilities of pSense
by considering churn or an unreliable underlay (message loss or varying delay).

Mercury has originally been evaluated with respect to scalability by increasing
the number of nodes in the system up to 100 peers. The authors measured the nor-
malized load on the nodes as well as the delivery delay. The latter is correlated to
the position error metric presented here. In their evaluation, the authors assume an
idealized environment with no churn or message loss. Here, a detailed evaluation of
the stability and robustness capabilities of the system has been added.

This section has demonstrated that the existing evaluation gaps in the evaluations
of the respective systems can be closed using a systematic benchmarking method-
ology, as presented in this book.

8.7 Conclusion

In this Chapter, a benchmarking approach for peer-to-peer gaming overlays has been
presented, focusing on the two aspects of interest management and game event dis-
semination. After the identification of the targeted class of SUTs, the first key issue
is the definition of a SUT interface. The interface that has been specified is generally
applicable to different first or third person online games where players interact in
a large 2D or 3D world. Also, the interface has been designed to be implemented
without much effort on top of the common IDOs such as VON or pSense.

Two alternative gaming workload generation techniques have been presented: a
simple synthetic method using a mobility model as well as a detailed method in-
corporating a real gameplay and autonomous AI players. In the latter, the important
workload factors do not describe the players’ behavior, but rather the limits set by
the game mechanics and setup (number of players, teams, region size, etc.). This
approach takes the high degree of interactivity of a game into account, which is not
the case for a mobility model or traces.

Furthermore, a set of metrics that are important for the user experience in a game
has been defined. Those metrics are mapped to the generic peer-to-peer quality as-
pects. This shows that the important aspects are covered by the metrics, besides a
clear classification of those.

Finally, a concrete implementation of a benchmark for peer-to-peer gaming over-
lays, using a workload based on a mobility model, has been described. The evalua-
tion of four exemplary systems has shown that a benchmarking approach allows for
a systematic comparison of such systems. It closes the evaluation gap arising from
the piecemeal evaluations of the respective original publications.

REFERENCES 25

References

[1] Ashwin Bharambe, Mukesh Agrawal, and Srinivasan Seshan. “Mercury:
Supporting Scalable Multi-Attribute Range Queries”. In: SIGCOMM Com-
put. Commun. Rev. 34 (2004), pp. 353–366.

[2] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. “Colyseus: a dis-
tributed architecture for online multiplayer games”. In: NSDI’06: Proceed-
ings of the 3rd conference on Networked Systems Design & Implementation.
San Jose, CA: USENIX Association, 2006, pp. 12–12.

[3] Ashwin Bharambe et al. “Donnybrook: enabling large-scale, high-speed,
peer-to-peer games”. In: ACM SIGCOMM 2008 conference on data commu-
nication (SIGCOMM ’08). Seattle, WA, USA: ACM, 2008, pp. 389–400.

[4] Luther Chan et al. “Hydra: a massively-multiplayer peer-to-peer architecture
for the game developer”. In: NetGames ’07: Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support for games. Melbourne,
Australia: ACM, 2007, pp. 37–42.

[5] Kuan-Ta Chen et al. “Game traffic analysis: An MMORPG perspective”. In:
Computer Networks 50.16 (2006), pp. 3002–3023.

[6] Lu Fan, Phil Trinder, and Hamish Taylor. “Design Issues for Peer-to-Peer
Massively Multiplayer Online Games”. In: International Journal of Ad-
vanced Media and Communication 4.2 (2010), pp. 108–125.

[7] Christian Gross et al. “Towards a Comparative Performance Evaluation of
Overlays for Networked Virtual Environments”. In: Peer-to-Peer Computing,
2011. P2P’11. Eleventh International Conference on. Sept. 2011, pp. 34–43.

[8] Shun-Yun Hu and Guan-Ming Liao. “VON: A Scalable Peer-to-Peer Network
for Virtual Environments”. In: IEEE Network. Vol. 20. 4. 2006, pp. 22–31.

[9] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley &
Sons, Inc, 1991.

[10] Bjorn Knutsson et al. “Peer-to-peer support for massively multiplayer games”.
In: Twenty-third Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM ’04). 2004.

[11] Max Lehn et al. “An Online Gaming Testbed for Peer-to-Peer Architectures”.
In: The 2011 conference on applications, technologies, architectures, and
protocols for computer communications (SIGCOMM ’11). ACM, Aug. 2011.

[12] Ian Millington and John Funge. Artificial Intelligence for Games, Second Edi-
tion. Morgan Kaufmann Publishers Inc., 2009. ISBN: 978-0123747310.

[13] T. S. Eugene Ng and Hui Zhang. “Towards global network positioning”.
In: 1st ACM SIGCOMM Workshop on Internet Measurement. ACM, 2001,
pp. 25–29.

[14] Arne Schmieg et al. “pSense - Maintaining a Dynamic Localized Peer-to-Peer
Structure for Position Based Multicast in Games”. In: IEEE International
Conference on Peer-to-Peer Computing. 2008.

[15] Dominik Stingl et al. “PeerfactSim.KOM: A Simulation Framework for Peer-
to-Peer Systems”. In: Proceedings of the 2011 International Conference on
High Performance Computing & Simulation. 2011, pp. 577–584.

26 REFERENCES

[16] Tonio Triebel et al. “Generation of Synthetic Workloads for Multiplayer On-
line Gaming Benchmarks”. In: International Workshop on Network and Sys-
tems Support for Games (NetGames1́2). Venice, Italy: IEEE, Nov. 2012.

[17] Tonio Triebel et al. “Peer-to-Peer Infrastructures for Games”. In: NOSSDAV
’08: 18th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video. Braunschweig, Germany, 2008, pp. 123–
124.

[18] Anthony P. Yu and Son T. Vuong. “MOPAR: A Mobile Peer-to-Peer Over-
lay Architecture for Interest Management of Massively Multiplayer Online
Games”. In: International Workshop on Network and Operating System Sup-
port for Digital Audio and Video. 2005, pp. 99–104.

