
Adaptive Complex Event Processing over
Fog-Cloud Infrastructure Supporting Transitions

Manisha Luthra
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

manisha.luthra@KOM.tu-darmstadt.de

Boris Koldehofe
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

boris.koldehofe@KOM.tu-darmstadt.de

Ralf Steinmetz
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

ralf.steinmetz@KOM.tu-darmstadt.de

Abstract—Fog Computing is an emerging trend that can enable
profound applications in the Internet of Things (IoT) arena. The
IoT applications typically deliver vital information from multiple
sources to the end-users in the form of notifications e.g., heart
status in health monitoring. Complex Event Processing (CEP) is
a powerful paradigm that bridges this gap from raw sensor data
to meaningful information. But, IoT applications involves a wide
distribution of heterogeneous devices that are highly dynamic
(e.g. mobile nodes). This poses a strict need for a highly adaptive
system. Consequently, first we propose a TCEP system that
allows in-network processing of CEP operator graph on the fog-
cloud infrastructure. Secondly, we describe how such a system
can benefit from transitions between different CEP algorithms
(mechanisms) to overcome the heterogeneity and dynamics of
the fog-cloud infrastructure. This leads us to important research
questions related to transition that are presented and addressed
in this research work.

Index Terms—Fog Computing, Internet of Things (IoT), Com-
plex Event Processing (CEP)

I. INTRODUCTION

Nowadays, there is a growing surge of Internet of Things
(IoT) applications like smart cities, health, industry (Industrie
5.0) etc. [1] The IoT applications connect a multitude of
devices over an interoperable communication network, ex-
changing enormous amount of information about themselves
and their surroundings. Complex Event Processing (CEP)
is an important paradigm to extract meaningful information
from disparate sources in real-time. Typically, a CEP system
consists of event producer(s) generating low-level data streams
e.g., sensor data that are to be processed and correlated. The
event consumer(s) or the IoT application end-users can specify
the events of interest as a continuous query with the system.
The query is transformed into an operator graph, where oper-
ators are the semantic units of query e.g., joins, filter, windows
etc. The event broker(s) perform distributed in-network query
(operator graph) processing, in order to determine the events
of interest. The CEP system then notifies the events of interest
to the event consumer(s). In this way, CEP provides a powerful
way to deliver meaningful information to the end user for IoT
applications.

However, the emerging wave of IoT applications e.g.,
in Smart City environment are demanding in one or more
performance objectives, stringent latency requirement, net-
work bandwidth constraints, mobility support and location-

Cloud

Fog

Things

N
etw

o
rk

 H
iera

rch
y

Fig. 1. Fog-Cloud infrastructure for deployment of IoT applications.

awareness. Fog-computing [2] is an emerging platform that
provides some of the aforementioned characteristics. It ex-
tends the cloud-computing paradigm to bring computation
towards the edge near to the end-users (consumers). Big cloud
providers like Amazon and Google have recently launched
fog locations, Amazon CloudFront1 and Google Cloud CDN2

respectively, that enable new breed of such applications in
gaming, e-commerce, social media etc.

It is often pointed out that a federation of cloud and fog
can allow wider range of applications where latency sensitive
operators can be placed at the fog, while compute intensive
operators at the cloud. An example of such a network hierarchy
is illustrated in Fig. 1 [3].

Such a diffused infrastructure is suitable to support large-
scale distributed CEP systems enabling deployment of IoT
applications. For instance, to perform in-network continuous
query processing over the fog-cloud infrastructure. However,
there are two main challenges in this: 1) presence of hetero-
geneous infrastructure as illustrated in Fig. 1 by the three
layers (things, fog and cloud) ranging from smartphones,
vehicles to switches and routers to data center, 2) dynamic
streaming environment consisting of: a) data streams pro-
duced at varying data rates, b) devices that can be mobile
and c) fluctuating properties of the communication network
e.g., bandwidth. Most importantly, the dynamic environment
influences performance objectives of a large number of users.
The distributed CEP system must take into account these
challenges to deliver the desired performance e.g., low latency
to an IoT application. Yet, state of the art distributed CEP
(DCEP) systems fall short in their support towards highly

1https://aws.amazon.com/cloudfront/ [Accessed January 2018]
2https://cloud.google.com/cdn/docs/locations [Accessed January 2018]



dynamic nature of event consumers, producers and brokers.
Considering mobility, there exists some approaches [3] that
allow producers and consumers to be mobile, but connected
to a fixed or quasi-stationary broker network. Additionally,
they are restricted in their flexibility of providing mechanisms
at run-time, that could deal with the dynamic nature of
the environment. Some authors proposed elasticity in DCEP
systems to deal with varying workload, but lack support for
higher mobility [4].

To this end, we propose a concept for a highly adaptive
DCEP system over a fog-cloud infrastructure that supports
strong dynamics of streaming environment (viz. producers,
consumers and brokers) for IoT applications. This is accom-
plished by runtime adaptation, aka. transition [5] between
distributed CEP mechanisms. The transition to a new DCEP
mechanism must fulfil varying and conflicting performance
objectives from a large number of users. The ultimate goal
is to provide methods to enable adaptation between DCEP
mechanisms to deal with a dynamic streaming environment
and performance objectives. Towards this, we investigate the
following research questions for a Transitive-CEP (TCEP)
system:

1) What are the potential mechanisms in a DCEP system
that can benefit from transitions?

2) How can we specify transitions in a DCEP system?
3) How, when and who triggers the transitions in a TCEP

system?
4) How to enable uninterrupted user experience using

TCEP system?
We elaborate further on the problem based on a case study

on Smart City Environment in Section II, where flexibility in
performance objectives is desired. Afterwards, we enumerate
important challenges identified in the case study, that influ-
ences the execution of an CEP operator graph, in Section III.
Next, we identify key transitions in DCEP mechanisms for
operator graph and overlay network in Section IV. Finally,
we conclude and give next steps for our fog-cloud assisted
Transitive-CEP (TCEP) system in Section V.

II. CASE STUDY: SMART CITY ENVIRONMENT

According to Cisco3, the Smart-city market is estimated
to generate a revenue of hundred billion dollars by 2025.
Running projects on the smart cities like European Smart
Cities4, highlight the increasing significance of key industry
and service sectors in this domain including Smart Mobility,
Smart Health, Smart Home, and other value added services.
While the IoT space offers an end-to-end solution, our focus
in this work is to enable real-time processing of IoT data using
DCEP.

Current IoT architectures rely on either of the two extremes
for data processing – cloud, or fog [2]. On the one hand,
sending all the data to the cloud for high capacity storage and

3The city of the future: Smart and connected, from http://www.cisco.
com/web/tomorrow-starts-here/connectedcities/preview.html [Accessed Jan-
uary 2018]

4http://www.smart-cities.eu/ [Accessed January 2018]

computation, e.g., video surveillance for traffic monitoring.
On the other hand, time-critical applications like autonomous
driving rely on local computation (on the sensors), particularly
the Things layer in Figure 1. Still, IoT applications e.g., in the
Smart City scenario pose challenges that are not solved by the
two extreme architectures. For instance, routing data to the
cloud can take several hundred milliseconds to react, that can
lead to life critical situation, e.g., for future autonomous car
to car communication. On the other side, some IoT devices
are resource constrained, hence processing data locally can
also be complex as well as costly. For instance, widely used
Raspberry Pi devices used for multiple purposes comes with
1.2 GHz processor and 1 GB RAM. Such devices can only
be used for pre-processing primitive events. Another concern
is that sending data over a communication network to a
cloud server consumes much energy and bandwidth. This
implies a complex trade-off, particularly if local nodes are
battery-powered. In this paper, we address these limitations
of current IoT architectures by flexible and adaptive DCEP
enabling in-network query processing guided by transitions
(cf. Section IV). Therefore, we focus on three important
questions: 1) where, 2) how to perform processing and 3)
how placement of processing operators impact performance
objectives of IoT end users.

A. Traffic Control

According to INRIX 2017 Global Traffic Scorecard5,
European drivers spent over 91 hours in congestion last year.
The traffic congestion continues to rise, if it is left unchecked.
A multitude of sensors in smart cities such as smart cameras,
environmental sensors like audio, radars, induction loops and
GPS sensors on smart cars can be used to derive insightful
information about traffic. For example, notifications can be
delivered to the drivers regarding the traffic flow, congested
roads, unobstructed roads, or warning about road condition and
accidents. DCEP allows this correlation of sensor data from
the multiple data sources to derive higher level information
such as the status of traffic congestion. This is performed by
processing the information inside the network at multiple de-
vices (e.g., fog or cloud nodes). We look into three possibilities
of distributed CEP: 1) distributed local/fog CEP, 2) distributed
cloud CEP or 3) distributed fog-cloud CEP.

Although, devices such as smartphones operate on high-
speed processors with clock frequencies upto 1 GHz, pro-
cessing big video streams from traffic monitoring cameras,
locally on these low-powered sources is not resource efficient.
A typical traffic monitoring camera captures at a resolution
>= 320 × 240 pixels and frame rate 10fps i.e. 768,000
pixels/data points per second, approximately. Sending all of
this data to a cloud server imposes a significant cost. On the
other side, processing lower level sensor data from vehicular
sensors can be performed at local/fog nodes. Thus, trade
off between performing DCEP locally or at cloud must be
considered.

5http://inrix.com/scorecard/ [Accessed January 2018]



The detection of complex event like traffic congestion is
time and location dependent. It is not mindful to send a
notification for traffic congestion when it has been cleared
(time), or for a road where the user is not travelling (loca-
tion). Thus, for an accurate and efficient decision, the system
must be time and location-aware, but also be aware of other
environmental factors (context-aware) that are significant for
controlling traffic congestion. For example, it is important to
note that the traffic conditions are not the same the entire day,
as they are during rush hours. Therefore, it is very important
to reconfigure DCEP mechanisms at runtime in accord with
the traffic conditions and the need of end-users. For instance,
for emergency services the notifications must be delivered
undelayed, in contrast to a normal user.

B. Smart Health Monitoring

With the commence of IoT, there has been a growing num-
ber of devices that allows efficient health monitoring, including
fitbit, body cardio scale, blood pressure (BP) monitor, Kito+
and many more. DCEP allows to collaboratively process the
information from this variety of sensors to gain meaningful
insights on one’s health, e.g., heart status. However, to make
full use of these vital sensors, information must be processed
quickly and efficiently. The power of cloud can be used to
process the information quickly, but transferring data to cloud
for processing is time consuming, and the delays caused might
lead to life critical situations like a heart stroke. Besides, cloud
computing can also be a source of data privacy concerns. The
privacy can be protected if the data is processed locally, either
within the sensor, the body or the house/hospital where it was
produced. Since user tend to be mobile, once the data leaves
the private sphere, sophisticated DCEP mechanisms must be
deployed to guarantee protection of privacy. On the other hand,
prevalent insights can be obtained by data collection and batch
processing offered by cloud, e.g, heart status over an year.

Vital signs from various sensors can be used to predict
individual’s health status e.g., by means of tools like Early
Warning Score (EWS) system. It is a manual tool widely
used in hospitals to track the condition of patients. It involves
measuring five physiological parameters namely heart rate,
systolic BP, breath rate, SPO2 and body temperature and
assigning them score between 0 and 3, with a lower score
meaning a better condition [2]. IoT-enabled wearables for
health monitoring can be used to empower systems like EWS,
to continuously track and predict individual’s health in an
automated way. However, the system alone faces open issues
that must be addressed [2]. Environmental factors influences
the vital signs like heart rate etc., which must be considered
to reach to a more realistic solution. For instance, a heart
rate of 120 beats per minute would be an alarming sign for a
patient who is sleeping, while it can be completely normal for
who is exercising. If not considered, such characteristics can
drastically decrease the performance of the system in terms of
accuracy and precision. Corresponding DCEP mechanisms are
needed to adjust the scores in order to avoid false alarms as
well as guaranteeing protection of privacy in such systems.

To summarize, there is a strong need to reconsider DCEP
mechanisms to cater the needs of different end users of IoT
applications in accord with the environmental context.

III. CHALLENGES

In this section, we summarize the challenges brought by
IoT applications studied in the aforementioned case study
examples of traffic control and health monitoring.

Dynamic streaming environment. a) Data streams pro-
duced by IoT devices arrive at varying rates and volume,
but also with a constantly changing quality (or certainty).
E.g., sensor data produced by some devices can be noisy
and erroneous, while by some devices can be more accurate.
Besides, b) the streamed data has to be processed by user
devices that perhaps can be resource and memory constrained
(cf. Section II-A). In addition, due to mobility some devices
might become unavailable for processing. Furthermore, c)
the communication network that connects the IoT devices,
possess highly fluctuating properties e.g., time varying latency,
bandwidth, etc., that might have an influence on performance.

Varying performance objectives. As pointed out earlier
in our case study, the dynamic streaming environment causes
changes in the performance objectives of the IoT application.
For instance, latency requirement of an emergency service
(ambulance) for traffic notification will be significantly urgent
than of a normal user. Similarly, in health monitoring the
environment or user context (like location and activity) impact
the performance perceived by the end user – privacy and
accuracy, respectively.

Heterogeneity of infrastructure. The diffused infrastruc-
ture of fog-cloud itself is a challenge because of network and
system heterogeneity. Some nodes might be geographically
located far away, while some could be near. Because of this,
there can be huge latencies between some nodes. Thus, TCEP
system must prepare for proper coordination and planning of
execution, i.e. where to process an operator – on cloud or fog
node, split an operator to fog and/or cloud or perform parallel
processing at both of them. The decision varies based on the
adaptive selection of CEP mechanisms.

IV. MECHANISM TRANSITION IN DCEP

A. Need for Transition in DCEP mechanisms

In the view of the aforementioned challenges, there is a
strong need of run-time adaptation of the underlying DCEP
mechanisms. Current systems neglect that the DCEP mecha-
nism performs well only under the given environmental condi-
tions, the respective assumptions and performance objectives.
However, if dynamics are introduced into the environment, the
system’s performance objective might not be met. For instance,
higher workload might render system unreliable and ineffi-
cient, as observed in the case study presented in Section II.
Besides, performance needs of large number of users might
vary significantly e.g., for emergency service in traffic control
and exercising habits of different users in health monitoring.
Thus, a DCEP system must adapt its mechanisms at runtime
subject to the performance objectives of the end-users. In our



existing work [5], we show that in this case a transition is
well suited. We extend this work, to show our hypothesis
that transition in CEP mechanisms e.g., operator placement
(cf. Section IV-B) could aid us in run-time fulfilment of
performance objectives for dynamic user environment.

B. Mechanism: Overlay and operator graph transitions

DCEP system detects events of interest by distributed
in-network processing of operator graph over the fog-cloud
infrastructure. To do this, an appropriate selection of a node
to deploy an CEP operator is performed, i.e. well known
as operator placement problem. The operators are assigned
to the nodes such that the performance objectives specified
by the system are achieved. The performance objective are
such that, they best satisfy the end-user’s requirements. Once
the operators are placed on the nodes, the operator graph is
processed in a CEP overlay called an operator network [3]. It
has been proven in the literature, that an optimal assignment
of an operator to a node is a NP-complete problem. Thus,
many heuristics and approximation algorithms are proposed
for operator placement [6]. Although, each algorithm provides
a solution to optimally place an operator to a node, they
make different assumptions for the respective problem. The
design characteristics of the placement are based on these
assumptions and the performance objective of the application.
The dynamics in the environment as discussed before (cf. Sec-
tion III) influences the assumptions, performance objectives
and hence choice of the placement mechanism.

Centralized vs. Decentralized Algorithms. The placement
algorithms are characterized based on: 1) how the placement
decisions are made and 2) whether the decisions require cen-
tralized knowledge about the environment [6]. The centralized
algorithms have central knowledge about the environment e.g.,
on network state, workload and the resources, whereas the
decentralized algorithms make decision on placement based
on local knowledge. Apparently, centralized algorithms suffer
from scalability issues while decentralized algorithms not. The
event workload on the system in the IoT applications vary
significantly, as specified in our case study. Thus, transitions
between centralized and decentralized algorithms are to be
explored, to ensure that the CEP overlay is not under-utilized
but also not over-utilized. Scalability can be provided in a
distributed CEP system in two ways: 1) vertical scalability
(scale up), 2) horizontal scalability (scale out). Scaling up
means to add/remove resources to/from the nodes, while
scaling out means to add/remove nodes in/from the CEP
overlay network. Techniques like parallel processing (scale up)
or load partitioning and balancing (scale out) can be used
to adapt to decentralized algorithm and thereby satisfying
the workload requirements. Recently, there is an increasing
interest in providing such adaptations by using auto-scaling
strategies [4]. This work could be a start point to further
analyze the CEP overlay transitions.

Static vs. Dynamic Operator Network. Mobility is one
of the major causes of dynamics in the IoT applications. De-
centralized algorithms can efficiently respond to such dynamic

changes at runtime. This requirement raises important issues
like efficient operator migration. It refers to efficient move-
ment of an operator from one node to another to optimally
satisfy a performance objective, in response to changes in
the environment e.g., mobility. However, operator migration
is costly, especially for stateful operators [3]. Thus, transition
between mechanisms for static vs dynamic networks are in-
vestigated to avoid additional costs and to provide an efficient
and seamless transition. For static or quasi-static networks it
is recommended to avoid operator migration, as it is very
expensive. On the other hand, for extremely dynamic operator
network, migration is crucial. Existing work [3], [5] looks into
this problem but not for mobile operator network. Additionally,
methods for cost of operator migration are yet undiscovered.
Moreover, existing approaches for operator placement and
migration satisfy the same performance objective i.e. statically
specified at the design time. However, there are situations in
an IoT environment where the performance objective changes
as illustrated in the case study. For this reason, transitions in
the identified CEP mechanisms are prevalent.

V. PRELIMINARY CONCLUSION AND FUTURE WORK

In this paper, we presented important research questions
motivating the need for transitions between different existing
CEP mechanisms in a highly adaptive and context-aware CEP
system. We presented a case study on Smart City environment
for two different applications, traffic congestion control and
smart health monitoring. Several scenarios (traffic control and
health) are identified where transitions in CEP mechanisms can
be beneficial with assistance of a fog-cloud architecture. Fi-
nally, important CEP mechanisms are identified for transitions
corresponding to the situations in our case study. Intuitively,
transitions are costly and therefore in the near future, we will
look into its cost and benefits w.r.t. aforementioned scenarios.
Furthermore, important research questions such as how, when
and who triggers the transition are to be investigated.

Acknowledgement: This work has been co-funded by the German
Research Foundation (DFG) as part of the project C2 within the Collaborative
Research Center (CRC) 1053 – MAKI.

REFERENCES

[1] P. Samulat, Die Digitalisierung der Welt: Wie das Industrielle Internet der
Dinge aus Produkten Services macht. Wiesbaden: Springer Fachmedien
Wiesbaden, 2017, pp. 103–124.

[2] M. A. Rahmani, L.-S. P. Preden, and A. Jantsch, Fog Computing in the
Internet of Things. Springer International Publishing, 2018.

[3] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “MCEP: A Mobility-Aware Complex Event Processing
System,” ACM Transactions on Internet Technology (TOIT), vol. 14, no. 1,
pp. 1–24, 2014.

[4] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
elastic scaling for distributed data stream processing systems,” in Pro-
ceedings of the 8th ACM International Conference on Distributed Event-
Based Systems, ser. DEBS ’14. ACM, 2014, pp. 13–22.

[5] P. Weisenburger, M. Luthra, B. Koldehofe, and G. Salvaneschi, “Quality-
aware runtime adaptation in complex event processing,” in Proceedings of
the 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS ’17, 2017, pp. 140–151.

[6] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for internet-
scale data stream systems,” IEEE Internet Computing, vol. 12, no. 6, pp.
50–60, 2008.


