
Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

ProgCEP: A Programming Model for Complex Event Processing
over Fog Infrastructure
Manisha Luthra, Boris Koldehofe

Technical University of Darmstadt
Darmstadt, Germany

[firstname.lastname]@kom.tu-darmstadt.de

ABSTRACT

Complex Event Processing (CEP) is a powerful paradigm that can
derive meaningful insights by correlating multiple data sources, e.g.,
in the Internet-of-Things applications. However, these applications
often require deployment across a wide variety of devices ranging
from mobile devices to edge and cloud or simply put: fog infrastruc-
ture. This is not easily possible using existing programming models
because of missing (i) support for deployment on heterogeneous
devices and (ii) important interfaces for the deployment of CEP,
e.g., for developing operator placement algorithms.

In this paper, we present ProgCEP: a programming model that
facilitates the development of the operator placement algorithm and
its deployment in a fog computing setting. In addition, it is portable
and deployable on any kind of fog infrastructure and provides
dynamic scaling of resources and deployment using the operator
placement algorithm. We evaluate ProgCEP on its applicability and
realizability on a publicly available fog testbed involving on-site,
GENI and CloudLab resources using Docker tools. To this end, we
enable (i) deployment of CEP using our dockerized implementation
on the aforementioned fog infrastructure in less than 50 secs (on
25 distributed resources) and (ii) easy development of operator
placement algorithms in terms of minimum lines of code.

CCS CONCEPTS

• Computer systems organization→ Cloud computing.

KEYWORDS

Complex Event Processing; Programming Model; Fog Computing
ACM Reference Format:

Manisha Luthra, Boris Koldehofe. 2019. ProgCEP: A ProgrammingModel for
Complex Event Processing over Fog Infrastructure. In Proceedings of DFSD

’19: 2nd International Workshop on Distributed Fog Services Design (DFSD ’19).

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3366613.3368121

1 INTRODUCTION

Complex Event Processing (CEP) is a powerful paradigm to derive
meaningful insights from raw data streams generated by multiple
data sources. It is widely used in different applications including

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DFSD ’19, December 9–13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7031-8/19/12. . . $15.00
https://doi.org/10.1145/3366613.3368121

Filter

Producer

Producer

Empty

App

Empty

App

Empty

App

Join

Consumer

Stream Consumer

Stream

node2

node3

node3

node4

node5 node7
node8

node6

node0

node1 node9

ωσ

ω⋈

ωstr

ωstr

Figure 1: ProgCEP node model. The solid contour indicates

pinned operators while dotted indicates unpinned opera-

tors.

network monitoring, traffic management, financial trading, etc. An-
other emerging class of applications Internet-of-Things (IoT) can
highly benefit from CEP by distributed processing and deployment
of so-called operators e.g., filters or joins on top of processing de-
vices. For instance, for traffic congestion detection, sensor streams
from multiple vehicles including vehicle speed and density can be
correlated and distributed for efficiently processing a traffic con-
gestion query [11]. The processing of the events could happen at
different devices, e.g., road side units, vehicles, road side cameras,
cloud or simply: fog infrastructure. However, this is not easily pos-
sible using existing CEP programming models due to limitations in
(i) flexibly deploying CEP operators on distributed heterogeneous
devices and (ii) important interfaces for developing operator place-
ment algorithm, which is a key technique for deployment in CEP.
Additionally, a real world deployment of CEP on distributed fog
infrastructure is missing or only limitedly explored [2, 15].

In this paper, we present a programming model, ProgCEP, for
CEP deployment on fog infrastructure. Using the proposed pro-
gramming model, we make it easier for developers to design and
deploy operator placement algorithms as well as to dynamic scale
fog resources. An operator placement algorithm dictates deploy-
ment of CEP operators, e.g., filter, join, etc., on physical hosts such
as fog infrastructure for distributed query processing. In Figure 1,
an example on operator placement is shown, which is further ex-
plained in the systemmodel of ProgCEP. We enable automated and
distributed deployment of our programming model using Docker
tools on fog infrastructure. We further demonstrate the deployment
on an open fog testbed including on-site, GENI1 and CloudLab2
resources. To this end, we can perform (i) distributed CEP deploy-
ment on a wide range of fog infrastructure in a couple of seconds
and (ii) the development of an operator placement in minimum
effort in terms of lines of code.

1GENI: an open infrastructure for at-scale networking and distributed systems. Avail-
able at https://www.geni.net/. [Accessed 10.10.2019].
2CloudLab: flexible, scientific infrastructure for research on the future of cloud com-
puting. Available at https://www.cloudlab.us/. [Accessed 10.10.2019].

https://doi.org/10.1145/3366613.3368121
https://doi.org/10.1145/3366613.3368121
https://www.geni.net/
https://www.cloudlab.us/

Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

DFSD ’19, December 9–13, 2019, Davis, CA, USA Manisha Luthra, Boris Koldehofe

Onsite / Private

(Edge)

Public

(Cloud)

Internet of

Things

ωσ

ω⋈

ωstr ωstr

Figure 2: Mapping of CEP operators on Fog infrastructure

model.

The paper is structured as follows. In Section 2, we provide
ProgCEP model, in Section 3, we present the design including the
programming model and distributed deployment using a workflow.
In Section 4, we evaluate in terms of the application areas and
its deployment on a publicly available fog testbed. In Section 5,
we review the related work and finally we conclude and provide
outlook in Section 6.

2 PROGCEP SYSTEM MODEL

ProgCEP comprises of event producers that generate continuous
and ordered data streams. The event consumers specify a complex
event that must be detected, e.g., a traffic congestion by means of
a query language. A query comprises of a set of operators ω ∈ Ω
such as stream (ωstr), filter (ωσ), join (ωZ), etc., which are compute
units that collectively define a complex event. ProgCEP inherits
standard set of CEP operators included in AdaptiveCEP query
language [18]. AdaptiveCEP is a query language that is embedded
in the mainstream of ProgCEP system. Using AdaptiveCEP, Prog-
CEP is able to specify complex events with Quality of Service (QoS)
demands that must be fulfilled by the system. Such QoS demands
can be used to specify requirements, e.g., in terms of latency that
must be fulfilled by the underlying fog infrastructure.

2.1 Node Model

ProgCEP employs Empty Apps that serves as event brokers to
host CEP operators for distributed event processing. An Empty
App is used to encapsulate any kind of CEP operator. The basic
ProgCEP system model is illustrated in Figure 1. We refer to the
hosts of producers, consumers and brokers as nodes. The nodes
communicate in ProgCEP by forming an overlay network that can
be operated on kind of fog infrastructure. Each of these system
nodes are encapsulated in separate containers. In CEP systems,
the query is collaboratively processed in the form of a directed
acyclic graph called an operator graph (as seen in the figure above).
ProgCEP differentiates between pinned entities, i.e., producers and
consumers from unpinned entities, i.e., CEP operators by means
of what we call static and dynamic containers, respectively. As the
name suggest, the static containers are pinned to one node, while
the dynamic containers are unpinned meaning these can exchange
operators on different nodes at runtime. In this way, we enable a
flexible operator deployment on fog infrastructure.

2.2 Placement Model

In CEP systems, the deployment of operators on infrastructure is
dictated by means of an operator placement algorithm. It allows

placement of the operators optimally or sub-optimally on phys-
ical hosts, while minimizing for a cost function of one or more
QoS metrics such as end-to-end latency. On the one hand, Prog-
CEP, contributes a generic system model that allows placement
of CEP operators on any kind of fog infrastructure. On the other
hand, novel operator placement algorithms can be developed and
integrated easily using ProgCEP placement interfaces.

2.3 Fog Infrastructure Model

We consider a hierarchical fog infrastructure as shown in Figure 2,
comprising of three layers: IoT, edge and cloud layer. The IoT layer
comprises of IoT devices interconnected over a wireless communi-
cation link. The edge layer offers resources at the edge, which offer
a low latency link to the IoT devices in physical proximity. Lastly, a
fixed network cloud layer comprising distributed resources in data
centers. It is important to note that cloud and edge resources are
assumed to communicate via a fixed IP infrastructure, while IoT
devices and edge resources can form different wireless network
topologies including device-to-device communication between IoT
devices.

In the IoT scenario, IoT layer represents producers and con-
sumers while operators can be placed on any of the three layers.
The end-to-end latency for this resource model is influenced by the
physical proximity of resources, but also the computational power
of resources. In general, we assume higher resource availability and
processing power at the cloud. In contrast, IoT devices are consid-
ered to be resource-constrained because they are battery-powered.
Edge nodes are considered more powerful than mobile nodes. They
are however constrained in their availability.

3 THE PROGCEP DESIGN

ProgCEP provides a programming model to realize flexible deploy-
ment of CEP applications on fog infrastructure. To do this, ProgCEP
heavily benefits from akka3 and Docker4 tools. We model the set of
producers (P), consumers (C) and Empty Apps as akka actors. The
actor based communication model of akka allows ProgCEP to form
a cluster and communicates using Gossip protocol. Hence, enabling
the fog infrastructure including the Internet of Things (IoT) devices
to communicate in a device-to-device fashion. The monitoring and
placement related information is also propagated via gossip proto-
col among the Empty Apps. In the below sections, we first describe
the programming model by explaining the placement interface and
Empty Apps abstraction and then we describe the overall workflow
of ProgCEP.

3.1 ProgCEP Programming Model

We aim for three main design goals: (i) easy deployment of oper-
ators on fog resources using state-of-the-art mechanisms while
giving developers to extend it in order to uncover further opportu-
nities (Section 3.1.1) (ii) allow applications to easily scale up (within
same node) and out (adding more nodes) as and when required (Sec-
tion 3.1.2) and (iii) provide a portable and lightweight model (with
minimum footprint) that supports a wide range of heterogeneous
fog resources distributed over a wide area (Section 3.1.3).

3akka: a distributed systems toolkit. Available at https://akka.io/. [Accessed 10.10.2019].
4Docker available at https://www.docker.com/. [Accessed 10.10.2019].

https://akka.io/
https://www.docker.com/

Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

ProgCEP: A Programming Model for Complex Event Processing
over Fog Infrastructure DFSD ’19, December 9–13, 2019, Davis, CA, USA

API Description

mechanismName Sets the placement mechanism name
getPlacementMetrics Determines the QoS metrics that must be

optimized
initializePlacement Resets placement parameters. (called ini-

tially and on reconfiguration)
findHost Finds physical hosts for operator place-

ment determined based on placement
metrics

findPossibleNodesToDeploy Retrieves all nodes that can host opera-
tors

Table 1: ProgCEP placement interface for developing novel

placement algorithms.

3.1.1 Placement Programming Model. ProgCEP placement pro-
gramming model provides a means for developers to implement
novel operator placement algorithm while utilizing fog infrastruc-
ture. An operator placement is defined as a suitable mapping of
CEP operator graph to available infrastructure while satisfying a
cost objective function. The infrastructure as studied in the existing
work is commodity hardware including bare metal servers, while
utilizing some form of virtualization, e.g., virtual machines. Only
a few solutions [2, 15] have been proposed that consider fog com-
puting infrastructure. They focus on proposing novel placement
algorithms, while we focus on facilitating development of novel
placement algorithm.

In particular, we provide a programming model for operator
placement as shown in Table 1 such that CEP developers can (i)
design novel placement mechanisms as well as (ii) experiment and
compare against existing ones. Although, there exists a wide range
of popular streaming systems, e.g., Apache Flink [3] and Storm [8],
which allows to write CEP applications, however, to the best of
our knowledge this is the first effort in facilitating development of
novel operator placement algorithms.

1 def findHost(cluster: Cluster) {

2 val candidates = findPossibleNodesToDeploy(cluster

)

3 applyRandomAlgorithm(candidates)

4 }

5
6 def applyRandomAlgorithm(candidates: Vector[Member]) {

7 val random: Int = scala.util.Random.nextInt(

candidates.size)

8 val randomMember: Member = candidates(random)

9 HostInfo(randomMember , this.getPlacementMetrics ())
10 }

Listing 1: Excerpt of a Random operator placement

As prominently discussed in the literature [9], we divide the
existing operator placement algorithms into two main categories:
(i) centralized and (ii) decentralized. A centralized placement al-
gorithm assumes global knowledge on the network (specific QoS
metrics) to assign an operator to a physical host. In contrast, a
decentralized algorithm deals with only partial knowledge on the
network or cluster of hosts. It is known that finding an optimal
placement is an NP-hard problem [4]. Hence, there exists many
heuristics and approximate solutions to this problem. Both kind
of placement heuristics require monitoring knowledge on the QoS
metrics. In ProgCEP, we provide explicit extensible monitors for
commonly used QoS metrics such as latency, bandwidth, CPU load,
etc. Each of these metrics are measured from end-to-end, meaning

the entire path from producer to consumer. The measurements
are accumulated step by step and hence individual measurements
can also be fetched easily. For centralized placement algorithms,
the QoS monitors transfer the observed metric to a centralized
broker. While for decentralized algorithms, we provide access to
well-known decentralized monitoring algorithms like Vivaldi [5],
which is used in prominent operator placement algorithms [13, 14].
Next, we explain how easy it is to implement a placement heuristic
using our APIs defined in Table 1. Next, as mentioned before, each
mechanism has a cost objective function of a QoS metric. First,
each placement mechanism needs to define a name, this is a simple
String, e.g., Random. The cost objective function is composed of
one or more QoS metrics, e.g., latency, CPU load, bandwidth utiliza-
tion, etc., that determines suitability of physical hosts for operator
placement. This is determined by the getPlacementMetrics API,
which connects to the respective QoS monitor. Consequently, this
helps in formulating the cost function. Thereafter, the placement
parameters are initialized using initializePlacement, which is
invoked in the beginning and each reconfiguration, e.g., during peri-
odic updates. Lastly, findPossibleNodesToDeploy and findHost
determines the physical host where the operator can be deployed.
In Listing 1, we provide an excerpt of random algorithm using our
APIs in Scala.

The findHost method is recursively called to deploy operator
on random candidate host returned by applyRandomAlgorithm
method. The returned host contains the information on the place-
ment metrics, e.g., latency for operator placement algorithm that
minimizes for latency. For the random algorithm it is empty.

3.1.2 Dynamic scaling. To achieve our second design goal, we
looked into two kinds of deployment modes: (i) centralized and
(ii) distributed deployment. In the first design, we allow launching
ProgCEP, as Docker containers on a single physical machine. Here,
each system entity, namely producer, consumer and Empty Apps
are encapsulated in a Docker container listening on different ports
and communicating using a Docker bridge network. Although, this
design provides distribution, yet it is restricted to a single physical
machine and can only scale up (adding more resources to the same
node, example by utilizing all the cores). Yet, users can benefit from
this deployment mode for scaling up of resources.

1 VehicleSensor:

2 image: mluthra/progCEP

3 environment:

4 - MAIN=progcep.machinenodes.Publisher
5 - ARGS=--port 3300 --name VehicleSensor --ip

VehicleSensor --host node1

6 ports:

7 - 3300:3300

8 networks:

9 - vehicularNetwork

10 deploy:

11 replicas: 2

12 restart_policy:

13 condition: on-failure

14 placement:

15 constraints: [node.hostname == node1]

16 privileged: true

Listing 2: Sample listing in ProgCEP Docker YAML

configuration

Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

DFSD ’19, December 9–13, 2019, Davis, CA, USA Manisha Luthra, Boris Koldehofe

To provide further scalability (scale out), we extended the architec-
ture to distributed deployment mode, where we utilized resource
orchestrators like Docker Swarm and Kubernetes for initial deploy-
ment. In this design, we launch ProgCEP system entities as Docker
services, which can bemanaged by orchestrators like Docker Swarm
or Kubernetes. For this, a compose configuration that specifies the
placement constraints as shown in the Listing 2 is maintained.

Here, VehicleSensor is a producer service with the main defini-
tion in Publisher class and corresponding name and port defined
under configuration options environment and ports, respectively.
The arguments (ARGS) option defines the akka actor name which
is used by the akka remoting to communicate across distributed
nodes. The Docker services connect in an overlay network named
vehicularNetwork. A major difference between a bridge and an
overlay network is that the former are isolated networks on a single
engine, while the latter spans over multiple engines. The deploy-
ment can be made more reliable using the configuration option
replicas and restart_policy. The former defines the replica-
tion factor of the service while the latter defines the counter action
for failures. Lastly, the placement constraint gives the initial place-
ment of the service on the physical host. The given example in
the listing is a static container service, which always remain on
node1. In addition to these, dynamic containers, the Empty Apps
are created and initially assigned to a node. However, these are
reconfigured using operator placement algorithms as defined in the
above section. We utilize such configuration to scale to multiple
nodes defined in a node specification (containing metadata such as
host info) as stated in Section 3.2 by renaming the hostnames to
node0, node1, etc. These hostnames are mapped to container ser-
vice names using the above compose configuration. Consequently,
the overlay network allows us to use container names to enable the
communication in the network. Docker Swarm generates routing
tables which map the container names to specific IP and port ad-
dresses. As placement module reconfigures the placement, Docker
Swarm automatically rewrites these routing tables, which is a major
advantage of using it.

3.1.3 Container-based Virtualization. Virtualization in ProgCEP
plays an important role to encapsulate applications with their de-
pendencies on any infrastructure and hence provide platform inde-
pendence, but also resource isolation which is important as multiple
IoT applications might run simultaneously on the fog infrastructure.
A widely used approach towards virtualization is using hypervisor
like Xen, VMWare, etc., which allows multiple guest operating sys-
tems on a single physical machine. These guest operating systems
that are executed are called virtual machines (VMs). Although, VMs
provide complete isolation from host it require large infrastructure
and higher compute power. Another way of providing virtualization
is using Linux containers, e.g., Docker containers. These provide
a lightweight and faster boot times while still providing resource
isolation from the host operating system. Another emerging kind
of lightweight virtualization technique is unikernel, that provides
complete isolation of resources from the host since it builds on
the concept called library operating system. This is a method for
constructing an operating system where the kernel and applica-
tion runs in the same address space. However, this results in poor
portability as the kernel needs to be compiled for drivers written

Generate
specs

Number of

resources

Start

Setup()

Compile()

Build()

Init_swarm()

Publish()

rspec.
xml

Template
Generator

docker-

stack

.yml

docker-

swarm

.cfg

Topology

information

PROGCEP

docker swarm

config.

Registry

Image:
PROGCEP &

PROGCEP -guidownload manifest

.xml

Network

info. (e.g., IP

addresses)

Generate

initial

placement

Initial placement

for swarm

Initial

templates

upload

download

System configuration

Infrastructure

mapping

1 2 3

GENI/

CloudLab

on-site

(a) ProgCEP workflow

Figure 3: ProgCEP distributed deployment on fog infras-

tructure illustrating the workflow.

for specific hardware. While unikernels, provide complete isola-
tion they are bad in terms of portability. Linux containers provide
ProgCEP a right level of abstraction to enable wide area portabil-
ity in a lightweight way on heterogeneous fog resources. For this
reason, we choose containers, specifically Docker (since it is well
established) as an abstraction to build ProgCEP images.

3.2 ProgCEPWorkflow

In Figure 3, we illustrate the workflow of utilizing the ProgCEP
programming model to deploy CEP operators on fog infrastructure.
We explain the workflow using the hierarchical fog infrastructure
model as follows. First, 1 we generate the input specification for
the specified number of resources to be acquired for deployment.
This number is fixed, yet, not all the resources should be used for de-
ployment. This is to acquire knowledge on the number of resources
participating in the deployment. The automatic specification gen-
erator outputs a spec file, e.g., rspec.xml for GENI and CloudLab
resource acquisition. This specification includes the limitations of
the resources, e.g., in terms of number of cores, RAM, etc. Other
commercial cloud providers e.g., AWS can also be easily integrated
in this process. To acquire edge and IoT resources, similar template
configuration can be utilized where, e.g., host IP addresses and user
information needs to be known.

2 Next, an integration process, regenerates the global node
configuration that contains aforementioned knowledge on the ac-
quired resources. The initial resource management is performed
using Docker Swarm as detailed in the programming model. Addi-
tionally, we support other resource orchestrators like Kubernetes
and Apache Mesos, which can be easily integrated. 3 This process
is followed by download of ProgCEP and ProgCEP GUI images
from the Docker hub. After successful compile and build, resource
management takes place using ProgCEP placement programming
model. It performs resource management and allocation using state-
of-the-art placement techniques as explained in the above section.
The execution environment assumes only Docker installation, how-
ever, it can be automatically installed using our setup configuration.
Some instances of cloud provide readily available resources with
Docker installed, e.g., CloudLab, where setup need not be performed.
This decreases the deployment time. In addition, use of registry
and the master-worker pattern in swarm orchestration further de-
creases the deployment time. This is because the Docker image has
to be only downloaded once on the master. Furthermore, Swarm en-
sures replication and recovery of nodes and hence makes ProgCEP
fault-tolerant.

Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

ProgCEP: A Programming Model for Complex Event Processing
over Fog Infrastructure DFSD ’19, December 9–13, 2019, Davis, CA, USA

Testbed Type Location # of
resources

Onsite Intel(R) Core(TM) i5-6200U Darmstadt 1
GENI MAKI protogeni Darmstadt 5
GENI Instageni Illinois 9
CloudLab Emulab Wisconsin 10

Table 2: Number of resources acquired for the fog infrastruc-

ture.

4 EVALUATION

We evaluated ProgCEP in two aspects, the applicability and realiz-
ability. In the first evaluation, by presenting the application areas
we show that it is utilized to build CEP applications and develop
novel operator placement algorithms in practice [10, 11]. In the sec-
ond evaluation, we show the realization of ProgCEP on fog testbed
and evaluate its performance. Lastly, we show the simplicity of our
programming model by evaluating the lines of code needed to write
state-of-the-art operator placement algorithms.

4.1 Application Areas

TCEP system. TCEP [11] is a transition-capable CEP system that
develops a concept of transition i.e., to dynamically exchange oper-
ator placement mechanisms at runtime to deal with the changes in
the environment and QoS demands. The main idea behind is that
there is no one-size-fits-all placement heuristic which is suitable for
each environmental condition. For this, two transition modes that
defines the strategy for transition were proposed. For facilitating
transitions between operator placement, such a system needs to
have an interface for development of an operator placement mech-
anism and underlying infrastructure for deployment of operators.
TCEP benefits from ProgCEP programming model and placement
interfaces to develop the concept of transitions and to evaluate
different strategies.

Transitions in Fog Infrastructure. In [10], authors explain how
flexibility in utilizing fog infrastructure can be utilized for the con-
cept of transitions. In this paper, first, the authors presented an
extensive case study on multiple use cases in a smart city envi-
ronment, where transitions in fog infrastructure can be helpful.
Secondly, they introduced transitions in different CEP mechanisms
including operator placement. Lastly, they evaluated two placement
mechanisms Relaxation [13] and Mobile DCEP [17] to show there
is no one-size-fits-all operator placement mechanism. To achieve
this, the authors utilized ProgCEP in order to develop different
operator placement mechanisms using our simple interfaces.

4.2 Realizability

To show the benefit of ProgCEP over real fog infrastructure, we
deploy it over a cluster of cloud and edge resources. For the cloud
part, we utilize a mix of GENI1 and CloudLab2 resources and for
the edge part, we utilize some on-site resources available in our
lab and GENI (MAKI protogeni), in consistent to the hierarchy of
our infrastructure model in Figure 2. This gives us some resources
that are near to the user at edge, while some far away resources,
which comprise our fog testbed. We limit the resources at the edge
and on-site in terms of available memory to 2 - 4 GiB, while at
cloud in GENI and CloudLab it ranges between 8GiB - 32GiB. This
introduces additional heterogeneity in the available resources in

Start-up Deployment
0

100

200

300

400

T
im

e
 in

 s

Figure 4: Start-up and deployment time on fog infrastruc-

ture.

Placement Algo-
rithm

Kind of Placement QoS metric (Cost) Lines of Code
(LOC)

Producer-
Consumer

Centralized - 20 LOC

Random Centralized - 28 LOC
Global Optimal Centralized Bandwidth

∗Latency
89 LOC

Relaxation [13] Decentralized Bandwidth
∗Latency2

116 LOC

MOP-
Algorithm [14]

Decentralized Bandwidth
∗Latency

98 LOC

Mobile DCEP [17] Decentralized Message-Overhead 173 LOC

Table 3: Lines of code required to include a new placement

algorithm using our interface.

terms of memory in addition to location and network latency. This
is easily done using the aforementioned rspec.xml in GENI and
CloudLab. GENI and CloudLab are open infrastructure for research
in networking and distributed systems at large scale. We leverage
from these two test-beds to acquire resources for our experimental
fog infrastructure as explained in Table 2. Using the above resources,
we have shown the applicability of ProgCEP for two big areas in
existing work: TCEP [11] and Transitions in Fog infrastructure [10].

Furthermore, we evaluated on the setup, start-up and deployment
time of ProgCEP on the fog infrastructure described in Table 2.
The setup time for ProgCEP on each host (using Docker registry) is
around 30 seconds, thanks to our improved workflow (Section 3.2),
in comparison to 180 seconds if Docker container is built on each
host. In Figure 4, we present a bar plot with 95% confidence interval
from 10 experiments for start-up and deployment times using our
dockerized implementation. The start-up time taken by the given
nodes joins the Docker swarm ranges between 300-400s for 25
nodes. The deployment time gives the amount of time required to
publish the services i.e., the event producers, consumers and empty
apps on the acquired cluster of resources which is done in around
70s.

To show the simplicity of our programming model we imple-
mented simple operator placement algorithms in Scala, such as, Ran-
dom (randomly chooses nodes for placement), Producer-Consumer
(places on producers and consumers) and state-of-the-art Global Op-
timal (optimal placement), Relaxation [13] and Mobile DCEP [17].
In Table 3, we show the respective placement algorithms, the kind,
the QoS metric they target and the lines of code in which we im-
plemented these algorithms using our programming model. It is
clear that our programming model minimizes the effort of opera-
tor placement implementation, with as low as 20 LOC for simple
algorithms to less than 200 LOC for sophisticated ones.

Manisha Luthra, Boris Koldehofe. ProgCEP: A Programming Model for Complex Event Processing over Fog Infrastructure. To appear in the Proceedings of 2nd
International Workshop on Distributed Fog Services Design, December 2019, ISBN 978-1-4503-7031-8/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

DFSD ’19, December 9–13, 2019, Davis, CA, USA Manisha Luthra, Boris Koldehofe

5 RELATEDWORK

We review the existing work in two directions: (i) distributed com-
plex event processing programming models and (ii) fog program-
ming models.

Complex event processing programming models. Current CEP sys-
tems are restricted in terms of developing novel operator placement
algorithms in different ways. For instance, Apache Storm [8] in its
classical form only provide a basic round robin operator placement.
Although custom implementations for Apache Storm exists [4],
none of them provide a uniform programmingmodel for developing
and deploying operator placement. DCEP-Sim [16], is a distributed
CEP simulator that provides simulation of CEP applications on top
of ns3. In contrast, we enable better evaluation of performance
and accelerate development of such fog computing applications
using our deployment architecture. Apache Flink [3] is another
CEP engine that provides deployment of operators in a distributed
fashion. However, it also relies on an integration with resource
orchestrators like Kubernetes or Mesos for operator deployment.
Resource orchestrators like Kubernetes [1] provides interface to de-
velop and deploy placement algorithms, however, are still restricted
in terms of deployment in a homogeneous infrastructure. While
in this work, we provide (i) a programming model to develop CEP
applications, (ii) an interface for developing operator placement
and (iii) operator deployment on heterogeneous infrastructure such
as fog.

Fog programming models. Fog infrastructure is getting big at-
tention from academia as well as from industry due to its high
performance and availability for a wide range of applications such
as IoT. However, development using fog infrastructure is difficult
due to limited availability of open source fog programming models.
There are a few existing simulation [6] and emulation tools [7, 12]
for development on applications for fog computing, however, a real
world deployment of such applications using open source tools is
limited. For instance, recently Mayer et al., proposed EmuFog [12],
which is an extensible and scalable emulation tool for development
on fog computing infrastructures. The framework utilizes Maxinet
that is a multi-node extension of network emulator mininet. Al-
though, the authors have made easy to emulate applications on top
of this open source tool using Docker, yet, emulation is still a virtual
representation of the actual deployment, which still gives limited
insights of real world deployment that is explored in this work.
Similarly fog simulation tools such as iFogSim [6], simulate fog
computing infrastructure to measure the performance, yet again,
only approximately close to real world deployment.

6 CONCLUSION

In this work we presented ProgCEP that enables easy deploy-
ment and development of complex event processing applications
on fog infrastructure. We proposed a programming model for de-
veloping operator placement algorithms – a key component – for
functionality of a CEP system. Using our programming model and
dockerized implementation, we have shown the simplicity of de-
ployment on fog infrastructure and its applicability on two existing
systems [10, 11]. We have evaluated the deployment effort of our

programming model on a real world deployment on fog infrastruc-
ture involving two large testbeds GENI and CloudLab. In future, we
plan to evaluate operator placement algorithms using our program-
ming model on this testbed to study the performance and enable
wide range development and deployment of these mechanisms on
fog infrastructure.

Acknowledgement. This work has been co-funded by the Ger-
man Research Foundation (DFG) as part of the project C2 within
the Collaborative Research Center (CRC) 1053 – MAKI.

REFERENCES

[1] 2019. Kubernetes. https://kubernetes.io/. Accessed 10.10.2019.
[2] Hamid Reza Arkian, Abolfazl Diyanat, and Atefe Pourkhalili. 2017. MIST: Fog-

based data analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications. Journal of Network and Computer Applications 82
(2017), 152 – 165. https://doi.org/10.1016/j.jnca.2017.01.012

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bulletin 38 (2015), 28–38.

[4] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli.
2016. Optimal operator placement for distributed stream processing applications.
In Proceedings of the 10th ACM International Conference on Distributed and Event-

Based Systems, DEBS 2016. 69–80.
[5] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. 2004. Vivaldi: A

Decentralized Network Coordinate System. SIGCOMM Computer Communication

Review 34, 4 (Aug. 2004), 15–26.
[6] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.

2016. iFogSim: A Toolkit for Modeling and Simulation of Resource Manage-
ment Techniques in Internet of Things, Edge and Fog Computing Environments.
Softwares for Practical Experience 47 (2016), 1275–1296.

[7] Kirak Hong and David Lillethun. 2013. Mobile fog: a programming model for
large-scale applications on the internet of things. In Proceedings of the second

ACM SIGCOMMWorkshop on Mobile Cloud Computing. 15–20.
[8] Sanjeev Kulkarni, Nikunj Bhagat, Masong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron. Proceedings of the ACM SIGMOD International Conference

on Management of Data - SIGMOD ’15 (2015), 239–250. https://doi.org/10.1145/
2723372.2742788

[9] Geetika T. Lakshmanan, Ying Li, and Rob Strom. 2008. Placement strategies for
internet-scale data stream systems. IEEE Internet Computing 12, 6 (2008), 50–60.

[10] Manisha Luthra, Boris Koldehofe, and Ralf Steinmetz. 2019. Transitions for In-
creased Flexibility in Fog Computing: A Case Study on Complex Event Processing.
In Informatik Spektrum, Special Issue on Fog Computing Reality (August 2019).

[11] Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, and
Raheel Arif. 2018. TCEP: Adapting to Dynamic User Environments by Enabling
Transitions Between Operator Placement Mechanisms. In Proceedings of the 12th

ACM International Conference on Distributed and Event-based Systems (DEBS ’18).
ACM, 136–147. https://doi.org/10.1145/3210284.3210292

[12] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umakishore
Ramachandran. 2017. EmuFog: Extensible and scalable emulation of large-scale
fog computing infrastructures. 2017 IEEE Fog World Congress (FWC) (2017), 1–6.

[13] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.
2006. Network-Aware Operator Placement for Stream-Processing Systems. In
22nd International Conference on Data Engineering (ICDE’06). 49–49.

[14] S. Rizou, F. Durr, and K. Rothermel. 2010. Solving the Multi-Operator Place-
ment Problem in Large-Scale Operator Networks. In 2010 Proceedings of 19th

International Conference on Computer Communications and Networks. 1–6.
[15] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov. 2016. SpanEdge:

Towards Unifying Stream Processing over Central and Near-the-Edge Data
Centers. In 2016 IEEE/ACM Symposium on Edge Computing (SEC). 168–178.
https://doi.org/10.1109/SEC.2016.17

[16] Fabrice Starks, Stein Kristiansen, and Thomas Plagemann. 2018. DCEP-Sim: An
Open Simulation Framework for Distributed CEP: Introduction for Users and
Prospective Developers. In Proceedings of the 12th ACM International Conference

on Distributed and Event-based Systems (DEBS ’18). ACM, New York, NY, USA,
183–186. https://doi.org/10.1145/3210284.3219501

[17] F. Starks and T. P. Plagemann. 2015. Operator placement for efficient distributed
complex event processing in MANETs. In 2015 IEEE 11th International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob).
83–90.

[18] Pascal Weisenburger, Manisha Luthra, Boris Koldehofe, and Guido Salvaneschi.
2017. Quality-aware Runtime Adaptation in Complex Event Processing. In
Proceedings of the 12th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS ’17). 140–151.

https://kubernetes.io/
https://doi.org/10.1016/j.jnca.2017.01.012
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/3210284.3210292
https://doi.org/10.1109/SEC.2016.17
https://doi.org/10.1145/3210284.3219501

	Abstract
	1 Introduction
	2 ProgCEP System Model
	2.1 Node Model
	2.2 Placement Model
	2.3 Fog Infrastructure Model

	3 The ProgCEP Design
	3.1 ProgCEP Programming Model
	3.2 ProgCEP Workflow

	4 Evaluation
	4.1 Application Areas
	4.2 Realizability

	5 Related Work
	6 Conclusion
	References

