
Patrick Lieser, Nils Richerzhagen, Tim Feuerbach, Tobias Meuser, Björn Richerzhagen, Ralf Steinmetz. Collaborative Decentralized
Resource Reservation for Emergency Communication Networks (accepted for publication). In Proc. Conference on Local Computer

Networks (LCN), IEEE, 2018. ISBN:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Collaborative Decentralized Resource Reservation
for Emergency Communication Networks

Patrick Lieser, Nils Richerzhagen, Tim Feuerbach, Tobias Meuser, Björn Richerzhagen, Ralf Steinmetz
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany

{patrick.lieser|nils.richerzhagen|tim.feuerbach|tobias.meuser|bjoern.richerzhagen|ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—Direct ad hoc connections among mobile devices
can be utilized for emergency communication in times when
communication infrastructure is unavailable due to blackouts or
natural disasters. However, the quality of the resulting mobile ad
hoc network strongly depends on the number of devices involved.
Thus, to sustain a fully functional emergency communication
network, devices need to recharge using external resources (e.g.,
battery packs, solar panels). Access to these resources needs to be
coordinated such that the overall network lifetime is increased.

We propose an auction-based resource reservation protocol for
a decentralized resource allocation service. Through an extensive
simulation study we show that our approach (i) efficiently
coordinates the competition for resources, leading to a network
lifetime comparable to a global allocation approach (98.8%) and
(ii) delays the time until the first node runs out of energy by a
factor of 1.4 compared to related work. This increases the value
of the emergency communication network significantly, aiding
more people over extended periods of time.

Index Terms—Delay-tolerant Networks, Disaster Communica-
tion, Resource Allocation, Reservation Protocol

I. INTRODUCTION

Exceptional events such as large-scale blackouts [19] or
natural disasters (e.g., hurricane Maria in 2017 [8]) increase
the demand for communication and coordination among those
affected by the event significantly. Unfortunately, communi-
cation infrastructure is often heavily impaired or even com-
pletely unavailable during and after such events [14]. In such
cases, ad hoc communication among mobile devices such
as smartphones can be utilized to establish an independent
communication network [13], [16]. This network can then be
utilized to provide applications such as emergency calls to
cope with the aftermath of a disaster as discussed in [1], [26].

However, these applications can only offer their service
as long as enough devices are participating in the network
to maintain sufficient connectivity. Given the energy con-
sumption of smartphones when working in ad hoc mode,
it is not reasonable to assume that such a network can be
sustained for longer periods of time without the utilization of
external energy sources. In our work, we consider external
infrastructure independent energy resources, such as battery
packs, car batteries, solar panels, or generators to enhance
the runtime of the communication devices and, consequently,
of the overall network. We propose a core service for ad
hoc networks that enables the coordinated assignment of
resources to mobile devices such that the overall lifetime of
the network is increased significantly. The resource allocation
can be achieved without the need for any central coordination

service, by sharing information of discovered energy resources
among mobile nodes. In our previous work [17] we already
demonstrated that the network lifetime can be increased by an
independent resource allocation strategy based solely on local
knowledge of individual nodes. However, as energy resources
are limited, this local strategy leads to an "over-competition"
for resources among nearby nodes.

In this paper we propose a decentralized reservation pro-
tocol called Ad hoc On-demand Reservation Vector Auction
(AORVA). AORVA utilizes a set of ad hoc and delay tolerant
networking strategies to achieve an appropriate distribution of
knowledge within the network. By communicating the out-
come of individual nodes’ decision procedures (i.e., whether or
not to compete for a certain resource) other nodes can react to
these decisions by altering their own decisions, thereby avoid-
ing over-competition and unsuccessful attempts at consuming
a resource. Coordinating the allocation of energy sources with
AORVA increases the lifetime of the overall network and,
consequently, its potential utilization during and after disasters.

To evaluate AORVA, we model and investigate a repre-
sentative scenario in which participants of an infrastructure-
less network compete for limited resources. Our evaluation-
based study shows that AORVA is especially beneficial in
dense scenarios with an otherwise high probability for over-
competition among nodes. Here, all the available resources
could be allocated and the lifetime of the overall network
is increased to 98.9% compared to the centralized approach.
Even in scenarios with very limited competition among nodes,
AORVA increases the time until the first node runs out of
energy by a factor of 1.42 compared to related works.

The remainder of this paper is structured as follows: The
scenario is described in more detail in Section II, followed
by an explanation of the envisioned decentralized resource
allocation service in Section III. The core contribution of this
paper, AORVA, is presented in Section IV, followed by an
in-depth evaluation in Section V. We discuss relevant related
work in Section VI before concluding the paper.

II. SCENARIO

As briefly introduced in the previous section, we con-
sider a disaster or post-disaster scenario where access to
communication infrastructure is not available. We focus on
an urban environment populated with mobile nodes that
are equipped with energy-constrained communication devices
such as smartphones. Utilizing, for example, 802.11 Wi-Fi in



ad hoc mode, the respective devices are able to communicate
directly with each other within a given range, forming a
Mobile Ad Hoc Network (MANET). We assume that each
device is equipped with one or multiple applications that
utilize the MANET to provide emergency services such as the
possibility to search for family and friends, exchange situation-
dependent information with authorities, or call for help [16].

Devices are equipped with a battery and consume power
based on their current state (e.g., is GPS enabled for navigation
or are messages sent and received). If the battery is drained,
the respective device is no longer able to participate in the
network. Given that the aforementioned applications should
provide their service for as long as possible to everyone,
they heavily rely on a dense and fully functional network.
Therefore, energy as an external resource can be utilized to
extend the runtime of a device. Within our scenario, these
resources (e.g., battery packs) can be discovered and consumed
by a device. Whether or not a discovered resource is consumed
by a device is determined by our decentralized resource
allocation service, as described in more detail in Section III.

We assume that the amount of energy by a resource is
limited, leading to a potential depletion of the resource over
time. In our scenario, resources broadcast their availability and
their remaining amount of energy to nearby devices using so-
called Resource Demand Beacons (RDB). Also, nodes discov-
ering a resource can generate those RDBs. When receiving an
RDB, devices with energy demand can move to the respective
resource and consume all or a fraction of the provided energy.

The decentralized resource allocation service ensures that
devices that discovered an RDB share availability information
with other surrounding devices. This decentralized shared
knowledge about available resources enables mobile users out
of direct reach of the resources to decide, whether or not they
want to spend time and energy to approach a given resource
by diverting from their current path.

To model the explorative behavior of humans, the target
location is either chosen from a pre-defined set of attraction
points representing open spaces where people tend to gather
in emergency situations or a random location to model peo-
ple that are actively searching for relatives, first-aiders, or
resources. To reach a target location, users follow streets and
walkways resulting in some parts of the considered area being
visited less frequently than others. This mobility model, as
further discussed in Section V, leads to natural movement
patterns of users between different places on a map [21].

III. DECENTRALIZED RESOURCE ALLOCATION SERVICE

The proposed scenario results in two main challenges:
learning about new resources and, consequently, deciding
whether or not to approach and consume a resource.

Regarding the first challenge, we assume that the location
and arrival time of new resources cannot be predicted by
the nodes. While moving around, nodes may discover new
resources but may not be interested in them for the time
being. To share this information with nodes in need of
resources, a node discovering an RDB generates a resource

advertisement. Advertisements created by a node or received
from others are placed in the node’s advertisement store. For
each RDB corresponding to a resource, only the most recent
advertisement is stored. To reduce the amount of outdated
information, advertisements are removed from the store when
their generation timestamp exceeds a configured memory span.
To share advertisements among nodes, each time a node
updates its store, it broadcasts a copy of the advertisement with
an increased hop count. A receiving node does not rebroadcast
a message if the maximum hop count is reached (TTL) or if
it has more current information of the RDB.

Since a low-density network faces frequent disconnectivity,
only a few nodes can be reached by advertisement flooding [5].
Thus, we employ a variant of the epidemic routing protocol
SPIN-1 [10] as a Store-Carry-Forward approach. The protocol
uses a three-way handshake to exchange information.

Assuming discovery and advertising of new resources, the
second challenge is deciding whether or not it is worthwhile
to approach and consume certain resources at a given point in
time. Due to the scarcity of resources, it may not always be
the best decision to pursue all known resources. Others may
already have taken a resource before the node arrives, resulting
in wasted time and undesired detours.

The Decentralized Resource Allocation Service decides au-
tonomously whether a node should compete for a resource.
The service consists of three components: a demand evaluator,
a cost mapper, and a selection strategy as detailed in the
following. The demand evaluator determines whether a node
is currently requiring resources, and if so, initiates the resource
selection process. Demand can be derived, for example, from
the battery charge state of a node. On each node a cost mapper
computes the individual costs for known resources stored in
the advertisement store. The calculation takes into account
the resource amount, the distance, and the estimated energy
cost to obtain the selected resource. The selection strategy
uses the obtained cost for each resource as input to select the
resource that the node should approach next. Therefore, it may
draw on additional information as later discussed for AORVA.
Once a resource is selected by the aforementioned procedure,
the user is alerted and guided to the resource. Incoming
advertisements are constantly monitored for better options and
depleted resources to adjust the selection accordingly.

A. Node States and Energy Consumption

Guiding a user towards a resource leads to higher energy
consumption, given that GPS is utilized and the screen needs
to be active now and then to display directions. Therefore,
we distinguish three energy consumption states: ROAMING,
HEADING, and OFFLINE. Per default, nodes are in ROAMING
state and follow their personal movement policy. In this state,
the node’s current energy level ec is reduced by Er per second.
If ec is zero, the node stops communicating and changes
to OFFLINE, from which it cannot recover. When selecting
and approaching a resource, it enters the HEADING state
consuming Eh resources instead. We require Eh > Er to
reflect the additional energy required by the phone’s screen



and GPS component [17]. Nodes return to ROAMING either
after arriving at the resource or if the selection strategy decides
that pursuing the target is no longer worthwhile.

For simplicity, charging at a resource is assumed to happen
instantly. Nodes try to maximize their own profit by transfer-
ring as much energy as possible from a resource, up to their
maximum capacity emax. If the available amount at an RDB
has changed, it increases its Beacon Sequence Number (BSN)
when announcing its presence with the updated information.
A threshold is used to determine whether a node currently
has demand for a resource. In this work, we consider the cost
mapper MinDistance, which assigns each resource a cost of
−1/d, with d being the distance between node and resource.
Based on the node’s velocity v and the expected energy
consumption in HEADING, the cost mapper determines the
set of unreachable or unprofitable resources.

B. Resource Selection Strategies

We proposed a set of basic selection strategies in our
previous work [17], which we use as a baseline for the
evaluation of the AORVA protocol proposed in this paper. In
the following, we briefly introduce these basic strategies before
discussing AORVA in detail. The Greedy Selection strategy
always chooses the resource with the least cost regarding
energy and time required to approach it, regardless of the
overall demand in the network. Still, nodes exchange infor-
mation about available resources by forwarding the respective
advertisements. With the En Passant strategy, nodes do not ex-
change advertisements with each other and only take resources
if they have demand and are currently within the discovery
range of a resource. Resource locations are forgotten as soon
as that range is left. The En Passant strategy constitutes
the lowest baseline in that no cooperative mechanisms are
employed. Lastly, a centralized Reservation Oracle is used as
the upper baseline. This strategy is aware of the location and
amount of all resources. Nodes reserve resources at the Oracle
in a first-come, first-serve manner. Like Greedy Selection, the
Oracle assigns resources by minimizing the costs for each
user; however, it takes all existing reservations into account
and, thus, prevents over-competition.

IV. AD-HOC ON-DEMAND RESERVATION VECTOR
AUCTION PROTOCOL

AORVA is based on the concept of a shared auction: by
expressing and communicating interest in a given resource
together with a bid based on the distance to the resource,
other nodes can decide beforehand, whether it is worthwhile to
approach an RDB. In addition to their interest in general, nodes
include the amount they intend to take from the given resource,
enabling other nodes to benefit from knowledge about spare
capacity even if they did not initially win the auction. We
model such an auction in a decentralized fashion by proposing
the Ad Hoc On-demand Reservation Vector Auction (AORVA)
protocol. The protocol design is inspired by the Ad Hoc On-
demand Distance Vector Routing [18] protocol and the Chaos
protocol for consensus in all-to-all data sharing [15].

A node maintains a single reservation vector for each known
RDB with information about the IDs and desired amounts
of resources of reserving nodes. Nodes reserve resources by
sending out reservation requests containing the reservation
vector for the target RDB, updated to now include themselves,
to other nodes. This reservation requests are resend periodi-
cally defined by the Reservation Repetition Interval. Receivers
combine this vector with their local copy. If the requester’s
reservation is still included, they forward the request to their
neighbors; otherwise, they reply with a reservation response.
Due to mobility and potential disruptions of connectivity, the
distributed reservation information can be inconsistent from a
global point of view. However, AORVA ensures that combining
two reservation vectors is deterministic and is therefore able
to come to a locally consistent assignment of nodes to RDBs.

Each reservation is associated with a bid, and reservations
by nodes are granted in order of their bid, from highest to
lowest. To reduce the effect of outdated reservations in the
network, reservation vectors will not be considered for new
reservations, if they extend the Reservation Vector Lifetime.

A. Reservation Vectors and the Auction Merge Operation

When a node learns about an RDB, it creates a new reser-
vation vector containing the RDB’s BeaconID, its last known
Beacon Sequence Number (BSN), the advertised amount of
resources emax, and an initially empty set of reservations R.
The vector is kept separately from advertisements. If the
node receives an advertisement for the same RDB with a
different emax, the vector is replaced with a new empty vector;
otherwise, only the BSN is updated. A reservation takes the
form of (NodeID, RSN, eres, bid, t), where NodeID is the
node’s globally unique identifier; RSN the node’s Request
Sequence Number, which is incremented on every request; eres

the share of resources reserved at the RDB; bid the node’s bid
used during the merge auction; and t the timestamp of the
reservation’s creation. It holds that emax ≥

∑
r∈R r.eres.

The RSN is used to remove obsolete reservations by a
node and to ensure that it can only reserve resources for
at most one RDB simultaneously. Nodes keep track of the
highest known RSN for every other node c, and remove
reservations by c with lower RSNs from their local resource
vectors before performing an auction merge. Nodes do not
modify the contents of reservations made by others; especially,
they do not decrease the amount of resources reserved eres. If
during a merge auction the resources not yet assigned to a
reservation do not support the requested amount completely,
the reservation is not granted and removed from the vector. The
creation time t serves two purposes. Firstly, reservations expire
after some time, which is necessary since the respective node
could have gone offline or changed its interest in the meantime,
but in lack of a path between the two nodes, this information
did not arrive at the node that stored the obsolete reservation.
Secondly, t is used during auction merge to project bids. For
example, if a node’s distance to the RDB is used as the bid
type, it is necessary to estimate how much the node decreased
the distance to its target since it issued the reservation.



For an auction merge operation at time point t′, we use a
combined distance- and energy-based bid type based on the
concept of charging wireless sensor nodes in [29]. We use
the operator ⊕ for the auction merge operation. The auction
merge operation is (i) symmetric and (ii) unambiguous: For
(i), given vectors A, B, it fulfills A⊕B = B⊕A. This is true
due to the sorting of auctions by their bid. Thus, exchanging
A and B will have no effect. Only if the bids are equal, this
sorting would have no effect, but due to the continuity of
the distance this never happened in our simulations. For (ii),
A ⊕ B = C ⇒ A ⊕ C = C ∧ B ⊕ C = C holds true, as we
preserve meta-information in the merge operation to prevent
redundant merges.

Nodes are assumed to be in an emergency state if their
resources are below a certain threshold (we used 10% in our
experiments). Nodes use a bid of 1/d in emergency state and
−d otherwise, with d being the distance between node and
RDB at reservation creation time. In emergency state, bids
are projected as (bid−1 + (t′ − t)v)−1), otherwise distance-
based projection is used with max(bid + (t′ − t)v, 0) using a
velocity estimate v.

Auction merge as outlined in Algorithm 1 is performed
by a node each time it receives (or creates) a reservation
vector contradicting its local copy, and results in a new vector
combining the information. Vectors with obsolete BSNs are
automatically rejected since the reservations are based on old
resource availability information. Next, we remove expired
reservations and reservations with RSNs lower than the last
known RSN for that node. Using the projected bid values,
the resources available at the RDB are distributed, starting
with the reservation with the highest bid. If the requested
amount exceeds the amount of resources left, the reservation
is dropped from the vector, and reservations with lower bids
have a chance of being granted. Afterwards, the node that held
the merge auction replaces its local reservation vector for the
respective RDB with the updated version.

B. Generation of Reservation Requests

Like in Greedy Selection, the selection strategy that uses
AORVA chooses the RDB with the least cost as its target.
It only considers RDBs for which there are advertisements
in the store. Instead of assuming the advertised amount of
resources, it calculates the maximum amount of available
resources considering existing reservations in its local vector
and the node’s current bid, even if this would result in other
nodes being removed from the vector. If a suitable RDB
has been found, the node increases its RSN and creates a
reservation vector. This vector contains a single reservation
by the node itself with the maximum amount of available
resources or the amount necessary to charge back to 100%
(whichever is lower), the current time, RSN and bid, and
merges it with the corresponding local vector. Next, the node
generates a reservation request RReq(NodeID, RSN, Adv, R,
HSeq, TTL) with its unique identifier NodeID, its current
RSN, the RDBs advertisement, the local reservation vector R,
a maximum hop count TTL, and the sequence of hops passed

Algorithm 1 Auction merge algorithm.

procedure AUCTIONMERGE(A,B)
if A.BSN < B.BSN ∧A.emax 6= B.emax then
↑ B

end if
if B.BSN < A.BSN ∧B.emax 6= A.emax then
↑ A

end if
Union[]← ∅
for r ← A.R ∪B.R do

if ¬expired(r) ∧ ¬obsolete(r.RSN) then
if r.NodeID ∈ Union then

if Union[r.ConsumerId].RSN < r.RSN then
Union[r.NodeID] = r

end if
else

Union[r.NodeID] = r
end if

end if
end for
eleft ← A.emax
R← {}
for r ← reservations in Union sorted in descending

order of bid value at current time t′ do
if eleft ≥ r.eres then

eleft ← eleft − r.eres

R← R ∪ {r}
end if

end for
↑ new ReservationVector(A.BeaconID, max(A.BSN,

B.BSN), A.emax, R)
end procedure

HSeq initially only containing the node itself. The protocol is
optimistic as there is no form of reservation acknowledgments
by other nodes. After broadcasting the RReq, the node starts
HEADING towards the RDB immediately. It is only informed
if its reservation has been denied, in which case a reservation
response RResp is generated.

The node stops HEADING if (i) after merging a reservation
vector from a RReq or RResp for the target RDB, the node’s
reservation is no longer granted, or (ii) the node receives a new
advertisement and reevaluates its decision. By sending a new
RReq with an increased RSN, the node implicitly withdraws
its previous reservation. However, the node may also choose
to no longer pursue any RDB. In this case, the node cancels
the reservation by sending a RReq for the last targeted RDB
with the increased RSN and a reservation of 0 resources.

Due to mobility, the neighbor set and reachable nodes
change frequently. To discover new competitors, the node
periodically (Reservation Repetition Interval) sends out a new
RReq with an updated bid, creation time, and RSN.
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Figure 1: Forwarding a RReq by node A in AORVA with reservations in the form of (NodeID, RSN, reserved resources, bid,
creation time). Local vectors at nodes are marked with dashed lines. The merging of vectors from the response is omitted.

C. Forwarding Requests and Sending Responses

The RReq is flooded up to a number of TTL hops. On
receiving a RReq, a node first compares the request’s RSN
with the value for the given NodeID in its local table. If the
same or a higher RSN has already been seen, the RReq is
dropped. Next, it updates its local advertisement store with the
advertisement contained in the request. If this advertisement is
obsolete, that is, the receiving node has an advertisement with
a higher BSN and a different amount of resources available
than specified in the RReq’s reservation vector, it replies
with a RResp containing the more current advertisement. This
allows the originator of the request to adjust its reservation
to the new situation, for example increasing the amount of
resources reserved. The receiver auction merges the vector
from the request Rreq with the node’s local version Rloc while
considering the projected bid at the current time, and replaces
both Rreq and Rloc with the updated result. If the requester
is still a member of the vector, the node decreases the TTL
by 1, adds itself to the hop sequence, and broadcasts the
RReq containing the updated vector. Otherwise, it generates
a reservation response RResp with the updated vector and
routes it via the reverse path HSeq. Nodes along the RResp’s
route perform auction merge to update their local state with
reservation information from nodes that forwarded the RReq.

Figure 1 shows an example of routing a RReq and cor-
responding RResp. For simplicity, we ignore projections by
using money as a time-independent bid. Initially, Node A
wants to reserve 50 of the 100 available resource units (ru)
at RDB 1. It adds itself to the reservation vector for RDB 1
and broadcasts a RReq. Node B already reserved 70 ru at the
same RDB; however, after receiving A’s RReq and merging the
vector with its local version, B finds that its bid is smaller, and
thus A has precedence during the auction. Since the remaining
50 ru do not support the reservation of 70 ru by B, it is removed
from the vector. Afterwards, B rebroadcasts the RReq.

The reservation made by C at RDB 1 has a higher bid
than A’s. However, both reservations can be fulfilled by the
RDB. C merges both reservation vectors and broadcasts A’s
request with the updated version. D itself has not reserved
any resources at RDB 1, though its local vector contains a

reservation by node E. After performing auction merge, the
reservation by A is removed as E is considered first and the
remaining 30 ru do not satisfy A’s reservation. Since A is no
longer part of the reservation vector from the RReq, D does
not further forward the RReq. Instead, it replies with a RResp
informing A that its request has been denied. If A still desires
to obtain resources from RDB 1, it either has to lower the
amount of resources to reserve or increase the bid.

V. EVALUATION

The goal of the evaluation is to assess the impact of our
resource allocation service and the AORVA protocol on the
lifetime of a disaster communication network. We simulate
our service using the event-based Simonstrator Framework
[22] which comprises the IEEE 802.11g standard from the
ns-3 simulator [11] to model ad hoc Wi-Fi communication
among mobile nodes. The scenario models and the setup of our
simulations are presented in the following sections, followed
by a detailed discussion of the obtained results.

A. Scenario Models

The evaluation is based on a sophisticated model of the
scenario presented in [17] and summarized in the following.
Given the likelihood of over-competition in a post-disaster
scenario, we propose a second scenario in this paper to
explicitly study the system behavior under over-competition.

1) Scenario: Long Term Behavior (s1): In scenario s1,
the long term behavior of the network is studied to assess
the lifetime of the network with different configurations of
the proposed resource allocation service. Nodes are placed
randomly on streets and places on the simulated map, starting
with different initial energy levels. One resource per node is
placed randomly on the map, providing an energy capacity of
200% (i.e., enabling two full recharges). This scenario reflects
the beginning of an emergency situation where nodes discover
resources over time and try to consume them, if they run out
of energy. Although the number of resources is limited, the
number of nodes which simultaneously have a demand for
these resources varies greatly depending on the node density
in an area and the availability of other resources in proximity.



Table I: Scenario and Simulation Setup for the Long Term
Scenario (s1) and the Over-Competition Scenario (s2).

Simulated Area [m×m] 2000 × 2000
Max. WiFi Comm. Range [m] 100
WiFi Standard 802.11g
Movement Speed [m/s] 1.5− 2.5
Movement 13 attraction points with 20 % ran-

dom waypoint probability
Density [nodes/km2] s1: 25, s2: 12.5
Max. Battery Capacity 14 400 ru (Resource Units)
Start Energy s1: normal distributed, µ = 67 %

s2: fixed = 30 %
Initial Node Placement s1: random, s2: central
Number of Attraction Points 13 in parks
RDB Generation Interval [min] s1: 2, s2: immediately
Energy Amount per RDB [ru] s1: 2 ×, s2: 0.5 × max. Bat. Cap.
Overall Energy [ru] s1: 2 ×, s2: 0.5 × #Nodes × max.

Bat. Cap.

Roaming Cost [ru/s] 1.0
Heading Cost [ru/s] 3.11
Heading Threshold
– Reservation Oracle .1, .2, .3, .4, .5, .6, .7, .8, .9
– En Passant .1, .2, .3, .4, .5, .6, .7, .8, .9
– Greedy Selection .1, .2, .3, .4, .5, .6, .7, .8, .9
– Reservation Vector .1, .2, .3, .4, .5, .6, .7, .8, .9
Resource Announcement Timer [s] 5-10, 10-20, 20-40, 40-60
Reservation Vector Lifetime [min] 1, 2, 4, 5, 10, 20, 30, 40, 80, 120
Reservation Repetition Interval [s] 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 30
Memory Span [min] 1, 5, 10, 20, 40, 60, 80, 100
TTL [hops] 1, 2, 3, 4, 5, 6, 7, 8, 9

This scenario was used in [17], enabling us to compare AORVA
against the respective baseline strategies.

2) Scenario: Over-Competition (s2): The second scenario
s2 models a situation with high competition among nodes and
a general scarcity of resources. In this scenario, all nodes
start at the same location and have the same knowledge
about available resources. Consequently, they compete for a
limited amount of resources (only 50% of the demand can be
satisfied). Such situations occur in the event of a disaster, for
example, when organizations drop additional resources in a
disaster area [24]. The scenario helps to assess the benefit of
coordination among nodes with AORVA, as we expect a lower
number of unsuccessful attempts to consume a resource.

B. Evaluation Setup

Table I summarizes all simulation parameters for both
scenarios. Underlined parameters represent the optimal setting
for the given scenarios as a result of an extensive parameter
evaluation which is not presented in this paper. We configured
the damping factor of the Wi-Fi model such that the maximum
communication range of a broadcast is 100 m, with the effec-
tive communication range in dense scenarios being lower as
determined by the 802.11 MAC model [11]. The simulated
area of 2x2 km2 uses real-world map data of a residential
district from OpenStreetMap. The nodes’ personal movement
policy is based on attraction points. Nodes move with a speed
between 1.5 and 2.5 m/s and randomly select one of the 13
locations marked as amenity=park in OpenStreetMap as
their next target. Since resources are placed randomly on the

map and, therefore, may not lie on a node’s route, nodes may
also select a random point as their next target instead of an
attraction point. This behavior is controlled with an exploration
factor, set to 0.2 in our simulations. A node pauses for 15-
20 min before selecting its next target.

Nodes have a maximum battery capacity of 14 400 resource
units (ru). Together with a consumption rate of Er = 1 ru/s,
this allows nodes to communicate for 4 h in ROAMING state
with a full charge. The consumption in HEADING is Eh =
3.11 ru/s considering the phones screen energy consumption
with brightness set to 50 %. The estimated consumption in
ROAMING and HEADING state is based on a power usage
study of an HTC Dream smartphone conducted by Zhang
et al. [31]. In s1, the initial energy of nodes is normally
distributed with a mean µ of 67 % (9648 ru), which is a
typical average battery charge of a user’s smartphone [7].
For s2, we set the initial energy to 30% on all nodes to
create instant demand for resources. The demand for energy
is defined by the Heading Threshold. If a nodes energy level
is below that threshold it tries to switch to HEADING state in
order to collect energy resources. This Heading Threshold is
optimized individually for the different allocation strategies.
Some strategies need to allocate resources sooner than others,
for example the En Passant strategy that only can allocate
resources if the node has a demand and is nearby an energy
resource. For Over-Competition scenario s2, we increase the
Heading Threshold for the Greedy Selection strategy to from
0.2 to 0.3 to have the effect of instant energy demand for
all used strategies. New resources are generated at uniformly
distributed random places on the map and broadcast their
availability and their remaining amount periodically by a given
Resource Announcement Timer.

We measure the total number of nodes that are still alive
and the available resources on the map over time (with a
sampling period of one minute). Additionally, we measure the
percentage of a node’s lifetime spent in HEADING state, the
average time spent with unsuccessful attempts to recharge, and
the average first/half/last nodes dead metrics [9]. Each setup is
repeated with ten different seeds for all sources of randomness,
i.e., affecting node mobility and the placement of resources.

C. Behavior in the Long Term Scenario (s1)

The goal of the resource allocation service is to maintain
a high node density as long a possible to support emergency
communication for any node in the network. Figure 2a shows
the number of online nodes over time for the duration of
the simulation. As expected, both the Greedy Selection and
AORVA perform in between the lower baseline (En Passant)
and the upper baseline (Oracle), while allocating almost all
resources available during the simulation (Figure 2b). While
the overall behavior of a Greedy Selection and AORVA is
comparable, the negotiations in AORVA have one significant
benefit: AORVA further delays the point in time where the first
nodes start to run out of energy. The first node dead metric
is raised to 7:00h for AORVA, compared to 2:47h using En
Passant and 4:55h using Greedy Selection. Using the global
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Figure 2: Evaluation results of Scenario 1

knowledge approach (Oracle), the first node runs out of energy
after 7:55h. Maintaining a dense network and enabling all
nodes to benefit from the applications running on top of that
network for as long as possible is a crucial requirement. In
our previous work [17] we have extensively evaluated the
communication characteristics using the emergency commu-
nication network in scenario s1, revealing that a successful
data exchange is no longer feasible when the total number of
nodes drops below 50%. The fact that a fraction of nodes is
supplied with energy for a long time afterwards does not lead
to any positive effects for the overall network.

Figure 2c displays the percentage of their total lifetime
nodes spent in HEADING (successful and unsuccessful at-
tempts). Due to the fact, that nodes in HEADING have a 3.11
times higher energy consumption compared to ROAMING, time
spent in this state should be minimized while still enabling a
successful allocation and consumption of resources. Except
En Passant, all approaches have a similar share of HEADING
(2.267% – 2.445%) that is necessary to allocate the resources
among the nodes. As expected, time spent in HEADING when
using En Passant is low since nodes only try to consume
resources in their direct reach, resulting in low chances of
concurrent competitors. Even if there are competitors, the time
spent in an unsuccessful HEADING attempt (Figure 2d) is
negligibly small due to the proximity of known resources.
As AORVA increases the overall lifetime of the full network
significantly (Figure 2a), this higher node density towards
the end of the lifetime results in higher competition for the
remaining resources. Consequently, nodes in AORVA spend
a larger percentage of their time in HEADING (Figure 2c)
and have more unsuccessful HEADING attempts towards the
end of the lifetime of the network (Figure 2d). This is due
to partitions in the network, leading to nodes heading to the
same resource from different directions without being able
to exchange their reservation vectors beforehand. The impact
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Figure 3: Evaluation results of Scenario 2

of increased competition on the performance of AORVA is
analyzed in more detail within scenario s2, discussed in the
following section.

D. Behavior for Over-Competition (s2)

In scenario s2, we can evaluate how strategies deal with an
over-competition in case of a scarcity of resources and whether
consensus among nodes is reached. As previously discussed,
nodes start at the same location with the same demand and
knowledge about all resources in the scenario. As En Passant
does not store information about resources outside of the direct
communication range, knowledge is limited to these resources
in that case. Figure 3a shows the resulting lifetime of nodes
for different strategies. The reservation vectors (AORVA) have
a significant positive impact, with the difference to Greedy
Selection being also significantly larger than for scenario s1.
Similar to the Oracle approach, AORVA can allocate almost
all available resources immediately (Figure 3b) because all the
nodes are in communication range when they start exchanging
reservation vectors. This is also reflected in the similar share
of time spent in HEADING state (Figure 3c).

The Greedy Selection performs even worse than the En
Passant approach (which does not exchange or store any
knowledge at all). This is an indicator that more knowledge
without any coordination or consensus can have a significant
negative impact on the overall wellbeing of the network.
Figure 3c shows that Greedy Selection results in a massive
increase in the time spent in HEADING (58%) and on average
113 seconds spent on unsuccessful attempts (Figure 3d).
Reaching consensus using AORVA helps in avoiding such
unsuccessful attempts, as nodes can derive that a resource will
be depleted before their arrival. A closer look on the data used
for Figure 3a shows, that AORVA can extend the time until
the first node runs out of energy to 44:28 min. compared to
24:50 min. using Greedy Selection. The Oracle approach can



further extend this time to a maximum of 2:38h, with all nodes
going offline almost simultaneously afterwards. This results
in a near-optimal network characteristic for the emergency
communication. As all nodes try to charge completely at a
resource and reserve the corresponding amount of energy in
AORVA, the overall scarcity leads to a fraction of nodes that are
unable to reserve and access any resource before their battery
drains, as shown in Figure 3a. Still, the average time until half
of the nodes went offline can be extended to 2:52h, almost
reaching the 2:54h achieved with Oracle and outperforming
the other strategies significantly. As mentioned in Section V-C,
this behavior is important for a successful data transfer in the
emergency network and, consequently, for the utility of the
respective applications.

VI. RELATED WORK

The problem of nodes running out of energy is usually
addressed by reducing consumption, for example by using
energy-aware routing schemes [27] or by applying data aggre-
gation schemes [30]. While those approaches can extend the
lifetime of the network, taking additional physical resources
into account can increase the runtime of nodes significantly. To
the best of our knowledge, there is no previous work on dis-
tributing vital resources among nodes in a MANET. However,
the underlying concept of resource allocation and distributed
consensus has been studied in related areas. Stavrakakis et al.
[25] examined a scenario where players choose between a set
of limited, low-cost resources and an unlimited resource with
high costs. They found that providing players with knowledge,
e.g., the number of competitors, may result in a higher social
cost than in the case without additional information. Ayala et
al. [3] formulated the problem of allocating limited parking
spots to drivers as a finite assignment game where each
driver selects a parking spot. The closest car will get the
spot while the other competitors pay an additional cost for
the unsuccessful attempt. Each instance of the parking spot
assignment is assumed to be independent of all others, whereas
in our case, the additional energy consumption in HEADING
state leads to higher demand in all future instances. Parking
spots can also be defined as sources of gravitational force [4].
Cars move in the direction of the strongest force, i.e., the area
with the most parking spaces instead of just picking the closest
spot. This approach reduces the number of competitors in an
area with limited resources. Other approaches use a central
coordination unit [20] or choose a dedicated coordinator [6] to
allocate parking spots or charging stations [23] for electronic
vehicles. A reverse situation of the resource distribution game
is studied with the problem of recharging static wireless sensor
nodes, using vehicles to recharge the nodes [29]. The use of
auction-based resource reservation schemes has been studied
for network resources like bandwidth or storage [12]. The eco-
nomic sector uses decentralized market protocols for allocating
tasks among agents that compete for scarce resources [28].
In these scenarios, agents trade tasks and resources at prices
determined by an auction protocol.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a decentralized reservation
protocol called Ad hoc On-demand Reservation Vector Auction
(AORVA) to distribute scarce resources among nodes in a post-
disaster scenario. The goal of the resource distribution is to
extend the lifetime of an emergency ad hoc network and to
enable as many nodes as possible to benefit from the respective
services for as long as possible. We evaluated AORVA in
two representative scenarios taking into account high over-
competition of available resources. AORVA is especially ben-
eficial in dense scenarios with an otherwise high probability
for over-competition among nodes as shown in our evaluation.
Here, all available resources are allocated and the lifetime
of the overall network is increased to 98.9% compared to a
centralized approach. Even if there is little competition among
nodes, AORVA increases the time until the first node runs out
of energy by a factor of 1.42 compared to related works.

We are currently investigating the impact of less greedy
recharging strategies, where nodes state a reduced demand
and recharge more frequently instead. Thereby, we expect a
more evenly distribution of resources across the area, which
should help to maintain a connected network while nodes are
recharging. In this work, we are considering charging at a
resource to be instant, like a node taking an energy pack
and moving away. In future work we like to focus on a
more realistic charging phase considering large non mobile
energy resources, such as a car battery. This will probably
have an influence on the nodes movement and will result in
a higher node density around energy resources. The impact
of this changed behavior on the overall resource allocation
and reservation still needs to be investigated. Also considering
energy resources that can be carried by a node and distributed
afterwards, opens new interesting research questions.

We further conducted a large field trial with 125 people
participating in an emergency communication network. Based
on the analysis of the participants behavior and interactions
[2] during the field trial, we plan to extend our strategies
to account for real-world effects of human behavior and
additional interaction outside of the application.
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