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Abstract—Because Infrastructure as a Service in
the form of virtual machines only provides a limited
supply of resources per discrete instance, approaches
are required to compute cost-efficient distribution
strategies for Software as a Service instances. Due
to its computational complexity, this Software Service
Distribution Problem is difficult to address at run time
where time constraints apply. In the work at hand,
we propose a Knapsack-based heuristic approach; an
extensive evaluation, based on data from actual cloud
systems and software services, shows that the heuris-
tic is able to solve the problem with more than 99.7%
reduction in computation time and only marginal
degradation in solution quality compared to a locally
optimal approach. Thus, through the minimization of
infrastructure leasing costs, our proposed approach
enables Software as a Service providers to achieve
higher profit margins or more competitive pricing of
their services in the market.

I. Introduction
A. Scenario and Motivation

In recent years, cloud computing has emerged as a novel
paradigm in Information Technology (IT). It promises
to deliver IT capacities in a utility-like fashion, i. e., via
public networks and on-demand, comparable to tradi-
tional utilities such as electricity or water [1]. A popular
service model in cloud computing is Infrastructure as
a Service (IaaS), specifically the provision of Virtual
Machines (VMs). A drawback in this model is that
VMs constitute discrete compute units that have to be
explicitly instantiated and only scale up to the level of
the physical machine that hosts them. However, VMs are
also highly customizable and may host or execute almost
any existing software without prior adaptation [2].

Based on these notions and a three-layered cloud model
by Armbrust et al. [3], we assume the following scenario:
Existing software is offered in the form of Software as
a Service (SaaS) by a SaaS provider. Instances of the
resulting software services are requested by SaaS users
and executed using the leased infrastructure, i. e., VM
instances, of various IaaS providers. A key character-
istic of this scenario is that each requested Software
Service Instance (SSI) exhibits a specific resource demand
throughout its execution, e. g., in terms of processor
power or memory consumption. Likewise, IaaS providers

commonly offer different VM types that supply a certain,
static quantity of these resources depending on the
respective leasing price. We further assume that the
SaaS users may request and terminate SSIs at arbitrary
points in time and that the execution of SSIs is not
interruptible, i. e., that each SSI has to be continuously
executed between its initiation and termination.
A practical example of the outlined scenario is cloud

gaming: A game provider offers video games, which are
executed on VMs that transmit the resulting audio/video
stream to end users’ playback devices and in turn receive
control commands from these devices. Not only may
various video games be offered, but these games may also
be requested at different visual quality levels depending
on the respective playback device. Thus, during its
execution, each game exhibits a specific and continuous
resource demand on the VM instance that hosts it, while
this VM instance is subject to a restricted resource supply.
Thus, the SaaS provider faces the problem of dis-

tributing the requested SSIs across leased VM instances.
While the provider may pursue various objectives in this
process, the most obvious and rational one lies in the
minimization of infrastructure leasing costs, because this
objective permits a maximization of profit margins or
more competitive pricing of services in the market. Ac-
cordingly, we also assume cost minimization as objective.
The resulting challenge, which constitutes a combined
capacitation (number of leased instances of each VM
type) and assignment (placement of each SSI on a specific
VM instance) problem, is referred to as Software Service
Distribution Problem (SSDP) and addressed in the work
at hand.

B. Problem Statement

As previously outlined, the SSDP concerns the SaaS
provider and consists in the distribution of a set of
requested SSIs, which have to be continuously executed
for an initially unknown duration of time, across a set of
leased VMs instances such that:

1) The resource demands of all SSIs are met by the
available resource supplies of the respective VM
instances where the SSIs are executed (i. e., the
distribution is effective)
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2) The overall cost of leasing the required VM in-
stances is minimized (i. e., the distribution is cost-
efficient).

According to our scenario, SSIs may be requested or
terminated at arbitrary points in time. Thus, the SSDP
does not constitute a design time, but a run time problem
stretching over multiple subsequent periods. Accordingly,
above conditions should also be met across all periods.

In our previous research [4], we have outlined a simple
one-period, design time approach to the SSDP and
provided a first analysis of the SSDP’s computational
complexity. In the work at hand, we substantially extend
this research through a multi-period, run time model and
two corresponding optimization approaches.
The remainder of this paper is structured as follows:

In Section II, we present our solution approach, an
integrated broker that addresses the SSDP through
optimization approaches. Two of these approaches are
subsequently introduced. A first prototypical implemen-
tation of the broker is evaluated in Section III. Section IV
provides an overview of related work. Eventually, Sec-
tion V concludes the paper with a summary and outlook.

II. Solution Approach:
Software Service Distribution Broker

A. Architectural Overview of the Broker
Our research aims at the design and implementation

of an integrated Software Service Distribution Broker.
The broker will be accessible for SaaS providers and IaaS
providers through a standardized Web interface.
Through the interface, the broker permits IaaS

providers to register their VM type offers by submitting
the relevant information regarding, e. g., resource supply
and price, in a structured form (so-called push model).
The tool will also allow the mining of publicly available
VM offer descriptions, e. g., through the Amazon EC2
API1 (so-called pull model). Depending on the update
frequency, the broker may also collect just-in-time pricing
information, for instance from auction systems. Likewise,
SaaS providers may submit the SSIs that have been
currently requested by their end users to the broker,
most notably specifying those SSIs’ resource demands.
Based on the submitted information, the Software

Service Distribution Broker repeatedly computes an
(updated) SSI distribution strategy for the SaaS provider
using suitable optimization approaches. The SSI distri-
bution strategies specify the number of VM instances of
each VM type to lease and the assignment of individual
SSIs to these VM instances.

Thus, in accordance with the vision of a future cloud
market [1], the broker facilitates the cost-efficient distri-
bution of SSIs through SaaS providers. As previously

1http://docs.amazonwebservices.com/AWSEC2/latest/
APIReference/
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Figure 1: Architectural overview of the Software Service
Distribution Broker.

outlined, SaaS providers profit from this mechanism
through lower leasing costs, which not only yields higher
profit margins, but may also result in more competitive –
i. e., less costly – offers to the SaaS users.
An architectural overview of the Software Service

Distribution Broker is depicted in Figure 1. To date,
we have created a prototypical implementation of the
broker. It features two different optimization approaches
as key components. These approaches will be presented
in detail in the following.

B. Binary Integer Programming-based Optimization
In accordance with our previous research, we initially

provide a mathematical optimization model of the SSDP.
Because this model is based on the principles of linear pro-
gramming, more specifically binary integer programming,
it can immediately be transferred into a corresponding
optimization algorithm.
As a substantial extension to our previous work [4],

we present a multi-period approach. It not only supports
the computation of an initial distribution strategy at
design time, but yields updated strategies during run
time, based on incremental changes with respect to the
requested SSIs and information about the already leased
infrastructure.
The model is based on two assumptions: First, SSIs

may be arbitrarily combined on one VM instance, as long
as the aggregated resource demands are satisfied, but
may not be split between different VM instances. Second,
for each requested SSI, there exists at least one VM type
that provides a sufficient resource supply for the SSI’s
execution; if this condition is not met, the specific SSI
cannot be executed on the offered infrastructure.

We further establish that currently executed SSIs may
not be moved between different VM instances. While such
live migration is common in data centers to optimize the
load of physical machines, it is usually conducted on the
level of VMs, where it is more efficient and less error-
prone than for individual SSIs [5]. The process thus lies
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in the control sphere of the IaaS provider, not of the
SaaS Provider.

Based on these assumptions, we introduce the following
formal notation: Let δ ∈ R+ denote a regular time
interval at which optimization steps are initiated, i. e.,
where a new distribution strategy is computed. Let
t ∈ R+ (t′ ∈ R+) further denote the point in time where
the current (most recent) optimization period is (was)
initiated, i. e., t′ = t−δ. In the case that the optimization
is initiated for the first time at t, we assume t′ = 0.
Let V be the persistent set of |V | > 0 available

VM types, and let R be the set of |R| > 0 regarded
resource types. Let Mv ∈ N be the maximum number of
concurrently leaseable instances of each VM type v ∈ V ,
as specified by the respective IaaS provider.
It

v denotes a set of unique IDs for VM type v ∈ V at
time t. Each of these IDs i ∈ It

v represents a leaseable
VM instance, i. e., a concrete individual instantiation of
an abstract VM type. Through this construct, the SSDP
– which actually constitutes a combined capacitation and
assignment problem – may be modeled in the simpler
form of a pure assignment problem; more details will be
provided in the course of this section.
Let St be a set of |St| requested SSIs at time t. For

each SSI s ∈ St, the demand for each resource type r ∈ R
is formally defined as RDsr ∈ R+.
Likewise, RSvr ∈ R+ denotes the supply of each

resource type r ∈ R for each VM type v ∈ V . Fur-
thermore, for each VM type v ∈ V , the cost per leased
instance Cv ∈ R+ is specified, based on a common billing
period of length P ∈ R+. In the case that a VM type
exhibits a different billing period, the cost per instance
is interpolated accordingly.
Lastly, if a VM instance v ∈ V with the index i ∈ It

v

is currently leased, TFvi ∈ R+ denotes the point in time
where this VM instance has been initiated, i. e., where
its first billing period has started. If a VM instance is
not currently leased, a value of 0 is assumed.
The complete optimization model, based on above

formalisms, is split into three parts, which are provided
in Equation Sets 1, 2 and 3. The individual parts are
successively employed in the optimization process. Prior
to providing additional details, we briefly explain the
meaning of the contained decision variables: Equation 12
defines xt

svi as binary decision variables, which indicate
whether the SSI s ∈ St has been assigned to a VM of
type v ∈ V with the instance index i ∈ It

v at time t or
not. Equation 13 further specifies the binary decision
variables yt

vi, which determine whether a certain instance
i ∈ It

v of VM type v ∈ V is utilized at time t or not.
In the pre-optimization computations, we first initialize

all relevant sets from the previous optimization period
with default values in the case that no prior optimization

has been conducted (Equation 1). Subsequently, we
determine those SSIs that were sustained from the
previous optimization period, i. e., the SSIs that are still
being requested, SSt, as well as the set of newly requested
SSIs, SN t (Equation 2).
Equations 3 and 4 determine the set of valid IDs It

v

in the current optimization period, i. e., at the point in
time t, for each VM type v ∈ V . In this context, IdGen(n)
denotes a function that generates n ∈ N new unique IDs.
The number of IDs is based on the notion that, in the
worst case, each newly requested SSI may require a VM
instance of the same type for execution, while, in addition,
the maximum number of concurrent instances may not be
exceeded. As previously outlined, each ID represents one
concrete leaseable instance of an abstract VM type. The
decision whether the VM instance is actually utilized and
thus leased is taken in the optimization process. Through
this introduction of a maximum number of concrete VM
instances, an implicit capacitation decision is taken for
each VM type, and thus, the SSDP may be modeled as
a pure assignment problem.
Finally, in Equation 5, we determine marginal costs

MCvi for each VM instance of type v ∈ V with ID
i ∈ It

v. The marginal costs correspond to the normal
per-instance cost of the VM type if a VM instance has
not been previously available. They also assume this
value if the VM instance is currently not leased or if
the current billing period is bound to end before the
next optimization period. If none of these conditions are
met, i. e., if the VM instance is currently leased and not
bound to be billed before the next optimization period,
the marginal cost becomes 0. All computations are based
on the start of the most recent billing period, TLvi, which
is determined in Equation 6.

For the actual optimization, Equation 7 first defines the
objective, which consists in the minimization of the Total
Marginal Cost (TMC) across all utilized VM instances.
Equation 8 links the decision variables, xt and yt, by
setting the value of the latter (indicating utilization and
thus lease of a VM instance) depending on the value of the
former (indicating assignments of SSI to VM instances).

The optimization is subject to the following constraints:
Equation 9 ensures that each SSI is assigned precisely
once to a VM instance. Equation 10 guarantees that
the resource constraints are held on each VM instance.
Lastly, Equation 11 imposes the constraint that each
sustained SSI is assigned to the same VM instance as
in the previous optimization, thus preventing the live
migration of SSIs.
The post-optimization computations solely comprise

Equation 14. The equation provides an implicit VM
instance management by updating the timestamps TFvi,
which indicate the most recent initiation for an VM



Equation Set 1 Pre-Optimization Computations

St′ = ∅
It′

v = ∅ ∀v ∈ V

}
if t′ = 0 (1)

SSt = St ∩ St′
(2)

SN t = St \ St′

It
v =

{
IdGen(min (Mv, |St|)) if t′ = 0
Ît

v ∪ IdGen(min (Mv − |Ît′

v |, |SN t|)) else
∀v ∈ V (3)

Ît′

v = {i ∈ It′

v |TFvi > 0} (4)

MCvi =



Cv if t′ = 0 ∨ i /∈ It′

v

Cv if TFvi = 0
Cv if TLvi = t

Cv if TLvi + P < t+ δ

0 else

(5)

∀v ∈ V, i ∈ It
v

TLvi = TFvi +
⌊
t− TFvi

P

⌋
∗ P ∀v ∈ V, i ∈ It

v (6)

Equation Set 2 Actual Optimization Computations

Minimize TMC(xt, yt) =
∑

v∈V,i∈It
v

yt
vi ∗MCvi (7)

yt
vi ≥ xt

svi ∀s ∈ St, v ∈ V, i ∈ It
v (8)

∑
s∈St,v∈V,i∈Iv

xt
svi = 1 ∀s ∈ St (9)

∑
s∈St

RDsr ∗ xt
svi ≤ RSvr ∀v ∈ V, i ∈ It

v, r ∈ R (10)

xt
svi = xt′

svi ∀s ∈ SSt, v ∈ V, i ∈ It
v (11)

xt
svi ∈ {0, 1} ∀s ∈ St, v ∈ V, i ∈ It

v (12)

yt
vi ∈ {0, 1} ∀v ∈ V, i ∈ It

v (13)

instance of type v ∈ V with ID i ∈ Iv. The timestamp is
set to the current optimization period t if a VM instance
has not been previously available or utilized, but is used
in the current period. It is reset to 0 if the VM instance
is bound to be billed before the next optimization step,
but not currently used; thus, the leasing is terminated.
In any other case, the current timestamp is not modified.

Equation Set 3 Post-Optimization Computations

TFvi =


t if yt

vi = 1 ∧ i /∈ It′

vi

t if yt
vi = 1 ∧ TFvi = 0

0 if yt
vi = 0 ∧ TLvi + P < t+ δ

(14)

∀v ∈ V, i ∈ It
v

The model in Equation Sets 1 through 3 constitutes a
Binary Integer Program (BIP). Such BIP exclusively con-
tains binary decision variables and thus, poses a special
form of an Integer Program (IP). IPs can be solved using
well-known methods from the field of operations research,
e. g., branch and bound [6]. However, these methods may
become very costly in terms of computational power
with increasing problem size. Corresponding findings for
single-period optimization have been presented in our
past research [4].

It should be noted that the BIP-based algorithm always
provides an optimal (i. e., cost-minimal) distribution
strategy for each individual optimization period. However,
because it operates in a myopic (short-sighted) manner,
the algorithm does not necessarily compute an optimal
distribution strategy across multiple periods; while the
choice of a specific VM instance may be cost-optimal in
an earlier period, it may unavoidably lead to higher costs
in the future. In fact, an optimal distribution strategy
across multiple periods can only be computed ex post,
i. e., for a past period of time for which all requested SSIs
with their respective durations of execution are known.
Thus, except for single-period problems, the BIP-based
algorithm should not be seen as absolute, but only as
relative benchmark in terms of solution quality.

C. Knapsack-Based Optimization
Due to the potentially high computational complexity

of the BIP-based algorithm, we have developed a heuristic
that is inspired by the well-known Knapsack problem. In
this problem, a choice has to be made among multiple
items with differing weight and utility, such that the
utility of the selected items is maximized while a certain
weight constraint is held. A common heuristic approach
to the Knapsack problem is to determine the relative
utility of each item, which corresponds to the item’s
(absolute) utility divided by its respective weight, and
consecutively select the items in the order of descending



utility [7]. Our heuristic is based on the same principle
of relative utility, but split into two phases, VM packing
and VM selection. The approach is based on similar pre-
and post-optimization computations as the BIP-based
algorithm in the previous section, i. e., it utilizes the same
pricing scheme based on marginal costs and the identical
VM instance management via timestamps.

In the first phase, VM packing, we determine the
absolute utility AUv of each VM type v ∈ V . Absolute
utility is defined as the maximum number of SSIs that fit
onto the respective VM type. To support the optimization
across multiple periods, already leased VM instances are
introduced as pseudo VM types. Pseudo VM types may
only be instantiated once, and their resource supply and
marginal cost correspond to the respective values of the
underlying VM instance; thus, in contrast to the BIP-
based approach, marginal costs are specified per (pseudo)
VM type, rather than per VM instance.

For each VM type, we scan the set of requested SSIs
in linear order. If the currently regarded SSI fits onto the
current VM type in terms of resource supply, the VM
type’s maximum SSI capacity is incremented. In addition,
the VM type’s residual resource supply is reduced by the
resource demand of the SSI. In the process, sustained
SSIs are exclusively assigned to the pseudo VM type that
hosted them in the previous optimization period, thus
preventing a live migration. Once the absolute utility
of each VM type has been determined, we compute the
VM type’s relative utility by dividing the determined
SSI capacity through the current marginal cost, i. e.,
RUv = AUv

MCv
∀v ∈ V . If the marginal cost is 0, we assume

a very low price of ε ∈ R+ instead.
In the second phase, VM selection, we determine the

VM type with the highest relative utility. If the maximum
number has not been reached yet, a new instance of this
VM type is created. The SSIs that have been associated
with the respective VM type in the VM packing phase are
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Figure 2: Scheme of the Knapsack-based heuristic.

assigned to the new instance, and removed from the set of
unassigned SSIs. In the case that multiple VM types with
the same relative utility exist, we pick the VM type with
the highest absolute utility. If this condition does not
break the tie, the first VM type according to the order
of the set is selected. Both phases are repeated until all
requested SSIs have been successfully assigned to a VM
instance. The Knapsack-based heuristic is schematically
depicted in Figure 2.

III. Evaluation
Both the BIP-based and Knapsack-based optimization

approaches have been implemented as part of a prototyp-
ical broker, which constitutes the basis of our evaluation.
The implementation has been conducted in Java and uti-
lizes the Java ILP2 framework. This framework permits
a flexible choice between the commercial ILOG CPLEX3

and free lpsolve4 IP solver frameworks, with the first
constituting the default choice in our work.

A. Evaluation Methodology
The aim of our evaluation lies in a quantitative

assessment of the performance of the two optimization
approaches; it thus complements the brief qualitative
discussion in Section II-B. We focus on two metrics that
are of practical relevance in the context of the proposed
broker: First, the metric computation time allows to judge
the scalability of the proposed approaches, as well as
the absolute waiting time that is introduced through
the computation of distribution strategies by the broker.
Second, the metric total (marginal) cost represents the
solution quality of the computed distribution strategies
with respect to the objective of cost efficiency. It is
important to stress that we focus on the relative per-
formance of the two approaches, rather than the absolute
performance, which would require the computation of an
optimal distribution strategy ex post as benchmark.
For the evaluation, we have created a collection of

SSDPs with a varying number of requested SSIs (ns),
VM types (nv), resource types (nr), and optimization
periods (np). For the VM and resource types, we used
the specifications of the Windows-based, on-demand
Amazon EC2 VM offers in the European Union5. The
specifications yield eight VM types that provide three
resource types (CPU, RAM, and HDD space) at differing
costs, based on a one-hour billing period. To obtain
realistic SSI execution data, we measured the absolute
resource demands – in terms of the identical resource
types – for five contemporary video games.

2http://javailp.sourceforge.net/
3http://www.ibm.com/software/integration/optimization/

cplex-optimizer/
4http://sourceforge.net/projects/lpsolve/
5http://aws.amazon.com/ec2/#instance
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http://sourceforge.net/projects/lpsolve/
http://aws.amazon.com/ec2/#instance


Based on this information, we created different classes
of SSDPs with fixed values for ns, nv, nr, and np. Each
class contained 200 individual problems (in the following,
the terms SSDP and problem are used synonymously).
The regarded SSIs and resource types were randomly
drawn, based on the previously outlined specifications.
np and δ were chosen to resemble an initial optimization
(np = 1), as well as multiple subsequent optimization
periods stretching over 1 hour (np = 30, δ = 120) and
2 hours (np = 60, δ = 120). In each incremental version
of a problem, a random number of SSIs was terminated
and newly initiated compared to the previous problem.
The specific numbers are drawn from the range [0; ns

4 ],
thus resembling the varying load of a SaaS provider. In
order to achieve a comparable size across all evaluated
problems, the overall number of SSIs was only allowed
to fluctuate by 50% compared to the initial problem.

All generated SSDPs were attempted to solve using the
two optimization approaches, BIP-based and Knapsack-
based. For both approaches, we measured the compu-
tation time and the total infrastructure leasing cost of
the obtained solutions. In the process, we imposed a
timeout period of 1 minute per problem and optimization
approach, representing the maximum permissible waiting
time for the computation of a distribution strategy.
The evaluation was conducted on a desktop computer,
equipped with an Intel Core 2 Duo E7500 processor and
4 GB of memory.

B. Evaluation Results and Discussion
Table I provides an overview of the evaluated SSDP

classes. It also depicts the number of problems that
could be solved by each optimization approach within
the predefined timeout period. Only the data from
those problems that could be solved by both approaches
constitutes the sample for the detailed results that are
presented in Figures 3 through 5.

Table I: Overview of evaluated SSDP classes and solved
number of problems per class.

Class / problem size Solved problems (out of 200)
np ns nv nr BIP Knaps. Both
1 10 4 2 200 200 200
1 20 4 2 194 200 194
1 20 8 3 197 200 197
1 30 8 3 137 200 137

30 10 4 2 200 200 200
30 20 4 2 198 200 198
30 20 8 3 199 200 199
30 30 8 3 119 200 119

60 10 4 2 200 200 200
60 20 4 2 196 200 196
60 20 8 3 197 200 197
60 30 8 3 134 200 134

The numbers of solved problems per class in Table I
already indicate a substantial performance difference
between the BIP- and Knapsack-based approaches. With
an increasing number of regarded SSIs, the BIP-based
algorithm fails to solve a growing share of problems due
to the occurrence of a timeout. In contrast, the Knapsack-
based heuristic does not exhibit such behavior; in fact,
the approach is able to solve all of the considered SSDPs
in the evaluation.

This difference in performance is further highlighted in
Figure 3, which depicts the ratios of computation times
between both optimization approaches based on macro-
average6. On average across all problem classes, the
Knapsack-based heuristic requires less than 0.3% of the
computation time, which corresponds to a reduction of
99.7% compared to the BIP-based approach. According
to a Friedman test [8], the difference between the two
optimization approaches with respect to computation
times is statistically significant at the confidence level of
95% (i. e., α = 0.05).
The implications of this difference in relative per-

formance with respect to the absolute computation
times can be seen in Figure 4. While the BIP-based
approach generally exhibits mean computation times per
optimization period in the magnitude order of seconds,
the Knapsack-based heuristic achieves values in the
magnitude order of milliseconds. In this context, it is
worthy to note that the mean computation times per
optimization period shrink with an increasing number of
total optimization periods. This effect can be explained
by the relatively high computation times for the initial
optimization periods, which exhibit the largest number
of newly requested SSIs.
Figure 5 depicts the ratios of total costs of the

computed distribution strategies between both optimiza-
tion approaches, again based on macro-average. The
results indicate the existence of a trade-off between the
computation time and total cost. The effect, i. e., an
increase in total cost versus a reduction in computation
time, is strongest for the single-period problems. As
previously outlined, the BIP-based algorithm computes
an optimal solution for these problems and thus may
serve as a benchmark for the Knapsack-based heuristic.
For the single-period problems, the cost increase amounts
to approximately 4.7% on average. For the remaining
multiple-period problems, this figure is slightly less
accented and corresponds to about 3.5%. Across all
evaluated classes, the cost increase assumes an average
value of circa 3.9%. A Friedman test shows that the
difference between both approaches with respect to the
total costs is statistically significant at α = 0.05.

6Macro-average means that we first determine the ratio of
computation times for each individual problem in a class and
subsequently compute the mean across all obtained ratios.
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optimization approaches (based on macro-average).
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Figure 4: Mean absolute computation times per optimiza-
tion period for both optimization approaches.

In summary, the results indicate that the BIP-based
algorithm, because of its computational complexity, is
unsuitable for real-life scenarios, which may involve
dozens or even hundreds requested SSIs in parallel and
require the computation of distribution strategies at run
time, i. e., under narrow time constraints. However, the
results show that the Knapsack-based heuristic represents
a viable alternative, due to its ability to solve the SSDP
with favorable solution quality at very low computational
effort. Thus, in accordance with our scenario and to the
benefit of SaaS providers, the Knapsack-based approach
facilitates a cost-efficient distribution of software services
in infrastructure clouds under realistic conditions.

IV. Related Work
Ardagna et al. [9] provide an approach for the distri-

bution of Service Level Agreement (SLA)-bound Web
services across various IaaS providers and the subsequent
admission of user requests, which is modeled using
queuing theory. In contrast to our work, the authors
do not distinguish different resource types and do not
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Figure 5: Ratios of total costs between both optimization
approaches (based on macro-average).

consider a combination of multiple software services on
individual VM instances.
Breitgand and Epstein [10] consider the profit-

maximizing placement of VMs on physical machines in a
data center, with sets of VMs executing a specific software
service. Their work is focused on the role of a cloud (IaaS)
provider, rather than a SaaS provider. The authors do
not consider specific resource types and only provide a
single-period optimization model.
Breitgand et al. [11] extend the previously described

work, based on an identical scenario. Their approach
regards specific resource demands, as well as resource
supplies of different physical machines in a federated
cloud. The authors present a multi-period IP model that
permits different objectives, including profit minimiza-
tion, and suggest a heuristic solution based on Linear
Program (LP) relaxation. Their work is focused on the
role of a IaaS provider, rather than SaaS provider again.
In addition, the authors assume SLA-bound, temporally
interruptible software services, and do not explicitly
consider the management of VM instances depending
on discrete billing periods. Lastly, they do not provide
evaluation results for their proposed approach.

Kwok and Mohindra [12] present an approach for the
optimal placement of multi-tenant SaaS applications in
a data center under consideration of different resource
types and Quality of Service constraints. However, the
authors do not specifically regard different VM types at
varying price levels; accordingly, their objective consists
of optimal resource exploitation on physical machines,
rather than cost minimization.

Wu et al. [13], in accordance with our work, address the
distribution of SaaS-style software services to different
IaaS providers under SLA restrictions. However, the
authors only consider a given set of quantifiable resource
demands, such as processor cycles, rather than arbitrary
resource types, and assume job-oriented, rather than



continuously executed software services. In addition, they
only implement and evaluate heuristic solutions, rather
than an optimal approach.
In summary, as important distinctive feature, our

approach considers SaaS instances that are, starting at
an instant in time, continuously executed for an initially
unknown duration. In contrast, the related work usually
assumes job- or task-style requests for software services,
where the duration or execution time of these jobs is
either known a priori or can be inferred for a specific
VM instance based on known resource demands, e. g.,
in terms of required processor cycles. In addition, our
approach considers arbitrary resource types and VM
types with discrete billing periods, which permits a more
flexible representation of actual cloud systems. We further
formulate a mathematical model that permits an optimal
solution to the SSDP for individual optimization periods,
not only a heuristic approach.

V. Summary and Outlook
In this work, we have addressed the Software Service

Distribution Problem; this research challenge concerns
the cost-efficient distribution of software service instances
across leased cloud infrastructure in the form of virtual
machines under resource constraints at run time. We
have introduced the concept of an integrated Software
Service Distribution Broker and proposed a multi-period
mathematical optimization model. Based on this model,
we have developed two optimization approaches, which
address the problem through the computation of distribu-
tion strategies. Both approaches have been implemented
in a prototypical broker and evaluated based on actual
virtual machine and software service execution data.

The evaluation shows that the first approach, which is
based based on binary integer programming, exhibits high
computational demands. This renders it non-applicable
for real-life scenarios that involve a large number of
software service instances. We have also found that the
second approach, a Knapsack-based heuristic, achieves
substantial reductions in computation times. These
reductions amount to about 99.7% on average, while the
approach maintains a favorable solution quality in terms
of the resulting infrastructure leasing cost, with cost
increases amounting to approximately 3.9% on average.
Thus, our proposed heuristic approach provides the
means to solve the Software Service Distribution Problem
under realistic conditions at run time. Accordingly, it
enables Software as a Service providers to minimize their
infrastructure leasing costs and achieve higher profit
margins or more competitive pricing of services in the
market.
Our future work will aim at two objectives: First,

the development of an ex post optimization approach,
which can serve as absolute benchmark for the proposed

run time approaches. Second, the inclusion of additional
problem extensions, such as software service dependencies
or location constraints [4].
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