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ABSTRACT

Operator placement has a profound impact on the performance
of a distributed complex event processing system (DCEP). Since
the behavior of a placement mechanism strongly depends on its
environment; a single placement mechanism is often not enough
to ful�ll stringent performance requirements under environmental
changes. In this paper, we show how DCEP can bene�t from the
adaptive use of multiple placement mechanisms. We propose Tcep,
a DCEP system to integrate multiple placement mechanisms. By
enabling transitions, Tcep can seamlessly exchange distinct operator
mechanisms at runtime. We make two main contributions that are
highly important for a cost-e�cient transition: i) a transition strat-
egy for e�ciently scheduling state migrations and ii) a lightweight
learning algorithm to adaptively select an appropriate placement
mechanism as a consequence of a transition. Our evaluations for
important decentralized placement mechanisms in the context of
an IoT scenario show that transitions can better ful�ll QoS demands
in a dynamic environment. Thereby, e�cient scheduling of state
migrations can help to faster complete transitions by up to 94 %.
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1 INTRODUCTION

Distributed Complex Event Processing (DCEP) is widely known
as a key paradigm in the analysis of real-time data streams from
distributed sources. Key factors for the success of DCEP in a wide
spectrum of application domains [7] are (i) the possibility to easily
specify event patterns of interest to applications and (ii) to e�ciently
detect such event patterns. The latter is of extreme importance for
the applications in the era of the Internet of Things (IoT) where
the number of interconnected devices is massively growing and
expected to exceed 20 billion by 2020 [4].

To cope with a massive in�ux of IoT data and to ful�ll stringent
Quality of Service (QoS) demands for IoT applications, research
e�orts have already explored a wide spectrum of so-called Operator
Placement mechanisms [12, 21, 34–36]. A mechanism for Operator
Placement (OP) provides a mapping of the event detection logic
in the form of an operator graph to available resources that are
selected to execute event operators. These resources can be physi-
cally dispersed and may comprise of anything, e.g., physical servers
in a data center, user devices and, as recently proposed, computa-
tional resources at the edge of the network [22, 28], e.g., Docker
containers.

The placement decision signi�cantly in�uences the ability of
a DCEP system to meet QoS demands [19]. For example, to meet
a low latency demand, an OP mechanism may favor resources at
the edge of the network in order to enforce low communication
delays between event producers, operators, and event consumers.
However, in a mobile environment, high dynamics will impose
frequent changes in both (i) the placement of operators and (ii) the
availability of resources (such as mobile devices). Therefore, OP
mechanisms as proposed by [37] favor high stability and low con-
trol message overhead in adapting the placement rather than just
focusing on low latency communication.

In fact, the selection of an OP mechanism used for a DCEP system
strongly depends on the desired QoS demands and the respective
environmental conditions. Therefore, building on a single OP mech-
anism restricts the DCEP system in its ability to (i) support multiple
queries with distinct QoS demands and (ii) cope with environmen-
tal changes. For example, in a tra�c control application, the tra�c
density and the mobility pattern of vehicles is known to vary a
lot in between rush hours (high density and slow movements) and
normal hours (low density and fast movements) [11]. Consequently,
a good OP mechanism will favor stability of the placement itself to
cope with an environment of fast movements of cars. On the other
hand, the placement should be highly delay- and load-e�cient to
keep up with the high event rates produced under environmental
conditions with many vehicles. It is important to note that delay
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SectionV1:

Input Stream: vehiclesAtSectionV1

Condition 1: Slow movement, 

High vehicle density 

SectionV2:

Input Stream: vehiclesAtSectionV2

Condition 2: Fast movement, 

Low vehicle density 

Query: “Is SectionV1 in my area of interest congested?”  

Output: Complex event “congestion of road SectionV1” is detected 

Conditions: Conditions 1 and 2 holds for SectionV1 and SectionV2

(a) Congestion detection under dynamic environmental condi-

tions performed by query in (b).

1 case class VehiclesAtSection(sectionId: Int ,

avgVehiclesDensity: Long , avgVehiclesSpeed Long ,

time: Long)

2 val vehiclesAtSectionV1: Stream[VehiclesAtSection] = ...

3 val vehiclesAtSectionV2: Stream[VehiclesAtSection] = ...

4 val congestedAdjacentRoadSections = Query[RoadSections]

5 (( vehiclesAtSectionV1 where { v1 =>
6 v1.avgVehiclesSpeed < NormalSpeedThreshold &&

7 v1.avgVehiclesDensity > HighTrafficThreshold

8 })

9 ->

10 (vehiclesAtSectionV2 where { v2 =>
11 v2.avgVehiclesSpeed > NormalSpeedThreshold &&

12 v2.avgVehiclesDensity < HighTrafficThreshold

13 })

14 within 1.min

15 where { case (v1, v2) => v2.time > v1.time }

16 demand QOS_DEMAND)

(b) Query to detect congestion at a road section.

Figure 1: Tra�c control scenario showing the need of di�erent OP mechanisms for dynamic user environments.

e�ciency and stability (measured as control message overhead) are
here con�icting demands that are hard – if not impossible – to meet
by a single OP mechanism.

To support a wide spectrum of QoS demands, we propose the
concept of OP mechanism transitions. An OP mechanism transi-
tion allows dynamically exchanging OP mechanisms in a seamless
way depending on the environmental conditions at run time. This
way, DCEP systems can bene�t from a large number of existing
OP mechanisms [12, 21, 36]. Yet, a crucial research challenge is to
address the cost in terms of state migration caused when a place-
ment mechanism is exchanged. In this paper, we propose Tcep, a
transition-capable CEP system, supporting cost-e�cient operator
placement mechanism transitions. We show in the context of an
IoT scenario and existing operator placement mechanisms that
transitions help to adapt DCEP systems to a wider spectrum of
QoS demands and that OP mechanism transitions can be achieved
fast and at low cost. In more detail, the paper provides following
contributions:

(1) We devise two novel transition strategies to realize a cost-
e�cient OP mechanism transition in a live (online) and a seam-
less manner.

(2) We present a lightweight learning algorithm that adaptively
exchanges OP mechanisms at run time based on their perfor-
mance during the execution.

(3) We provide an implementation and evaluation of Tcep to show
that cost-e�cient transitions between OP mechanisms can be
bene�cial to ful�ll QoS demands of a large number of consumers
in a dynamic user environment.

The remainder of the paper is structured as follows. We further
detail on the problem, particularly for the tra�c control scenario
and motivate the need of mechanism transitions by a preliminary
evaluation in Section 2. We introduce the Tcep system model in
Section 3. We present the design of Tcep in Section 5. Section 6
evaluates the Tcep system. Sections 7 and 8 present the related
work and conclude our paper, respectively.

2 CASE STUDY: IOT TRAFFIC CONTROL

APPLICATION

In this section, we introduce an IoT scenario, in the context of a traf-
�c control application. In this scenario, state-of-the-art placement
mechanisms [27, 37] fail to ful�ll QoS demands that change because
of dynamic environmental conditions. This demonstrates the need
for a DCEP system that supports OP mechanism transitions.

We consider a continuous query1 to detect that a road section
on a highway is congested because of a tra�c congestion (cf. Fig-
ure 1). Any consumer can pose the query (cf. Figure 1b), e.g., a
vehicle, with respect to a speci�c road section on the highway, say
SectionV1. The query correlates speci�c conditions – the observed
tra�c density and speed of vehicles – observed on SectionV1
and its succeeding road section, say SectionV2. The query de-
tects a sequence (Line 9) of such conditions for SectionV1 (Lines
5–7) and SectionV2 (Lines 10–12). The events of both streams
(vehiclesAtSectionV1 and vehiclesAtSectionV2) are generated
by heterogeneous sensor sources available in the IoT infrastruc-
ture (e.g., speed sensors, radar sensors, tra�c monitoring cameras
and others). The complex event: congestion of road SectionV1 is
detected whenever the sequence of conditions on SectionV1 and
SectionV2 in a temporal timespan of one minute (Line 14) indi-
cates (i) dense tra�c and slow vehicles for SectionV1 and (ii) sparse
tra�c and fast vehicles for SectionV2 (cf. Figure 1a).

The execution of the query and its operators is performed on the
available resources in the IoT infrastructure, such as mobile devices,
that can directly interact via device-to-device communication [13].
The mapping of the operators to resources, i.e., the operator place-
ment, must account for the QoS_DEMAND speci�ed within the query.
As part of the query speci�cation1, these demands (e.g., low latency)
can be speci�ed according to the user’s requirements.

A premise underlying our work is that di�erent demands cannot
be accommodated by the same placement mechanism. Therefore,
we analyze the ability to ful�ll speci�c QoS demands for the query
in Figure 1b for two popular state-of-the-art OP placement mecha-
nisms: Relaxation [27] and Mobile DCEP [37]. The key idea of the
Relaxation mechanism is to build on a model referred to as latency

1in the AdaptiveCEP query language in Scala [39]
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Figure 2: Performance comparison of Relaxation [27] and

Mobile DCEP [37] OP mechanisms.

space. The latency space allows determining communication delays
between resources in the IoT environment and the mechanism uses
the relation to �nd a near optimal embedding of an operator graph
with respect to end-to-end latency. On the other hand, Mobile DCEP
avoids the overhead in maintaining any topological information,
which needs to be updated frequently in a highly dynamic environ-
ment. Instead, the placement decisions are based on devices within
the communication range that are capable of forming a device-to-
device network closer to the data sources. In this way, the authors
are able to achieve a near optimal embedding of the operator graph
at low control message overhead.

We analyzed the two mechanisms in an IoT environment with
mobile IoT resources (i.e., the vehicles in the scenario) under the two
important QoS demands: (i) end-to-latency as the time required to
detect events, and (ii) control message overhead needed to establish
stable communication between the placed operators.

Figure 2, shows measurements on end-to-end latency and control
message overhead achieved by the OP mechanisms in a dynamic
mobile environment, for 50 incrementally deployed queries. The
cumulative distribution function (CDF) over the number of deployed
queries con�rms that Relaxation achieves consistently very low end-
to-end latency for most of the queries (less than 100 ms for 80 %
of the query workload). This is consistent with the �ndings of
Pietzuch et al. [27], but the message overhead (to build the latency
space) is increasing quickly with the number of deployed queries
(up to 1500 KB on average). In contrast, Mobile DCEP achieves little
message overhead for all queries (in the order of few bytes) allowing
for a very stable OP, but many queries impose a long end-to-end
latency (∼7.5 s on average).

The above evaluation shows that di�erent QoS demands require
building upon di�erent OP mechanisms. Most importantly, depend-
ing on the changing environmental conditions, di�erent mecha-
nisms are required to ful�ll the speci�ed QoS demands. In a less
dynamic environment with respect to node mobility, e.g., within
a rush hour, we measured a signi�cantly lower control overhead
for Relaxation, i.e., Relaxation can be used to achieve low latency.
However, when changing from “rush” hours (with lower dynamics)
to “normal” operation (with higher dynamics), a transition from
Relaxation to Mobile DCEP is important. Controlling the overhead
improves stability of the OP under the increased dynamics.

Smart Car Traffic Control

ωσ 

ω


ωV1 ωV2

Operator Graph

Things/IoT devices

1 min 1 min

Figure 3: Operator graph for the query in Figure 1b.

3 SYSTEM MODEL

In this section, we present the system model by introducing the
Tcep operator graph, the IoT resource model, and the transition
mechanism and QoS demand model of Tcep.

3.1 Tcep Model

Tcep consists of a set of event producers (P ), which generate contin-
uous data streams (D), a set of event consumers (C), which express
an interest in the inference of event patterns from the incoming
data streams, and a set of event brokers (B), which host a set of op-
erators (Ω) to process and forward events. Event consumers specify
interest in the detection of an event pattern by means of a continu-
ous CEP query. The query induces a directed acyclic operator graph
G = (Ω ∪ P ∪C,D), where each vertex corresponds to an operator
ω ∈ Ω and each edge corresponds to the processing �ow of data
streams, s.t., D ⊆ (P ∪ Ω) × (C ∪ Ω).

The operator graph dictates the execution plan speci�c to the
query given by the event consumer. For example, Figure 3 repre-
sents an operator graph for detection of a tra�c congestion at road
sections corresponding to the query in Figure 1b. Operators ωV 1
and ωV 2 corresponds to the window-aggregate operators of the
two input streams from the road sections V 1 and V 2. Operators
ω→ and ωσ denote sequence and selection operators, respectively.
Each operator ω dictates a processing logic fω . The function pro-
cesses ordered input event streams from the operator’s input bu�er
BI and produces output events that are stored in the operator’s
output bu�er BO . An operator can either work based on �xed
computational parameters (immutable) or it can generate dynam-
ically changing computational state (mutable), depending on the
internal logic of the operator. For example, a mutable operator
can dynamically change the selection of events determined by an
operator-speci�c selection policy and consumption policy, e.g., of
window and sequence operators.

3.2 IoT Resource Model

Although Tcep is not limited to a speci�c network topology and
resource model, we will focus on the resources commonly con-
sidered in the context of IoT. We consider a hierarchical network
infrastructure consisting of three layers: (mobile) Things referring
to IoT devices interconnected over wireless communication, a �xed
network layer comprising distributed resources in data centers
(cloud), and a third layer of resources at the edge, which o�er a
low-latency link to the Things in physical proximity (cf. Figure 4).
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Figure 4: Example operator graph deployment on the IoT

network resources.

It is important to note that cloud and edge resources are assumed
to communicate via a �xed IP infrastructure, while IoT devices
and edge resources can form di�erent wireless network topologies
including device-to-device communication between IoT devices.

In the IoT scenario, Things represent producers and consumers,
while operators can be placed on any of the three layers. The
end-to-end latency for this resource model is in�uenced by the
physical proximity of resources, but also the computational power
of resources. In general, we assume higher resource availability
and processing power at the cloud. In contrast, IoT devices have
resource-constraints because they are battery-powered. Edge nodes
are computationally more powerful than mobile nodes. They, how-
ever, are constrained in their availability.

In order to access computational resources and place operators
on the IoT infrastructure, each operatorω is encapsulated in a light-
weight and portable Docker container that provides the runtime
execution environment (EE) of Tcep.

3.3 Tcep Mechanism and Transition Model

Tcep follows a modular design as a composition of multiple OP
mechanisms M1,M2, . . . ,MN . An OP mechanism determines a
mapping of an operator graph G onto a number of brokers
H = {b1,b2, . . . ,bk } in the network infrastructure. The mapped
network of brokers is well known as an operator network. We
de�ne the mapping of the operator network as follows:

α : Ω × H → {0, 1}, s .t .

αi, j =

{
1, if ωi is placed on bj

0, if ωi is not placed on bj

In this work, we study the concept of a transition, denoted as T :
MA → MB . A transitionT performs an exchange from a mechanism
MA to MB , e.g., OP mechanisms, at run time in a seamless or non-
disruptive manner. To enable the seamless execution of a transition,
multiple instances of an operator may actively process events at
distinct brokers each executing di�erent OP mechanisms.

3.4 QoS Demand Model

An important principle of an OP mechanism is to �nd a mapping
of an operator graph to brokers that optimally satis�es an objec-
tive function of QoS demands, e.g., end-to-end latency, bandwidth,
control message overhead etc. Tcep allows speci�cation of one
or more QoS demands (QoS) and changing them at run time. The
dynamics in the environmental conditions (e1, e2, . . . , ek ) such as
varying workload and mobility in�uence the ful�llment of such
QoS demands.

In this work, we consider two important performance metrics in-
�uencing the decision of operator placement in a dynamic environ-
ment [28]. First, we de�ne end-to-end latency as the time for process-
ing and transmitting a complex event along the pathω1,ω2, . . . ,ωk
between any event producer p to any consumer c . It is important
to note that end-to-end latency can be time-varying due to the
dynamic nature of the network. Second, we de�ne control message
overhead by the average number of packets that must be sent per
broker bi , until a complex event can be successfully delivered to
the event consumer c .

4 PROBLEM STATEMENT

Consider the availability of N -di�erent OP mechanisms that can be
selected to execute and place a query on the IoT network resources
(cf. Figure 4). Dependent on the environmental conditions e(t) at
time t , the QoS demands of consumers, say QoS |e(t ) are changing.
Furthermore, the ability and cost of an OP in terms of resource
requirements to ful�ll the QoS demands are changing over time.

The Tcep system aims to ensure that in spite of changing en-
vironmental conditions, the QoS demands of queries are ful�lled
and the resource demands are satis�ed. Therefore, we determine
for changing environmental conditions e(t) and corresponding
QoS |e(t ) demands a sequence of points in time, say t1, . . . , tn and
a sequence of OP mechanisms M(t1), . . . ,M(tn ) on which a transi-
tion Ti : M(ti ) → M(ti+1) is initiated at time ti . It is important to
note, that while performing a transition, several operator migra-
tions must take place. The operator migrations impose a signi�cant
cost because of state migration in terms of time as well as overhead.
Moreover, the transition needs to be performed in a non-disruptive
manner, i.e., even during the transition, the QoS demands of a query
need to be satis�ed. Consequently, the state migration has to take
place in a cost-e�cient manner.

We de�ne the objective function of the transition problem consid-
ering two key cost factors, the costs imposed in terms of (i) transi-
tion time (CT ime (Ti )) and (ii) transition overhead (COverhead (Ti )).
The transition time is de�ned as the time it takes to select a new
target placement mechanism M(ti+1) (Timeselect ), to �nd a place-
ment α dependent on M(ti+1) (Timeα ), and to migrate all operators
ωj ∈ Ω to the target brokers (Timemiд .(mj )) dependent on α . Thus,
we de�ne the cost in terms of transition time as:

CT ime (Ti ) = Timeselect +Timeα +
n∑
j=1

Timemiд .(mj )

Similarly, the transition overhead is the number of messages
exchanged in order to perform a transition including the (i) selection
of a placement mechanism, (ii) the transition coordination, and
(iii) the placement and migration of the operators.

The transition problem in this paper, therefore, is to minimize a
weighted sum of transition time and transition overhead in order to
meet the QoS demands under the execution of transitions as stated
below:

min [wt ∗CT ime (Ti ) +wo ∗COverhead (Ti )]

s .t . α(t) satis�es QoS |e(t ) under the execution of T1, . . . ,Tn
Here, wt and wo denote weights for transition time and overhead,
respectively.



Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, Raheel Arif. TCEP: Adapting to Dynamic User Environments by Enabling Transitions
between Operator Placement Mechanisms. To be published in the Proceedings of 12th ACM International International Conference on Distributed and Event-based

Systems (DEBS), June 2018, ISBN 978-1-4503-5782-1/18/06.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have o�ered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

TCEP: Adapting to Dynamic User Environments by Enabling
Transitions between Operator Placement Mechanisms

DEBS ’18, June 25–29, 2018, Hamilton,
New Zealand

Environment Monitor

QoS 

Monitor

Other 

Monitors

M

Search

Placement
M Deploy 

Graph
E

T
C

E
P

E
n

g
in

e
T

C
E

P

C
o

n
tr

o
l

Placement 

Performance

Evaluator

A

P

Transition Engine

Execution 

Strategies
Coordinator

E
Placement

Library

K

Event of Interest

Io
T

R
es

o
u

rc
es

Event Consumer(s) specify query with QoS demand Event Producer(s) streams to G

ω


ωV1 ωV2

ωσ 

ω


Figure 5: The TCEP system design.

5 THE TCEP SYSTEM DESIGN

The key components of the Tcep system are represented in Figure 5.
Tcep system comprises three layers. IoT resources includes event
consumers, at the bottom layer, can pose queries with speci�c QoS
demands. The application components, e.g., the things, will receive
in turn the events of interest. The control layer utilizes and manages
a library of state of the art OP mechanisms. It decides when to per-
form a transition and which placement mechanism to select within
a transition. It is also responsible to coordinate the transition, i.e., to
perform operator migrations building on di�erent transition execu-
tion strategies. The Tcep engine provides an execution environment
to execute operators on the infrastructure of the IoT resources layer.
Moreover, the execution environment of the Tcep engine provides
mechanisms for monitoring the performance of the placement, as
well as monitoring the environmental conditions.

Tcep follows the well-known MAPE-K [18] model for adaptation.
The four processes of the loop, Monitoring (M), Analyzing (A), Plan-
ning (P) and Executing (E) are realized in a decentralized manner
(cf. Figure 5) in the control layer and within the Tcep engine. In
the following sections, we will focus on three research challenges,
namely:
(1) How to realize transitions in a seamless manner?
(2) How to decide, when to perform a transition?
(3) How to adaptively select an OP mechanism as a consequence

of a transition?
In Section 5.1, we investigate (1) seamless and concurrent transfer
of multiple operators during a transition, while taking into account
minimal-state for a cost-e�cient transition. We address (2) and (3)
in Section 5.2, where we �rst provide a monitoring mechanism for
environmental conditions and the respective QoS demands, and
second, we present a lightweight learning algorithm for an adaptive
selection of OP mechanism such that the QoS demands are satis�ed.

5.1 Transition Engine

The Tcep transition engine coordinates how a transition is per-
formed over the life cycle of a transition [15], i.e., from its invoca-
tion to its completion. The life cycle of a transition is de�ned by
the two transition strategies. This component, therefore, is a core
of the Tcep system.

We �rst provide a high-level view of the requirements for the
transition phase. A transition from one OP mechanism to another
involves several distributed entities of Tcep. The transition exe-
cution must be coordinated such that it is consistently performed
across these entities. Thus, the transition coordinator maintains and

fωselector sequencer

ω

Int.
BI B BO

selection

selection consumption

consumption

Figure 6: Intermediate bu�er represented in the operator

state model [40].

orchestrates the transition life cycle. Tcep currently supports two
transition strategies (detailed below). The di�erence in the life cycle
of the proposed transition strategies lies in the seamlessness i.e.,
how smooth the transition is performed and how much is the cost
in terms of time and overhead (CT ime (T ) and COverhead (T )) as
de�ned below.

During the execution of a transition, the target OP mechanism
determines a set of target brokers for the new placement. As a
result, all the operators have to migrate to the target brokers to
comply with the new placement logic. While the coordinator per-
forms operator migrations, it must continue satisfying the QoS
demands by the event consumers, which is our primary goal. To do
this, we speci�cally look into costs associated with performing a
transition in terms of time and overhead. The transition execution
strategy dictates the logic of how cost-e�cient operator migrations
are performed while ful�lling the QoS demands. Taking into ac-
count these requirements, we present two transition execution
strategies, where we 1) coordinate the transition, 2) perform opera-
tor migrations while ensuring the correctness and completeness of
the delivered complex events to the consumers, and 3) perform the
live and seamless transition.

Moving Fine-Grained State (MFGS) Sequential Transition.
In this strategy, the transition coordinator initiates operator migra-
tions in a speci�c order i.e., in a bottom up fashion (cf. Algorithm 1:
Lines 1-14). This means an operator is only migrated after all its
successors were successfully migrated. Here, the dependency of
operators follows a bottom-up fashion, where leaf operators are
successors of their predecessors or dependent operators as we go
level up in the operator graph. The operator migrations are per-
formed in a sequential and breadth �rst manner (one at a time) to
the target brokers (Lines 2-3).

In the next step, the coordinator determines the target broker
with the help of the target OP mechanism (Line 5). It is important
to note that the target OP mechanism is predetermined by the
search placement component (cf. Section 5.2). Consequently, an
operator ω may need to be migrated to a new target broker (Line 6-
7). For operator migrations, a minimum state is extracted, which
corresponds to the intermediate state discussed in details in the
next paragraph (Line 8). Afterwards, this state is sent to the target
broker, to start the execution of the operator with the minimum
migrated state.

In addition, the target broker subscribes to its producers or pre-
decessors to receive event streams, from the time the intermediate
state was captured (Line 9). When the migration is complete, the tar-
get broker will send an acknowledgement including the sequence
number of the �rst output event to the source broker (and the coor-
dinator) (Line 10). After the source broker has been acknowledged,
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Algorithm 1: Moving Fine-Grained State Sequential Tran-
sition.

Variables :OList ← bottom-up list of set of operators (Ω)
ω ← current operator to be migrated
producers← list of producers to ω
targetMechanism← target OP mechanism
targetBroker ← target broker host of ω
ϕInt ← intermediate state of ω

1 function Init-MFGS-SequentialTransition()
2 OList ← bottomUpAsList(Ω);
3 MFGS-SeqentialStrategy(OList .head, targetMechanism)

4 function MFGS-SequentialTransition(ω, targetMechanism)
5 targetBroker ← targetMechanism.findtargetBroker();
6 if targetBroker , ω .sourceBroker then
7 ω .copyExecutionEnvironment(targetBroker);
8 ϕInt . ← ω .computeIntermediateState();
9 targetBroker .StartExecutionWithData(producers,

ϕInt . );
10 if ω .sourceBroker.receivedACK(timeout, retries) then
11 StopExecution(ω .sourceBroker);
12 MFGS-SeqentialTransition(OList .next(),

targetMechanism);

13 else

14 MFGS-SeqentialTransition(ω,
targetMechanism);

it will stop its execution and the target OP mechanism will con-
tinue at the target broker (Line 11). We start the transition at time ti ,
wherein we performm operator migrations sequentially until the
transition is completed at time te . The recursive function performs
the operator migration by traversing bottom-up the operator graph
(Line 12).

Cost-e�cient Operator Migrations. The Tcep transition engine
computes �ne-grained computational state of an operator (cf. Sec-
tion 3.1) for cost-e�cient operator migrations. We build upon the
operator state model proposed by Wermund et al. [13, 40]. In the
operator state model (cf. Figure 6), the input events are cached in the
input bu�er (BI ) selected by the selector to map the output events
determined by the correlation function of the operator (fω ). Next,
the selector handles the removal of events from the input bu�er Bi
when the same are either consumed or discarded by the correlation
function fω . The resulting output or complex events are stamped
with a sequence number (SN ) by the sequencer and appended into
the output bu�er BO which are then forwarded to the ω’s succes-
sor. The events which are acknowledged by all successors are then
removed from the output bu�er BO .

Conventionally, a CEP system transfers the internal state ϕω
that comprises the state of the input bu�er BI , the selector, the
correlation function fω , the sequencer and the output bu�er BO .
Tcep transfers the content of the intermediate bu�er BInt , instead
of the entire state ϕω . The content of BInt contains those events on
which the correlation function fω is applied, to obtain the complex
events. For example, for a window-aggregate operator, the content
of BInt will be the events contained in the window, and those are
selected to be aggregated by the correlation function (sum, min or
max). This set of events are updated each time the output events
are generated, e.g., once the window slides (for a sliding window
operator), or the corresponding event is either consumed (inserted
into the output bu�er BO ) or discarded by the correlation function.

For the cost and completion time of a migration, it is important
when the target broker subscribes to its incoming event streams.
Consider the intermediate state φω (ti ) of operator ω migrated at
time ti comprises BInt , the correlation function fω , and the state
of the sequencer (Line 9). Here, BInt replays the events that were
selected for correlation before the source broker went down (Line 9).
At time ti − δ , the target broker subscribes to the input events
from the producers or the predecessor operator. δ is a small value
to ensure that the target broker receives input events before the
processing starts. Yet, all input events until the source broker is
executing, are discarded (Line 10).

Properties. The transition time taken by this transition strategy is
within the bound O (|Ω | + |φΩ |). Here,φΩ denotes the intermediate
state of the set of operators Ω within the operator graph. This time
includes the time required by the coordinator to transfer the state
of an operator over the network (Lines 9 to 12). In this strategy, we
reduce the time required to perform an operator graph transition by
transferring a minimum amount of state. Yet, the operator process-
ing at the target broker does not take place unless the source broker
is in execution. This means that while the selected state is being
transferred (i.e., it is on the wire), there are some events – sent to
the target broker – that remain unprocessed. No output events are
produced unless the intermediate state is transferred. Achieving a
seamless transition, e.g., with no output disruption, however, re-
mains an open problem. Another problem is the sequential transfer
of operators. While sequential transfer does not consume much
network resources, it is very time consuming. To solve these issues,
we propose a second transition strategy.

Seamless Minimal State (SMS) Concurrent Transition. In
contrast to the above strategy, this strategy allows for more than
one operator migrations at the same time (cf. Algorithm 2: Lines 1-
16). At each level l = 0 tom of the operator graphG , the coordinator
triggers at most 2l operator migrations (for binary operator graph)
performed in a bottom up fashion (Line 2). The bene�t of concurrent
operator migrations is perceived in the cost computation that is
later analyzed in the properties of the algorithm. The operator
migrations begins when the coordinator transfers the execution
environment (Line 5). The coordinator determines an optimal time
ti for each operator ω when the operator state is minimal, so that
the transition consumes minimum resources (Line 7). For this, we
assume the events follow a time order of arrival [42]. The selection
of time ti is such that for each operator ω, SMS waits until the
operator ω is purged from its old state (Line 8). Essentially, until
BInt and fω are stateless. For example, for a window-aggregate
operator, the target broker waits until the last event of the window
is processed,w +δ , herew is the window size and δ is a small value
to ensure that ti is greater than any time instant of input events to
the source broker. Time ti is chosen as the transition start time. We
call this time minimal-state time of an operator (timin (ω)).

The target broker starts its execution with the minimal state
(the last SN ) at the transition start time, while the predecessor
operators at the higher level are still under execution by the former
OP mechanism. Thus, in this strategy, the transition coordinator
allows an execution of two OP mechanisms concurrently. This is
to deal with the output disruption discussed as follows.
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Algorithm 2: Seamless Minimal State Concurrent Transi-
tion.

Variables :producers← list of the event producers
OGlevel ← operator graph level for migration
targetMechanism← target OP mechanism
targetBroker ← target broker host of current operator
ϕsequencer ← state of sequencer
waitTime← time taken until current operator
is purged from its state

1 function SMS-ConcurrentTransition(OGlevel, targetMechanism)
2 for all ω ∈ OGlevel do in parallel

3 targetBroker ← targetMechanism.findtargetBroker();
4 if targetBroker , ω .sourceBroker then
5 ω .copyExecutionEnvironment(targetBroker);
6 NTPClockSynchronization,(targetBroker,

ω .sourceBroker);
7 minimalStateTime← ω .determineMinimalStateTime();

8 waitTime← waitUntil(minimalStateTime));
9 ϕsequencer ← ω .lastSN;

10 targetBroker .StartExecutionWithData(producers,
ϕsequencer );

11 targetBroker .determineReferencePoint
(minimalStateTime);

12 if ω .sourceBroker.receivedACK(timeout, retries) then
13 StopExecution(ω .sourceBroker);
14 SMS-ConcurrentTransition(OGlevel.next(),

targetMechanism);

15 else

16 SMS-ConcurrentTransition(OGlevel,
targetMechanism);

Seamless and Concurrent Operator Migrations. In order to explain
the concurrent operator migrations, we refer to the operator graph
from our example scenario in Figure 7. Src box refers to the place-
ment of an operator at the source broker and Trg box refers to
the placement at the target broker. The �rst step shows the ini-
tial placement, while the last one shows the �nal placement after
migration. The concurrent execution of two OP mechanisms (cf.
steps 2 to 3 in Figure 7) enables seamless execution in this strategy.
Yet, migrations do not interfere with each other, while the operator
network gradually transforms the placement (cf. step 4 in Figure 7).
The transition coordination is accomplished atomically in the Tcep
transition engine.

To better understand the cost of concurrent operator migrations,
we analyze the reception of input events at both source and target
brokers after transition start time ti . For an operator ω, the state
φω (ti ) at transition time will only comprise the state of the se-
quencer (containing the SN of the �rst event to be produced at the
target broker) (Line 9). All the input events received after timin (ω)
are redirected to the target broker. The source broker processes the
remaining input events. The replicated operator at the target broker
starts processing the input events concurrently after the migration
of the operators at lower levels in the graph. The source brokers
are gradually replaced by their targets as illustrated in Figure 7.

To deal with the clock drift between the two clocks of the source
and the target brokers we perform distributed clock synchroniza-
tion using standard Network Time Protocol (NTP) [24] at both ends
(Line 6). To avoid duplicates in the output events, due to the con-
current processing, we use the reference point method [8] (Line 11).
We treat the start timestamp of the results of the target broker as a
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Figure 7: Sequence of operator migrations in the operator

graph for SMS strategies.

reference point. Such timestamp is then compared to the transition-
start time ti . If the reference point is larger than ti , then the complex
event is sent to the output bu�er BO .

Properties. In this strategy, we partition the transition at discrete
time steps such that for each operator migration Mi , we determine
the minimal-state time as described before. This approach ensures
a live and seamless transition without service disruption thanks to
minimal consumption of resources. Due to the concurrent trans-
fer, the number of nodes in the new operator network increases
exponentially over time with the increase of the size of the opera-
tor graph G. Therefore, the total transition time of this strategy is
within O (loд(|Ω |) +C), hereC = |φΩ | that is constant (state of the
sequencer) for a given set of operators Ω.

5.2 Placement Performance Evaluator

This component measures the performance of the OP mechanisms
continuously and analyze their behavior. A lightweight learning
algorithm is employed, to statistically determine which mechanism
best meets the QoS demands building on a selection strategy of
genetic algorithms [41]. Lightweight refers to the fact that learning
does not rely on any training set but only use statistics that are
collected online during the execution. The learned model is used by
the search placement component to adaptively select an appropriate
OP mechanism with best performance. The environment monitor
component keeps track of the performance behavior (QoS demands
and environment conditions via QoS monitor and other monitors)
and reports any changes to this component – e.g., if the QoS demand
speci�ed in the query is violated. During initialization (when no
empirical statistics are available), the target placement mechanism
is determined by comparing the respective QoS demand with the
speci�ed optimization objective(s) of the placement mechanism. If
more than one placement mechanism exists for the respective QoS
demand, then the selection is performed in a round-robin fashion.

In this section, �rst, we de�ne a heuristic �tness function to
evaluate the performance of an OP mechanism during its execution.
Then, we de�ne an adaptive selection of an OP mechanism based
on the observed statistics.



Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, Raheel Arif. TCEP: Adapting to Dynamic User Environments by Enabling Transitions
between Operator Placement Mechanisms. To be published in the Proceedings of 12th ACM International International Conference on Distributed and Event-based

Systems (DEBS), June 2018, ISBN 978-1-4503-5782-1/18/06.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have o�ered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

DEBS ’18, June 25–29, 2018, Hamilton,
New Zealand Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, Raheel Arif

Heuristic Fitness Score for OP Mechanism. We measure the
performance of the current OP mechanism in execution at regular
intervals. The collected performance statistics are then used for
comparison between di�erent OP mechanisms. To quantify the
performance, we measure the �tness of each OP mechanism that
is in execution. We de�ne a heuristic �tness function with the ob-
jective to maximize the number of times an OP mechanism ful�lls
the current QoS demands. This means that if an OP mechanism
ful�lls QoS demands x > max times between the time interval ts
(when the query was �rst submitted) and tt (when the transition is
triggered), then this mechanism is selected for next execution. For
each QoS demand, we update the �tness score at regular intervals
until the next transition. The score provides information on how
well the OP mechanism has performed over the time, in compar-
ison to the mechanisms that were in execution before (since the
query was �rst submitted). The goal is to �nd a best mechanism
for the respective QoS demands by utilizing the collected statistical
information. This goal is accomplished by maintaining the scores
of the respective OP mechanisms Mi,qosj (tt ) for each QoS demand
qosj , and updating the score at the occurrence of a transition at
time tt . Since, an OP mechanism can ful�ll multiple QoS demands,
the score is determined for each QoS demand separately. For each
OP mechanism Mi , we maintain a score function Score(Mi,qosj )

(tt )

which is obtained based on the evaluation of each QoS demand
qosj . The score Mi,qosj (tt ) is normalized for each OP mechanism
Mi , based on the mean normalization method to make the scores
comparable.

Mi,qosj (tt ) =

(
µi,qosj (ts,t ) − µqosj (ts,t )

)
maxqosj (ts,t ) −minqosj (ts,t )

.(1 − decay)+

Mi,qosj (tt − 1).decay

(1)

We compute the �tness score based on the statistics collected
from executing OP mechanism i (with subscript i), which is then
compared to other mechanisms executed from time ts (when the
query was �rst submitted) until time tt (when the transition is
triggered): given as ts,t .

In Equation 1, µqosj (ts,t ), maxqosj (ts,t ), and minqosj (ts,t ) de-
note the mean, maximum and minimum score values for all the
OP mechanisms, respectively, that have been used until time tt
considering the QoS demand j. µi,qosj (ts,t ) represents the mean
score value of OP mechanism Mi until time tt considering the QoS
demand qosj . Mi,qosj (tt − 1) is the last score of OP mechanism Mi
and a decay factor is used to exponentially reduce the e�ect of old
statistics to give priority to the data that is recently collected. The
initial of value of decay is set to 0.

The overall score of an OP mechanism is computed based on the
scores of all the statistics collected on the QoS demands ful�lled
by the OP mechanism. The score is the sum of the normalized
scores for each QoS demand qosj ∈ [qos1,qosk ], where k is the total
number of QoS demands considered by OP mechanism Mi .

Score(Mi)(tt ) =
k∑
j=1

Mi,qosj (ts,t )

Adaptive Selection of OP Mechanism. The adaptive selec-
tion of an OP mechanism is performed once each OP mechanism

has been de�ned with a �tness score. We adopt from the Linear
Ranking Selection Strategy [41], a selection method from Genetic
Algorithms (GA). The ranking based method is suitable for our
OP mechanism selection problem, since it allows us (1) to perform
a relative analysis suitable for the heuristic �tness function that
indicates which OP mechanism is better, and (2) by an appropriate
selection pressure it favors exploration over exploitation avoiding
selecting worse OP mechanisms. In this method, OP mechanisms
are sorted according to their �tness values, and then ranks are
assigned to them. Rank N is assigned to the best OP mechanism
while rank 1 to the worst. The selection probability Pi is linearly
assigned according to the rank as follows.

Pi =
1
N

(
η− + (η+ − η−)

i − 1
N − 1

)
; i ∈ [1,N ] (2)

In Equation 2, η
−

N is the probability that the worst OP mechanism
is selected and η+

N the probability that the best OP mechanism
is selected. Since OP mechanisms in the placement library are
constant during runtime, the conditions η+ = 2 − η− and η− ≥ 0
must be ful�lled. Also note that all the OP mechanisms are ranked
di�erently, i.e., they have distinct selection probability – although
they can have the same �tness score [9]. The probability of the
OP mechanism to be selected is proportional to its �tness function
score.

ηi =
Score(Mi )∑n
i=1 Score(Mi )

The worst probability and the best probability are calculated as
the minima and maxima respectively of the probability distribution
function η. The selection of the mechanism means inclusion of it in
the reduced search space, which gives well-performing OP mecha-
nism a higher probability than the lower ones, i.e., we prefer OP
mechanisms which were classi�ed to perform better (exploitation
of the learning algorithm), but sometimes we also select worse OP
mechanisms to update their score (exploration).

6 EVALUATION

In the evaluation of Tcep, we aim to answer the following questions:

(1) Does the mechanism transition concept satisfy changing QoS
demands for dynamic environmental conditions?

(2) Can a transition for OP mechanism be performed in a live and
seamless manner?

(3) What is the cost involved in the execution of a transition and
is the cost acceptable?

To answer the above questions, we evaluate Tcep in two ways:
(i) in Section 6.2, we evaluate the ability of Tcep to meet QoS
demands with respect to latency and message overhead, (ii) in Sec-
tion 6.3, we evaluate the stability of the system subject to transitions,
and the cost imposed by the distinct transition strategies proposed
in Section 5.

In the following sections, we �rst describe our evaluation execu-
tion environment including details on the implementation of Tcep,
the evaluation setup and then present our evaluation �ndings.
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Table 1: Con�guration parameters for the evaluation.

Number of producers 2
Number of brokers 10
Number of consumers 4
Number of queries 50
WINDOW_SIZE 5, 10, 20, 30, 40, 50 secs
QOS_DEMANDS latency, message overhead
Delay and Jitter min. 20 ± 10ms, max. 100

±50ms (normal distribution)
OP mechanisms Relaxation [27],

Mobile DCEP [36]
Transition execution strategies MFGS-Sequential, MFGS-

Concurrent, SMS-Sequential,
SMS-Concurrent

6.1 Evaluation Environment and Setup

The implementation of Tcep builds on an adaptive complex event
processing system proposed in [39]. In particular, Tcep builds on
the programming model for specifying QoS demands at run time
(e.g, the query in Figure 1b). We extended the runtime environment
based on the Akka actor system [2] to build a distributed network
of Docker containers for easy deployment in the edge-IoT scenario.
The Docker container helps to encapsulate each CEP operator as
a lone Docker instance with all its dependencies. Furthermore,
we realized extensions in the form of a placement module that
integrates state-of-the-art OP mechanisms [27, 37] and measure
the performance of the resulting placement.

We build Tcep’s Docker image upon the Alpine Linux distribu-
tion,2 which is much smaller and lightweight. Furthermore, the
lightweight Docker based execution environment is contained such
that it does not exceed 2 GiB of allocated memory which is a rea-
sonable assumption for small devices available nowadays as in the
edge IoT scenario. The Docker containers communicate over an
overlay network using TCP (Transmission Control Protocol) as an
underlying transport protocol.

We use Akka v. 2.5.9 [2], the Esper CEP engine v. 5.5.0 [1] and
Docker v. 17.12.0-ce [3]. We deployed 16 Docker containers on a
VM with 32 GiB of memory and 6 processors on a high-end server.
The Docker overlay network is organized in a hierarchical fashion.
We emulate wide area networks using netem3 by adding variable
delay and jitter on the interfaces connecting the Docker containers.
The network delay and jitter are applied as minimum at the lower
end and as maximum at the cloud nodes – consistently with the
edge-cloud scenario.

We use the query in Figure 8 – a subquery of the tra�c detection
query from Section 2. The query performs a join (ωZ) over a window
of the event streams from road sections V1 (ωV 1) and V2 (ωV 2)
respectively (Lines 6 - 7). Last, the road sections with a heavy
penetration of vehicles are selected by ωσ (Line 9).

We generate the primary events as continuous data streams as an
input to Tcep synthetically for each execution. For example, for the
input streams vehiclesAtSectionV1 and vehiclesAtSectionV1
we produce randomly generated identi�ers and count correspond-
ing to the stated types (cf. Figure 8). We emulate each execution for

2https://github.com/gliderlabs/docker-alpine [Accessed on 03.05.2018]
3https://wiki.linuxfoundation.org/networking/netem [Accessed on 03.05.2018]

1 case class VehiclesAtSection(highwayId: Int ,

2 sectionId: Int , count: Long , time: Long)

3 val vehiclesAtSectionV1: Stream[VehiclesAtSection] =
...

4 val vehiclesAtSectionV2: Stream[VehiclesAtSection] =
...

5 val vehicleInfo =
6 (( vehiclesAtSectionV1 window WINDOW_SIZE) join
7 (vehiclesAtSectionV2 window WINDOW_SIZE) on

'highwayId

8 where { (enteredVehicles , exitVehicles) =>
9 enteredVehicles.count > exitVehicles.count

10 }

11 demand QOS_DEMANDS)

Figure 8: Evaluation query.

20 minutes, and initiate the measurements after 2 minutes warm-up.
Each measurement is taken at a regular interval of 5 seconds. We
incrementally increase the query workload for up to 50 queries.
The metrics in the evaluation are in�uenced by multiple parameters
such as the number of input events, the number of queries and the
window size. To consider di�erent environmental conditions, we
perform a variability analysis on these parameters according to the
ranges in Table 1.

6.2 Performance of OP Mechanism Transitions

In order to understand whether the mechanism transition is
able to ful�ll changing QoS demands for dynamic environmental
conditions, we evaluate the performance of Tcep. We consider the
following metrics: (i) average end-to-end latency from query sub-
scription until the complex-event was received at the consumer end,
(ii) average control message overhead associated with establishing
the broker network. Figure 9 shows a comparison of latency and
control message overhead samples dependent on the current query
load (as CDF) for Relaxation [27], Mobile DCEP [37] and Tcep.

Tcep enables execution of transition as a result of dynamics in
the environmental condition and henceforth changes in the QoS
demands as shown in Figure 9a and Figure 9b. Figure 9a shows
that Tcep initially executes the Relaxation mechanism to comply
with the latency demand of the event consumer. Later, as shown
by an arrow in the �gure, a change in QoS demand (latency to
overhead) leads to the transition T : Relaxation → Mobile DCEP.
The transition ensures that the speci�ed or changed QoS demands
are met. In Figure 9a, a change from end-to-end latency to control
message overhead is detected. Tcep ensures the demands are met
by means of a transition.

In Figure 9b, a change in the QoS demand, namely from control
message overhead to end-to-end latency, is issued. Tcep identi�es
this change and selects a mechanism that is suitable to meet the QoS
demand by means of Tcep’s selection algorithm. The Relaxation
placement mechanism is chosen, to ensure that the latency demands
are met under very high workload. We specify the trigger of the
transition T : Mobile DCEP → Relaxation by an arrow in the
Figure 9b. Here, clearly, an increase in the control message overhead
can be observed as a consequence of the run time transition to
Relaxation.

https://github.com/gliderlabs/docker-alpine
https://wiki.linuxfoundation.org/networking/netem
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Figure 9: Tcep vs. Relaxation and Mobile DCEP.
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put events enabling seamless execution of a transition.

6.3 Performance of Transition Strategies

In this section, we aim to understand, how far the transitions are
disruptive and what is the imposed cost in performing the transi-
tions. In the evaluation, we consider: (i) the output event rate, (ii) the
required time for the transition and (iii) the transition overhead. To
evaluate the transition execution strategies in a fair manner, we ex-
tend Algorithm 1 to concurrently migrate the operators. Similarly,
we extend Algorithm 2 to sequentially migrate the operators. The
four approaches are enlisted in Table 1.

To verify the seamless execution of transitions, we measured the
output event rate (x-axes) produced while Tcep’s strategies were
in execution (cf. Figure 10). In this evaluation, we increased the
query load with the input event rate of 10 events/s incrementally.
A small output disruption for MFGS-Sequential and Concurrent
strategies was observed as seen in the magni�ed Figure 10 (5 and
8 % times respectively). However, SMS-Sequential and Concurrent
strategies do not exhibit any disruption and continuously deliver
output events with an output event rate of 50 events/s, 99 % times.

Cost of Transition Strategies for di�erent operators. Now,
we analyze the cost incurred by the transition strategies in detail. In
Figure 8, we measure the performance of the transition strategies
for each operator ωV 1, ωV 2, ωσ and ωZ of the query. To recall, op-
erators ωV 1 and ωV 2 are window-aggregate operators, ωZ is a join
operator and ωσ is a �lter operator. The transition time comprises
of operator migration time as well as the time an operator has to
wait for migration until the predecessor starts its operation at the
target broker (cf. Section 5.1). For example, ωZ waits for migration
until ωV 1 and ωV 2 start their operation at the target brokers. Leaf
operators have no wait time as they have no predecessors.

Figures 11a and 11b show the transition time and overhead
per operator for each transition execution strategy. As expected,
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Figure 12: Transition strategies under increasing workload

(number of queries and window size).

the MFGS-Sequential and the MFGS-Concurrent strategies exhibit
longer transition times, since the intermediate state that has to be
transferred is larger (up to 8 MB for a single operator). Operators
ωV 1 and ωV 2 do not have any wait time but have longer transition
time as a result of ∼ 7.5 MB state transfer. Operator ωZ has a lower
transition time (∼7.5 sec) for the Sequential strategy, while it is a
little longer for the Concurrent strategy as a result of longer wait
time in the latter. This small di�erence is perhaps due to the concur-
rent transfer of two operators ωV 1 and ωV 2, ωZ has to wait longer
for migration (until both are functioning at the target brokers). ωZ
has the highest state size, as it stores all the input events that have
been processed from the input stream ωV 1 to join with future input
events from the other input stream ωV 2.

In conclusion, our results show that the SMS-Sequential and
Concurrent strategies perform better in both transition time and
overhead, with the time within a range of 358 − 575milliseconds in
comparison to 35 seconds (if the transition is performed naively)
for a single operator. Yet, the two strategies also have a longer wait
time, as a result of deferment of operator migrations until the old
operator is purged from its state, which is further analyzed in the
next section.

Cost of Transition Strategies with Varying Parameters. We
analyze the e�ect of increasing the number of queries (and hence-
forth increasing number of operators) and the window size on the
transition strategies (cf. Table 1).

Figure 12a shows the e�ect of varying the number of queries
(0 − 100%) – hence the number of operators – on the transition
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time. As expected, both the Sequential strategies– MFGS and SMS
shows a linear increase in transition time with the increasing query
load (due to sequential operator migrations). On the other hand,
Concurrent strategies pay o� for a larger workload – as expected
– since operator migration involves less synchronization. MFGS-
Sequential has the highest transition time among all the strategies,
under a larger workload of queries. This is because, due to the
increasing workload, the number of operator increase, the state
that has to be transferred also increases, and henceforth does the
transition time. Yet, SMS Concurrent and Sequential strategies both
performed at par for this load of queries (Table 1). The increase
in the window size results in longer transition time (Figure 12b),
because more state has to be transferred. Interestingly, window size
a�ects SMS strategies more than MFGS strategies due to the longer
waiting time of SMS strategies – equivalent to the window size for
each operator ωV 1 and ωV 2. Thus, for larger window sizes, SMS
strategies may have longer transition time, but then only the SMS
strategies o�er a seamless execution.

7 RELATEDWORK

It is highly important to ful�ll QoS demands in a DCEP system for
a wide range of application domains [28]. By enabling transitions,
Tcep allows to exchange operator placement mechanisms, and
in this way, ful�ll QoS demands under dynamic environmental
conditions. In this section, we analyze and compare to related work
in three key areas: operator placement, adaptive event processing
systems, and existing methods for mechanism transitions.

7.1 Operator Placement

Operator placement (OP) is widely studied to ful�ll QoS demands
while incurring minimum cost in terms of performance [21, 36]. A
wide range of OP mechanisms have been proposed considering dif-
ferent QoS demands such as to achieve low latency [5], to minimize
bandwidth [27, 34, 35], to lower message overhead [37], as well as
to preserve trust and privacy [40].

The ful�llment of QoS demands, however, is only feasible un-
der limited changes of the environmental conditions. For instance,
most existing work [5, 10, 34] builds on stationary networks. Ap-
proaches considering dynamic changes, e.g. in the cause of mobility,
introduces i) redundancy by means of duplication [37] or check-
pointing [20], ii) placement update at regular intervals [27], or, iii)
operator migrations when changing the placement [19, 25, 26, 40].

Overall, it is important to note that current approaches for DCEP,
so far build on a single placement mechanism. In contrast, Tcep
enables to bene�t from adaptive use of multiple existing OP mech-
anisms by supporting transitions, while increasing the range at
which a DCEP system can adapt to meet a speci�c QoS demand.

7.2 Adaptive Event Processing Systems

In this section, we review approaches that have so far considered
the adaptive exchange of mechanisms in the context of event pro-
cessing systems. For example, Weisenburger et. al [39] proposed
AdaptiveCEP, a programming model and CEP system that supports
specifying QoS demands at run time. This work is complementary
to Tcep since AdaptiveCEP is not focusing on the the adaptive
selection and execution of transition strategies. However, in Tcep

the query language is used to specify changes in the QoS demands
in order to instantiate a transition.

Heinze et al. proposed an elastic data stream processing system
(DSPS) [16], where the number of active hosts can be scaled up and
down and operator migration is coordinated accordingly. Based
on this work, the same authors proposed an adaptive replication
scheme for DSPS [17] that performs adaptation at runtime between
active replication and upstream backup schemes for fault tolerance.
Another line of work by Matteis et al. [23] addressed the problem
of elasticity by Model Predictive Control method that accounts for
system behavior over a future time horizon to predict the best re-
con�guration to be executed. Aniello et al. [6] proposed an adaptive
online scheduling algorithm for Apache Storm using two place-
ment mechanisms. Sutherland et al. [38] developed an adaptive
scheduling selection framework for continuous queries in DSPS.

Although the aforementioned approaches bene�t from integrat-
ing multiple mechanisms, the adaptation between the mechanisms
is heavily dependent on the internals of the speci�c mechanisms in
use. Therefore, integrating new alternative mechanisms is a com-
plex task. By o�ering the abstraction of a transition, Tcep is highly
extensible and can easily integrate new mechanisms. Furthermore,
no previous work up today has studied the idea of adapting between
distinct OP mechanisms.

7.3 Mechanism Transitions

The idea of mechanism transitions origins from the collaborative
research center MAKI, in which researchers investigate mechanism
transitions for the Future Internet [29]. Within MAKI, mechanism
transitions are investigated in the context of a wide range of commu-
nication mechanisms [15, 30–33]. For example in publish-subscribe
systems, mechanism transitions between �ltering schemes [30] and
event dissemination mechanisms [31] are studied. Another line of
work by Froemmgen et al. [14, 15] proposed transition strategies
to always execute the best suitable search overlay. Richerzhagen et.
al [33] recently proposed a transition-enabled monitoring service
that executes transition on di�erent monitoring mechanisms. Our
work builds on and extends the concept of transitions proposed
in prior work [14, 30]. By focusing on transitions for OP mecha-
nism, our contribution is the design and understanding of transition
strategies that can support highly dynamic and stateful mechanism
transitions comprising many dependent distributed entities. In par-
ticular, the proposed strategies deal with the speci�c challenges for
coordinated state migration as part of the SMS and MFGS transition
strategies.

8 CONCLUSION AND FUTUREWORK

In this work, we proposed Tcep, a transition-capable CEP system.
Tcep is capable of dealing with changing QoS demands caused by
dynamic environmental conditions. Tcep allows an integration of
state-of-the-art OP mechanisms and dynamically executes the best
matching OP mechanism to meet QoS demands of applications. To
this end, we have explored how to perform transitions and analyzed
their cost and performance. Moreover, we proposed two transition
execution strategies for e�cient migrations of operator state during
a transition. Our evaluation in the context of an IoT scenario and
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based on the state-of-the-art OP mechanisms shows that, Tcep ful-
�lls changing QoS demands by performing transitions in a seamless
manner, i.e., without any output disruption. Furthermore, the cost
analysis shows that by means of our transition execution strategies
the transition execution time can be decreased to a few millisec-
onds for a single operator. In this work, we performed a transition
only in a reactive manner. We are currently investigating proactive
adaptation methods to further improve the overall performance of
Tcep. In addition, we are considering proactive transitions in other
mechanisms of DCEP such as operator migration strategies. We
will also consider trade-o�s between di�erent learning strategies
for the adaptive selection of an appropriate OP mechanism.
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