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Abstract. The service selection problem (SSP) – i.e., choosing from
sets of functionally equivalent services in order to fulfill certain business
process steps based on non-functional requirements – has frequently been
addressed in literature considering deterministic values for the Quality
of Service (QoS) attributes. However, the usage of deterministic values
does not reflect the uncertainty about the actual value of an attribute
during execution, thus ignoring the risk of QoS violations. In the paper at
hand, a simulative step, based on stochastic QoS attributes, is performed
as complement for optimally solving the SSP using linear programming
methods. With this two-step approach, uncertainties in the selected set
of services can be explicitly revealed and addressed through repeated
selection steps, thus allowing to prevent the violation of QoS restrictions
much more effectively.

1 Introduction

In Service-oriented Architectures (SOA), business processes can be realized
by composing loosely coupled services. Depending on their granularity, these
services provide a more or less complex functionality [1]. Thereby, the services
are not necessarily located only within the boundaries of the own enterprise.
In the Internet of Services, multiple service providers offer their services at
various service marketplaces [2]. If services with substitutable functionalities
are available at different cost and quality levels, service requesters have the
opportunity to decide which services from which service providers to select, based
on their preferences regarding Quality of Service (QoS). This service selection
problem (SSP) respectively its solution recently attracted a lot of attention in
the literature [3–6].

In this problem, an abstract representation of a workflow is assumed to be
given (e.g., in Business Process Modeling Notation – BPMN), as well as a list
of functionally equivalent services which are able to accomplish the tasks of the
respective workflow steps. The aim is to assign each workflow step exactly one
service from the respective set of functionally equivalent candidate services, so
that the overall (workflow) QoS is optimized and the requesters’ end-to-end QoS
requirements are satisfied. In order to compute an (optimal) solution, almost
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exclusively deterministic values for the QoS attributes are considered at planning
time in the literature. However, these values do not reflect the uncertainty that
is associated with an attribute during execution. E.g., response times – i.e. the
elapsed time period between the service invocation to the response arrival – may
fluctuate due to varying network or computational load, thus resulting in a
violation of the requester’s QoS requirements in the actual workflow execution.

Therefore, we propose to perform an additional simulation step that takes
stochastic distributions for the QoS attributes into account after having computed
the optimal solution to the SSP (considering only deterministic values). This
simulation step allows to detect potential violations of QoS restrictions in the
actual execution, based on the respective probability of such events. Depend-
ing on the requester’s preferences, the outcome of the simulation may trigger
repeated optimization steps using additional restrictions. As a proof-of-concept,
we implemented and evaluated a simulation for the QoS attribute response time.

The remainder of this work is structured as follows: In Section 2, we will
present our approach for optimally solving the SSP using linear programming,
based on deterministic QoS values. In Section 3, the potential drawbacks of
deterministic optimization will be outlined. Based on the findings, a simulation
process that relies on stochastic QoS attributes will be presented and evaluated
using a prototypical tool. The paper closes with a conclusion and an outlook of
our future work in Section 4.

2 Optimal Service Selection for Complex Workflows

In this section, we present our approach for the computation of an optimal
solution to the SSP. For this, we formulate a linear optimization problem, which
can be solved optimally – if a solution exists – using (mixed) integer linear
programming (MILP) techniques from the field of operations research [7]. The
optimization problem consists of a target function and a set of constraints. We
perform a worst-case analysis – instead of an average-case analysis – by applying
our aggregation functions proposed in [8] in order to make sure that all restrictions
are satisfied at planning time. Performing an average-case analysis would have
led to a solution, where the restrictions are satisfied only in average.

For the optimization, we consider the QoS attributes response time e (elapsed
time from the service invocation until the response arrival), costs c (costs for
the invocation of a service), reliability r (the probability that the service suc-
cessfully provides the requested results), and throughput d (number of parallel
service invocations), although the mentioned simulation step will only be per-
formed for response time e. With these QoS attributes – in fact with a subset
of these attributes – the aggregation types summation, multiplication and the
min/max operator are covered. The integration of further aggregation types is
straightforward.

In the paper at hand, we concentrate on the workflow patterns sequence,
parallel split (AND-split), synchronization (AND-join), exclusive choice (XOR-
split), simple merge (XOR-join), and arbitrary cycles (Loop), which only form a



subset of all workflow patterns (cf. [9]). The patterns can be combined to create
complex workflows. An example for such a complex workflow is given in Figure 1.
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ρ

Fig. 1: Example abstract workflow

We consider an abstract workflow (e.g., in BPMN), consisting of n tasks
respectively process steps PSi. For each PSi with i ∈ I = {1, ..., n}, a set Ji
of mi services ji ∈ Ji = {1, ...,mi}, able to realize PSi, exists. Each process
step PSi thereby is realized by exactly one service ji. This is indicated by the
demand for (binary) decision variables xij ∈ {0, 1} (cf. condition (14)). The
logical order of the process steps is depicted from the abstract workflow as
follows: in case PSk is a direct successor of PSi, we add PSi → PSk to a set
DS = {PSi → PSk|PSk direct successor of PSi}. DSs is the set of start tasks,
i.e., the tasks that need to be executed first in the workflow. In addition, we
define DSe as the set of end tasks, i.e., tasks with no direct successor. To give
an example, we refer to Figure 1. Here, PS3 is a direct successor of PS2. We
therefore add PS2 → PS3 to DS.

With respect to XOR-splits and XOR-joins, we define a set L = {1, ..., o}
of o path numbers for the paths within the XOR-split and -join – and name
these paths XOR-paths. Thereby, l ∈ L represents the respective XOR-path
number. The process steps PSil within an XOR-path are assigned to a set
Wl, PSil ∈ Wl = {PSi|PSi in XOR-path l}, and their respective process step
numbers il are assigned to the set IWl, il ∈ IWl = {i|PSi ∈ Wl}. Further,
S = {PS1, ..., PSn}\(W1 ∨ ... ∨Wo) represents a set of the remaining process
steps PSi when removing process steps PSil from a set of all process steps.
IS = I\(IW1 ∨ ... ∨ IWo) denotes the set of the corresponding process step
numbers.

Within an XOR-path, we assume a sequential arrangement of the process steps
and label the first and last process steps with PS1

i1
and PSei1 . The respective

start times for these process steps are labeled analogously with t1il and teil .
The probability that XOR-path l is executed, is indicated by pl . We demand∑o

l=1 pl = 1.
Regarding the workflow pattern Loop, Iloop represents the set of process step

numbers i with a Loop. Further, ρi denotes the respective probability that this
Loop is followed (cf. PS4 in Figure 1). Thereby, ρ is independent of whether
the Loop was followed or not before. If a Loop is followed multiple times, the



respective process steps are executed multiple times, too. As this affects the
regarded, aggregated QoS values, we define e∗ij in (1), c∗ij in (2), and r∗ij in (3) in
dependence of a boundary value consideration of ρ (cf. [8]). The throughput dij
is not effected by a Loop.

e∗ij :=
{

1
1−ρi

eij , if i ∈ Iloop
eij , else

(1)

c∗ij :=
{

1
1−ρi

cij , if i ∈ Iloop
cij , else

(2)

r∗ij :=
{ (1−ρi)rij

1−ρirij
, if i ∈ Iloop

rij , else
(3)

Based on our aggregation functions in [8], we propose Model 1 to perform the
proposed worst-case analysis. Here, QoS restrictions are labeled with b (bounds).

Model 1 Optimization Problem
Objective Function

minimize F (x) =
∑
i∈I

∑
j∈Ji

c∗ijxij (4)

s.t.
ti = 0 ∀i ∈ I|P Si ∈ DSs (5)

ti +
∑
j∈Ji

e∗ijxij ≤ tk ∀i ∈ I|P Si → P Sk ∈ DS (6)

ti +
∑
j∈Ji

e∗ijxij ≤ be ∀i ∈ I|P Si ∈ DSe (7)

max
l∈L
{(t1

il
+

∑
i∈IWl

∑
j∈Ji

e∗ijxij)} ≤ tk ∀i ∈ I|P Se
il
→ P Sk ∈ DS (8)

max
l∈L
{(t1

il
+

∑
i∈IWl

∑
j∈Ji

e∗ijxij)} ≤ be ∀i ∈ I|P Se
il
∈Wl (9)∑

i∈IS

∑
j∈Ji

c∗ijxij + max
l∈L
{

∑
i∈IWl

∑
j∈Ji

c∗ijxij} ≤ bc (10)

(
∏

i∈IS

∑
j∈Ji

r∗ijxij) · (min
l∈L
{(

∏
i∈IWl

∑
j∈Ji

r∗ijxij)}) ≥ br (11)

min{min
i∈IS
{
∑
j∈Ji

dijxij}, min
l∈L
{ min

i∈IWl

{
∑
j∈Ji

dijxij}}} ≥ bd (12)∑
j∈Ji

xij = 1 ∀i ∈ I (13)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ Ji (14)

Regarding Model 1, it has to be noted that the workflow patterns AND-split
and AND-join are already covered in (8) to (12) (cf. [8]).



To compute an optimal solution using MILP techniques, a linear optimization
problem is required. As the min/max operator as well as the multiplication are
non-linear aggregation types regarding the decision variables xij , we apply the
approximation (15) to (11) – which is very accurate for values zij close to 1 (like
reliability) [10] – and exchange constraints (8)–(12) for (16)–(20). To explain this
(second adaptation step), it has to be noted that if the minimum (maximum) of
a set of values has to be higher (lower) or equal to a certain bound, each element
of this set needs to satisfy this constraint.

n∏
i=1

mi∑
j=1

zijxij ≈ 1−
n∑
i=1

(1−
mi∑
j=1

zijxij) (15)

t1il +
∑
i∈IWl

∑
j∈Ji

e∗ijxij ≤ tk ∀l ∈ L,∀i ∈ I|PSeil → PSk ∈ DS (16)

t1il +
∑
i∈IWl

∑
j∈Ji

e∗ijxij ≤ be ∀l ∈ L,∀i ∈ I|PSeil ∈Wl (17)∑
i∈(IS∨IWl)

∑
j∈Ji

c∗ijxij ≤ bc ∀l ∈ L (18)

1−
∑

i∈(IS∨IWl)

(1−
∑
j∈Ji

r∗ijxij) ≥ br ∀l ∈ L (19)

min
i∈I
{

∑
j∈Ji

dijxij} ≥ bd (20)

Having conducted these substitutions, an optimal solution can be obtained
by applying MILP techniques.

3 Stochastic Simulation of Complex Workflows

In the previous section, we have outlined how an optimal set of services can
be selected for the process steps in a complex workflow, based on given QoS
constraints. Because the underlying optimization problem is solved using MILP,
the usage of deterministic QoS attributes is required. These fixed values commonly
represent a lower or upper bound that is guaranteed by a service provider with
respect to a certain QoS attribute in terms of a Service Level Agreement (SLA).

However, the usage of deterministic values does not reflect the uncertainty
(or risk, which we use as a synonym) that may be associated with QoS attributes.
Response time, e.g., is ultimately a stochastic variable that depends on various
random determinants, such as network and computational load. Consider two
sets of services for the same business process, where the second set has a slightly
higher average response time for each service. However, the variance in response
time is much lower for the second set, e.g., due to the usage of load-balancing
techniques. While the first set is optimal with respect to the objective of minimal
(average) response time, it exhibits a much more fluctuating behavior with respect
to this attribute. This may lead to an increased risk of exceeding certain reponse
times threshold, which is undesired. Thus, we believe that the notion of optimality



in service selection needs to regard two aspects: the average outcome of an QoS
attribute as well as its fluctuation.

Accordingly, we propose to extend the representation and computation of QoS
attributes in a manner that appropriately incorporates uncertainty. Our approach
adapts a methodology suggested by Dawson and Dawson in the domain of project
planning [11]. They introduce the notion of generalized activity networks [12].
Such networks consist of nodes and edges. Nodes represent activities (or tasks);
edges represent precedence relationships and thus paths between the activities,
where each task may have one or more incoming and outgoing incident edges.
For additional details and an example, we refer to Dawson and Dawson [12].
Notably, the duration for each activity is given as stochastic distribution, rather
than a deterministic value, in generalized activity networks. This is a well-known
principle that has been applied in traditional planning techniques, such as PERT,
which was devised in the early 1960s [13]. Furthermore, if more than one edge
results from an activity, all edges are annotated with an execution probability.
These execution probabilities may also be correlated between edges.

Following the findings by Schonberger [14], who states that traditional plan-
ning techniques such as PERT commonly underestimate the overall duration of an
activity network, Dawson and Dawson utilize simulation as a means of analyzing
generalized activity networks [11]. I.e., the activity network is virtually executed a
selected number of times; in this process, the duration of each activity and choice
of path execution is drawn as a random variable. The individual durations of all
executed activities are then aggregated into an overall duration in each iteration.
From the distribution of aforementioned overall durations, conclusions can be
drawn about the characteristic of the activity network in actual execution. Most
importantly, the probability that a set of activities exceeds a certain threshold
due to the fluctuations in duration can be inferred.

The notion of generalized activity networks can easily be transferred to work-
flows as a special application domain. In this scenario, services then correspond to
activities, while splits (joins) constitute dummy activities with multiple outgoing
(incoming) edges. Depending on the type of split (AND, XOR, or Loop), the
execution probabilities of the edges and respective correlations will differ. E.g.,
in the case of AND-splits, each edge will be assigned a probability of 1, due to
the fact that each edge is certainly executed.

Because services have multiple non-functional attributes, we not only adapt,
but also extend Dawson and Dawson’s approach. Namely, we allow for an arbitrary
number of random variables, representing QoS attributes, being associated with
each activity (i.e. service) apart from duration (which, in the context of workflows
respectively services, translates into response time). In our proposed methodology,
each QoS attribute for each service is modeled as an independent random variable
adhering to some probability distribution. This loosely relates to the idea of soft
contracts in Web service orchestration, as proposed by Rosario et al. [15].

The probability distribution may essentially be determined in two ways. The
first option is to infer it, based on historic execution data of a service. This requires
the installation of proper monitoring mechanisms. After a relevant sample has



been collected, a QoS attribute such as response time may, e.g., be represented
through a normal distribution. The second option is that a service provider
explicitly specifies a probability distribution for each QoS attribute.

In order to infer execution probabilities for each path, three options exist.
The first is mining from historical data again. However, this requires that a
workflow (or at least a workflow segment) that is identical to one being simulated
has previously been executed and monitored. The second option is to have an
user manually assign the probabilities, based on his or her knowledge about the
underlying business process. The third and final option is to utilize conservative
default values, assuming that either each path (in case of AND-splits) or the
worst path with respect to each individual QoS attribute (XOR-splits) will be
executed.

p2 = 0.7
● ●

p1 = 0.3
● Xe;2 = N(3.2,0.9)

3.5 - -
Xe;3 = N(2.0,0.5)

1.7 - -

ρ = 0.25
- 1x 0x

9.7 8.4 7.4
Xe;5 = N(8.1,2.5)Xe;1 = N(6.3,1.5)

5.8 6.7 6.4

Xe;4 = N(2.5,1.1)

- 2.8
2.3 3.0

Fig. 2: Example workflow including simulation outcomes

Figure 2 depicts an example workflow for which a set of services (S1 through
S5) has been selected. It addition, the random variables and respective probability
distributions for each service, as well as execution probabilities for each edge,
are illustrated. For reasons of simplicity, solely the random variables for the QoS
attribute response time are included. For service S1, e.g., the response time is
given by Xe;1, which is normally distributed (N) with a mean value of 6.3 seconds
and a standard deviation of 1.5 seconds. For the XOR-split, the probability of
executing the top and bottom path is 0.3 and 0.7 respectively. Accordingly, for
the Loop construct, the probability of looping and thus repeatedly executing S4
is 0.25.

Figure 2 further depicts three exemplary simulation runs for the sample
workflow. For every service, the randomly drawn response times are depicted in
the boxes next to the random variables. For the XOR-split, the pursued path is
indicated by a bullet; for the Loop construct, the number of additional executions
(repetitions) of S4 is depicted. As can be seen, each run results in a different
outcome for each service with respect to response time and in varying paths being
executed. E.g., in the first iteration in the example, services S1, S2, S3, and S5
have response times of 5.8, 3.5, 1.7, and 9.7 seconds respectively. The lower path



is not executed, and thus, S4 and the consecutive Loop construct are omitted.
Accordingly, the overall response time for the first iteration is 20.7 seconds (and
20.2 and 16.8 seconds for the second and third iteration respectively). Once the
process is repeated multiple times, a representative distribution for each QoS
attribute can be obtained.

Service selection and workflow simulation serve as a mutual complement: In
the first step, a set of services is selected by solving a linear optimization problem.
This provides an optimal result with respect to the objective of minimizing
total cost and allows to make statements about the workflow characteristics in
theory. In the second step, the resulting workflow is simulated, ideally based on
historic execution data, which allows to anticipate the workflow characteristics in
practical execution. If the uncertainty in the workflow is found to be unacceptable
with respect to given constraints, the selected set of services is discarded. This
may, e.g., be the case if a specified response time constraint is not met with a
certain probability. Consecutively, the process of computing an optimal solution is
repeated with further restrictions. A manifest strategy is to explicitly exclude one
or more services with the highest standard deviation in a critical QoS attribute
from the set of candidate services.

To assess the principal benefits and effectiveness of our approach, we have
implemented a prototypical workflow simulation tool in Java. The tool allows to
specify complex workflows, consisting of services and their structure, using an
XML-based format1. For each service, an arbitrary number of QoS attributes,
along with the respective probability distributions, may be specified and freely
parameterized.

A simulation with one million iterations has been conducted for the example
workflow in Figure 2 using the aforementioned tool. Additionally, the workflow
has been modified for a second simulation. In detail, the mean of the response
time probability distribution for each service was incremented by 0.2 seconds,
and the standard deviation was set to half of its original value. I.e., each initially
selected service has been replaced by a variant that is less optimal on average,
but also shows less fluctuation in terms of response time. In practice, this process
would be iteratively conducted for one service at a time.

The resulting distributions of the workflows’ overall response times are de-
picted in Figure 3, where the absolute frequency refers to clusters (or classes) of
outcomes that were identical up to the first decimal place. While the modified
workflow responds slower on average, it can be seen that it is significantly more
favorable once a strict response time constraint of approximately 20 seconds or
more has been specified. This figure is fairly close to the average response time of
18.2 and 18.9 seconds for the original and modified workflow respectively. In these
cases, the original workflow is much more likely to break the constraint than the
modified workflow. E.g., a response time restriction of 22.5 seconds is violated
with a probability of 11.15% by the original workflow – for the modified workflow,
the probability is only 6.25%, i.e. roughly half. Differently stated, an increase

1 A sample listing is available from
http://www.kom.tu-darmstadt.de/~lampeu/icsoft-2010/workflow.xml
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Fig. 3: Distribution of the overall response time for two workflows

in average response time (and cost) is traded against a decrease in uncertainty –
namely of breaking an overall response time constraint – by replacing the original
services through their alternative counterparts.

4 Conclusion

In the work at hand, we have presented two complimentary approaches to the
problem of QoS-aware service selection for complex workflows. As foundation,
we have outlined how an optimal set of services can be identified under given
QoS constraints using linear programming. However, this process is based on
deterministic values, which insufficiently reflect the uncertainty associated with
a QoS attribute in actual execution. E.g., response times may heavily fluctuate
due to network and computational load, thus leading to QoS violations in the
actual execution of a workflow.

As a solution, we have adapted an existing methodology for the simulation
of generalized activity networks to the specific field of workflows in SOA. This
simulation process allows to assess the expected characteristics of a workflow,
most importantly the likelihood that a QoS constraint will be violated, in more
detail. Depending on a requester’s preferences, the outcome of the simulation
process can be utilized to repeatedly conduct the service selection procedure,
thus minimizing the probability of QoS violations more effectively. The practical
applicability and benefit of our approach has been proven using a prototypical
implementation of a workflow simulation tool.



In our future work, we aim at combining the currently separated steps of
service selection and workflow simulation into an integrated tool. We will further
investigate the issue of mining probability distributions from historic service
execution data as a prerequisite of more realistic simulation. In this context, QoS
attributes besides response time will also be explicitly addressed.
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