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Abstract—Auctioning constitutes a market-driven scheme
for the allocation of cloud-based computing capacities. It
is practically applied today in the context of Infrastructure
as a Service offers, specifically, virtual machines. However,
the maximization of auction profits poses a challenging task
for the cloud provider, because it involves the concurrent
determination of equilibrium prices and distribution of virtual
machine instances to the underlying physical hosts in the
data center. In the work at hand, we propose an optimal
approach, based on linear programming, as well as a heuristic
approach to tackle this Equilibrium Price Auction Allocation
Problem (EPAAP). Through an evaluation based on realistic
data, we show the practical applicability and benefits of our
contributions. Specifically, we find that the heuristic approach
reduces the average computation time to solve an EPAAP
by more than 99.9%, but still maintains a favorable average
solution quality of 96.7% in terms of cloud provider profit,
compared to the optimal approach.
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I. INTRODUCTION

A. Motivation

In the past few years, cloud computing has gained
tremendous interest both among practitioners and researchers.
One of the essential ideas of this novel paradigm consists in
the provision of Information Technology (IT) in a utility-like
manner [1]. In the context of an envisioned cloud computing
market, the decision whether to supply IT capacities in-house
or lease them from the cloud is – aside from strategical
considerations – largely determined by the price [2]. One
potential instrument to achieve a market-based pricing and
thus, efficient allocation of computing capacities, are auctions
[3]. In this respect, Amazon Web Services1 has not only been
one of the pioneers in the cloud computing domain, but also
among the first to employ auctions as a complement to
traditional fixed-price schemes.

Specifically, in the Spot Instances system2, cloud users
submit bids to Amazon for Infrastructure as a Service (IaaS)
offers in the form of Virtual Machines (VMs). Each bid
states the desired number of instances and the maximum
willingness to pay for a specific VM type. At a periodic time
interval, Amazon determines an equilibrium price for each

1http://aws.amazon.com/
2http://aws.amazon.com/ec2/spot-instances/

type. Users whose bids exceed (or meet) the equilibrium
price are (partially) served with the desired instances. All
users pay the identical equilibrium price – rather than their
respective bid price – per instance.

While many researchers have previously assumed that the
price-setting mechanism is market-driven, i. e., determined by
supply and demand [3]–[5], more recent research indicates
that this is not the case. According to Agmon Ben-Yehuda
et al. [6], the publicly posted equilibrium prices are likely
selected at random from a small predefined interval. In the
opinion of the aforementioned authors, this indicates a low
demand in the Spot Instance system at present.

However, it is safe to assume that with increasing accep-
tance and utilization of cloud computing offers, auctions will
gain in popularity for the efficient allocation of computing
capacities. Based on this notion, in the work at hand we
examine how cloud providers can maximize their profit using
equilibrium price auctions.

B. Research Problem

When applying equilibrium price auctions for the allocation
of capacities, a cloud provider faces two distinct yet linked
challenges. First, the provider has to determine specific
equilibrium prices for each offered VM type. Second, the
provider has to distribute the VM instances, which have
been requested in the served (or satisfied) bids, among the
Physical Machines (PM) instances in her/his data center. In
this process, the cloud provider will commonly pursue the
objective of maximizing profit. This profit is given by the
difference between the revenue from the served bids and the
operating costs of the PM instances. In the remainder of this
paper, the combination of both challenges is referred to as
Equilibrium Price Auction Allocation Problem (EPAAP).

We assume that the cloud provider operates a limited
number of PM types, which provide restricted resource
supplies. These supplies are specified in terms of certain
resource types, e. g., processor power or memory. Of each
PM type, a restricted number of instances are available in the
cloud provider’s data center(s). These PM instances may be
independently powered on or off. Each active instance leads
to a fixed operating cost due to, e. g., idle power consumption
and maintenance demands.

http://aws.amazon.com/
http://aws.amazon.com/ec2/spot-instances/
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We further assume that the cloud provider offers a
predefined set of VM types, which exhibit certain resource
demands. Due to these resource demands, each individual
VM instance imposes additional variable operating costs on
the PM instance that hosts it, due to, e. g., increased power
consumption.

Lastly, we assume that in accordance with the Spot
Instances system, the cloud users may continuously submit
or cancel bids. In contrast, the allocation process (i. e., the
pricing of VM types and distribution of VM instances) is
only periodically conducted by the cloud provider.

The remainder of this paper is structured as follows: In
Section II, we introduce a formal notation for the EPAAP
and subsequently describe two optimization approaches,
an optimal and a heuristic approach. Section III describes
our evaluation procedure and the obtained results. In the
subsequent Section IV, we provide an overview of related
work. Lastly, Section V concludes the paper with a summary
and outlook on future work.

II. OPTIMIZATION APPROACHES

A. Formal Notations

As a basis for the optimization approaches that are
presented in the following subsections, we introduce a formal
notation for the EPAAP. First, we define the basic entities:
• V ⊂ N: Set of offered VM types.
• P ⊂ N: Set of available PM types.
• R ⊂ N: Set of regarded resource types.
Based on the previous definitions, the characteristics of and

relations between the basic entities can be further specified:
• RDvr ∈ R+: Resource demand of VM type v ∈ V for

resource type r ∈ R.
• RSpr ∈ R+: Resource supply of PM type p ∈ P for

resource type r ∈ R.
• CFp ∈ R+: Fixed operating cost of PM type p ∈ P

per utilized instance.
• CVpv ∈ R+: Variable operating cost of PM type p ∈ P

per hosted instance of VM type v ∈ V .
• np ∈ N: Available instances of PM type p ∈ P in the

cloud provider’s data center(s).
The bids that have been submitted by the cloud users are

formalized using the following constructs:
• B ⊂ N: Set of submitted bids.
• Wb ∈ R+: Specified price for bid b ∈ B, i. e., maximum

willingness to pay.
• Tb ∈ V : Specified VM type for bid b ∈ B.
For reasons of simplicity and without loss of generality, we

assume that each bid b ∈ B specifies an individual request
for one VM instance. Thus, if a user bids for η ∈ N VM
instances of the same type at an identical price – as it is
the case in the Spot Instances system – this results in η
individual bids in the set B.
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Figure 1. Schematic overview of the optimization model, depicting the
decision variables (in bold) and most relevant entities. A portion of the
links has solely been sketched (in gray) to improve readability.

Lastly, for reasons of convenience, we infer the following
definitions from the previous specifications:
• Bv ⊆ B: Set of submitted bids for VM type v ∈ V .
• W v ⊆W : Set of prices for the bids in set Bv .
• mv ∈ N: Overall number of submitted bids for VM

type v ∈ V .
Without loss of generality, we establish that the bids in

the set B are given in monotonically decreasing order of the
corresponding prices. That is, it holds that Wb ≥ Wb′ for
b, b′ ∈ B, b < b′. The same applies for the respective subsets
of bids, i. e., Bv .

B. Optimal Allocation Approach

To compute an optimal solution to the EPAAP, we
transfer the problem definition from Subsection I-B into
a mathematical optimization model. The result is given in
Model 1 and will be explained in detail in the following. In
order to promote an easier interpretation of the model, we
first discuss the significance of the decision variables.

In Equation 12, x, y, and z are defined as binary decision
variables. x is the primary decision variable, whereas y and
z can be considered auxiliary decision variables. Specifically,
xbpj indicates whether the bid b has been served and assigned
to a PM instance of type p with the running index j or not.
yvk indicates whether for a VM type v, exactly the first k
bids are served or not. Lastly, zpj represents whether a PM
instance of type p with the running index j is utilized, i. e.,
powered on, or not. An overview of the optimization model,
which highlights the relations between the decision variables
and the most important entities, is depicted in Figure 1.

Equation 1 specifies the objective of the optimization
model, namely the maximization of profit. The profit com-
prises three components. The first component is the revenue
that is generated through the served bids. For that matter, yvk
also indicates whether the k-th bid for VM type v corresponds



to the equilibrium price or not. The second component is the
fixed operating cost of all utilized PM instances, while the
third component represents the additional variable operating
cost due to the hosted VM instances.

Equations 2 and 3 link the decision variables x and y and
x and z respectively. Equation 4 assures that the resource
demands of all VM instances are met by the resource supplies
of the respective PM instance that host them. Equation 5
guarantees that an individual bid cannot be served more than
once. Equation 6 ensures that solely one equilibrium price
for each VM type can be set.

Equation 7, for performance reasons, restricts the solution
space by preferring PM instances of the same type with
a lower running index over those with a higher running
index. Equation 8, also for performance reasons, excludes
dominated solutions from the solution space. A solution is
referred to as dominated if another solution exists that would
yield a higher or equal revenue, even if a smaller number of
bids for a specific VM type is served.

Equations 9 through 11 define valid running indices for
VM and PM instances. The definition of the latter is based on
two observations: First, the number of utilized PM instances
cannot exceed the available number of instances of this type,
np. Second, in the theoretical case that all bids were served
and the requested VM instances were each assigned to an
individual PM instance of the same type, no more than |B|
instances would be required.

As can be seen, Model 1 constitutes a Linear Program
(LP), or more specifically, Binary Integer Program (BIP).
This class of optimization problems can be solved using
well-known methods from the field of Operations Research,
most notably, the Branch and Bound (B&B) algorithm [7].
While the B&B algorithm can be very efficient in some cases,
it is still based on the principle of enumeration, i. e., in the
worst case, all potential solutions have to be examined [8].

Specifically, for a BIP, the solution space grows expo-
nentially with the number of decision variables. As can be
observed from Model 1 (notably, Equations 1 and 12), the
number of decision variables increases quadratically with
the number of bids and linearly with the number of PM
types. Accordingly, the computational complexity of the
optimal allocation approach is exponential and corresponds
to O(2|B|2∗|P |).

C. Heuristic Allocation Approach

For real-life application scenarios involving thousands of
bids, the optimal allocation approach may be problematic due
to its exponential growth in computational complexity. Thus,
we have developed a heuristic approach that trades reductions
in computation time against potentially sub-optimal solutions.

The principle idea is to initially determine the equilibrium
prices for all VM types, such that the expected profit from
the served bids is maximized. Subsequently, these served
bids – or more specifically, the VM instances that have been

Model 1 Optimal Allocation Model

Maximize Pr(x, y, z) =
∑

v∈V,k∈Kv

yvk ∗ k ∗W v
k (1)

−
∑

p∈P,j∈Jp

zpj ∗ CFpj −
∑

b∈B,p∈P,j∈Jp

xbpj ∗ CVpTb

subject to

k ∗ yvk ≤
∑

1≤i≤k,p∈P,j∈Jp

xBv
i pj

∀v ∈ V, k ∈ Kv (2)

zpj ≥ xbpj ∀b ∈ B, p ∈ P, j ∈ Jp (3)∑
b∈B

xbpj ∗RDTbr ≤ RSpr ∀p ∈ P, j ∈ Jp, r ∈ R (4)

∑
p∈P,j∈Jp

xbpj ≤ 1 ∀b ∈ B (5)

∑
k∈Kv

yvk ≤ 1 ∀v ∈ V (6)

zpj ≥ zpj′ ∀p ∈ P, j ∈ Jp, j′ ∈ Jp, j < j′ (7)

yvk = 0 if k ∗W v
k ≤ k′ ∗W v

k′

∀k ∈ Kv, k
′ ∈ Kv, k > k′ (8)

Kv =

{
{1, ...,mv} if mv > 0

∅ else
∀v ∈ V (9)

Jp =

{
{1, ...,min(np, |B|)} if np > 0

∅ else
∀p ∈ P (10)

Jp,Kv ⊂ N (11)

xbpj ∈ {0, 1} ∀b ∈ B, p ∈ P, j ∈ Jp
yvk ∈ {0, 1} ∀v ∈ V, k ∈ Kv (12)
zpj ∈ {0, 1} ∀p ∈ P, j ∈ Jp

requested in these bids – are cost-efficiently distributed across
the physical hosts. Accordingly, the approach is split into
two phases, VM pricing and VM distribution.

The procedure for the second phase is inspired by a
heuristic for the distribution of software services across VM
instances, which we have introduced in our previous work
[9]. This heuristic, in turn, adapts concepts that are frequently
applied for solving the well-known Knapsack problem [7].
For additional details, we refer to our previous publication.

The pseudo code for the two phases is provided in Listing 1
and 2. In accordance with the previous subsection, xbpj
represents the main binary decision variable. Qv ∈ R+



Listing 1 Algorithm for VM Pricing
1: S ← ∅
2: for all v ∈ V do
3: gv ← 0, CSv ← 0
4: for all p ∈ P do
5: if p.canHost(v) = true then
6: gvp ← min(np, |B|)
7: gv ← gv + gvp

8: CSvp ← CVpv + CFp ∗ 1
|R|
∑

r∈R

(
RDvr

RSpr

)
9: CSv ← CSv + gvp ∗ CSvp

10: end if
11: end for
12: if gv > 0 then
13: CSv ← CSv/gv
14: k̂v ← 0, Êv ← 0, Qv ←∞
15: for k = 1→ mv do
16: Ev ← k ∗ (W v

k − CSv)
17: if Ev > Êv then
18: Êv ← Ev , k̂v ← k, Qv ←W v

k

19: end if
20: end for
21: S ← S ∪ {Bv

1 , ..., B
v
k̂v
}

22: end if
23: end for

denotes the equilibrium price for each VM type v. Lastly,
the set S ⊆ B contains the bids that will be served.

In the first phase, VM pricing, we initially estimate the cost
of serving an individual bid for each VM type v. This serving
cost CSvp of a VM type v on each PM type p corresponds
to the partial fixed and additional variable operating cost of
a respective PM instance. The partial fixed operating cost,
in this context, is the fixed operating cost of a PM instance,
multiplied by the ratio between the resource demands of
VM type v and the resource supplies of PM type p. The
individual serving costs are aggregated into an weighted
average serving cost CSv across all suitable PM types for
each VM type v, using the respective weights gvp. Suitable,
in this respect, means that a PM type can host a VM type
subject to the given resource constraints (lines 3-13). On
the basis of these serving costs and the initial bid prices,
we determine a favorable number k̂v ∈ N of bids for each
VM type v that should be served. The number is considered
favorable if the expected profit Ev ∈ R, i. e., the difference
between the revenue from the bids and the expected serving
costs, becomes maximal. In the same step, the equilibrium
price Qv for each VM type v is inferred. The served bids
are stored in the set S, which, in accordance with the set B,
we assume to be ordered by monotonically decreasing bid
prices (lines 14-21). The corresponding VM instances are
considered for distribution in the following phase.

Listing 2 Algorithm for VM Distribution
1: for all p ∈ P do
2: jp ← 0
3: end for
4: repeat
5: p̂← ∅, Û ← 0
6: for all p ∈ P do
7: if jp < np then
8: Lp ← ∅, Ip ← ∅
9: for all b ∈ S do

10: if Tb /∈ Ip then
11: if p.canHost(Lp ∪ b) = true then
12: Lp ← Lp ∪ b
13: else
14: Ip ← Ip ∪ Tb
15: end if
16: end if
17: end for
18: Up ←

(∑
b∈Lp

QTb

)
/
(
CFp +

∑
b∈Lp

CVpTb

)
19: if Up > Û then
20: Û ← Up, p̂← p
21: end if
22: end if
23: end for
24: if p̂ 6= ∅ then
25: jp̂ ← jp̂ + 1
26: for all b ∈ Lp̂ do
27: xbvjp̂ ← 1
28: end for
29: S ← S \ Lp̂

30: end if
31: until S = ∅ ∨ p̂ = ∅

In the second phase, VM distribution, we first initialize an
instance count jp ∈ N for each PM type p ∈ P (lines 1-3).
Subsequently, the following packing process is conducted:
We scan the list of PM types to determine a favorite p̂ ∈ P .
For this purpose, we initially create a packing list Lp ⊆ S for
each type p, unless the maximum number of instances np of
this type has already been reached. A packing list constitutes
a set of bids that could be hosted by a new instance of the
regarded PM type. For that matter, we scan the list of served
bids S. For each bid b, we check whether it could – in
addition to the current packing list Lp – be hosted by a new
instance of type p, based on the given resource constraints.
If the bid b meets this condition, it is added to the packing
list. If not, the associated VM type Tb is added to an ignore
list Ip ⊆ V , and bids of the identical type are ignored during
the remainder of the packing list creation (lines 8-17). In
the following, we compute the utility Up of the current PM
type p. Utility is defined as the ratio between the revenue



from the packing list Lp and the resulting fixed and variable
operating costs of a new PM instance. If a PM type exhibits
higher utility than the current favorite p̂, it is stored as new
favorite (lines 18-21). After all PM types have been scanned
and a favorite has been identified, all bids in the packing
list Lp̂ are assigned to a new instance of type p̂ with the
previously incremented index jp̂. The bids are also removed
from the set S (lines 26-29). The packing process is repeated
until all served bids have been assigned or no suitable (i. e.,
favorite) PM instance remains for assignment.

In terms of computational complexity, the heuristic has
substantial advantages over the optimal approach: As it can
be observed from Listing 1, the computational complexity
of the first phase grows linearly with the number of PM
types and VM types. The latter is commonly substantially
smaller than the number of bids and thus negligible. For the
second phase, according to Listing 2, the maximum number
of iterations corresponds to the number of bids. In each
iteration, the computational complexity relates linearly to the
number of bids and PM types again. Thus, the computational
complexity of the heuristic allocation approach is polynomial
and corresponds to O(|B|2 ∗ |P |).

III. EVALUATION

Both optimization approaches from the previous section
have been implemented in a prototypical Java program. In
order to solve the optimization model for the first allocation
approach, we map it into a programmatic representation using
the JavaILP framework3. As actual solvers, the commercial
IBM CPLEX Optimizer4 and the free lpsolve5 frameworks
may be employed, with the first constituting the default
choice in our evaluation.

A. Approach and Methodology

The aim of our evaluation lies in a quantitative assessment
of the two optimization approaches. Thus, the evaluation
complements the brief and solely qualitative analyses of
computational complexity from Subsections II-B and II-C.
Our focus lies on two metrics that are of practical relevance in
the context of auction-based VM allocation: First, the metric
computation time demonstrates the overall scalability of the
approaches. It also expresses the delay that is introduced
into the allocation process through the application of the
optimization approaches. Second, the metric profit represents
the absolute solution quality of the approaches. It thus
expresses the utility of an optimized allocation to the cloud
provider in monetary terms.

For the evaluation, we have created 18 distinct classes
of EPAAPs. Each class contains 100 individual problems.
Across the different classes, we vary the problem dimension
with respect to the regarded number of bids and PM types.

3http://javailp.sourceforge.net/
4http://www.ibm.com/software/integration/optimization/cplex-optimizer/
5http://sourceforge.net/projects/lpsolve/

The number of VM types and resource types are fixed across
all classes. Each problem is randomly generated based on
realistic data, which has been obtained as described in the
following.

For the data of the VM types in the evaluation, we use
the specifications provided by Amazon Web Services for
its Elastic Computing Cloud (EC2) and Spot Instances
offers6. Excluding special-purpose and non-deterministic
types (namely, Cluster and Micro), we infer eight different
VM types. Each of these types exhibits specific resource
demands with respect to three resource types, namely
processor (CPU), memory (RAM), and storage (HDD).

Unfortunately, to the best of our knowledge, Amazon Web
Services has not published detailed information about the
PMs in its data centers to date. However, empirical results
by an industry researcher indicate that the most resource
intensive VM types are run on dedicated PMs [10]. Based on
this notion, the specifications of the High-Memory Quadruple
Extra Large VM type, which exhibits the highest demands for
each resource type, is assumed as baseline for the definition of
five different PM types. Based on calculations by Walker [2],
the fixed operating costs of these PM types are conservatively
estimated to range from $0.20 to $0.40 per hour. The specific
figure for each PM type is correlated with its resource supply.

The bid prices that the cloud users submit to the cloud
provider were modeled using specific distribution functions
Fv for each VM type v. For the choice of these distribution
functions, we reason as follows: The lowest observed
bid price, αv, will most likely correspond to the lowest
permissible bid price, i. e., αv = 0.01. Given that the users
act rational, the highest observed bid price, γv, will not
exceed the price Ov ∈ R of a so-called On-Demand VM
instance, which imposes a static usage fee, but essentially
offers guaranteed availability in return. Thus, we assume
γv = Ov − 0.01. Lastly, according to empirical findings by
Wee [5] and statements by Amazon Web Services [11], the
average savings from Amazon Spot Instances – compared
to On-Demand instances – amount to 52.3% and between
50% and 66% respectively. Thus, we assume that the most
frequently observed bid price, βv, corresponds to 50% of
the On-Demand price, i. e., βv = 0.5 ∗Ov. The underlying
notion is that the cloud users would like to maximize their
savings from the auction mechanism, but also maintain a
reasonable chance of actually being allocated VM instances.
Based on the previous reasoning, we believe that the use of a
triangle distribution, i. e., Fv ∼ Tr(αv, βv, γv), best reflects
a realistic bidding behavior.

Based on past research by Greenberg et al. [12] and
Barroso and Hölzle [13], we estimate that the additional
variable operating cost of a fully utilized server amounts to
about 25% of its fixed operating cost. As a first approximation,
we further assume that the cost of hosting a certain VM type

6http://aws.amazon.com/en/ec2/#instance

http://javailp.sourceforge.net/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://sourceforge.net/projects/lpsolve/
http://aws.amazon.com/en/ec2/#instance


linearly relates to the resource utilization on the underlying
PM. Accordingly, the variable operating costs of each VM
type on every PM type are determined using Equation 13.

CVpv = 0.25∗CFp∗
1

|R|
∗
∑
r∈R

RDvr

RSpr
∀p ∈ P, v ∈ V (13)

B. Results and Discussion

Following the problem generation, each EPAAP was solved
using both optimization approaches, optimal and heuristic.
In the process, the respective computation time and resulting
profit for the cloud provider were recorded. In order to
complete the evaluation within an acceptable amount of time,
a timeout period of 5 minutes (i. e., 300 seconds) was imposed
per problem and approach. The evaluation was conducted
on a desktop computer with an Intel Core 2 Quad Q9450
processor and 4 GB of memory, operating under Microsoft
Windows 7.

Table I provides an overview of the evaluated EPAAP
classes. As it has been previously outlined, the number of
bids (dB) and PM types (dP ) was varied for each problem
class, whereas the number of VM types and resource types
was fixed (dV = 8, dR = 3). The table also indicates the
percentage of problems that could be solved within the
specified timeout period by each optimization approach. Only
those problems that could be solved by both approaches
served as sample for the evaluation results provided hereafter.
Please note that problem classes E and F constitute an
exception, because they were exclusively solved using the
heuristic approach in order to show its applicability to large-
scale problems.

To begin with, Figure 2 depicts the absolute average
computation times per problem across all considered problem
classes. In accordance with the qualitative discussion, the
computation times for the optimal approach grow roughly
exponentially with the number of bids. The effect of an
increasing number of PM types is less accentuated, but
still well observable. For the problem classes involving 20
bids (B1−4), the absolute computation time of the optimal
approach reaches the magnitude order of one second. For
problem classes that involve 30 bids or more (C1−4 and
D1−4), the computation time reaches and even exceeds the
magnitude order of ten seconds. Accordingly, a substantial
share of problems cannot be solved at all within the specified
timeout period (cf. Table I). In contrast, for the heuristic
approach, the average computation time does not exceed
the magnitude order of one millisecond up to problem class
D. For problem classes E and F , the average computation
time lies in the magnitude order of ten milliseconds and one
second respectively. In general, the increase with growing
problem size is rather moderate and roughly corresponds to
the square of the number of bids. In accordance, the timeout
is not of practical relevance to the heuristic approach.

Table I
OVERVIEW OF EVALUATED EPAAP CLASSES AND SHARE OF SOLVED

PROBLEMS PER CLASS.

Problem class Solved problems (%)
ID dP dB Opt. Heur. Both

A1 1 10 100 100 100
A2 1 20 100 100 100
A3 1 30 100 100 100
A4 1 40 100 100 100

B1 2 10 100 100 100
B2 2 20 100 100 100
B3 2 30 100 100 100
B4 2 40 100 100 100

C1 3 10 95 100 95
C2 3 20 97 100 97
C3 3 30 85 100 85
C4 3 40 80 100 80

D1 4 10 84 100 84
D2 4 20 72 100 72
D3 4 30 54 100 54
D4 4 40 46 100 46

E 4 1000 – 100 –

F 4 10000 – 100 –

The performance difference between the two approaches
is further highlighted by Figure 3, which depicts the ratio of
computation time between the heuristic and optimal approach.
For the smallest problem classes involving 10 bids (A1−4),
the ratio amounts to approximately 0.2% or less. This is
equivalent to a reduction of more than 99.8% in computation
time. For the larger problem classes involving additional bids,
the ratio converges toward 0, indicating reductions of more
than 99.9% by the heuristic approach.

The results for the second metric, profit, are given in
Figure 4. As can be seen, the heuristic approach achieves
favorable and consistent results, ranging between about 95.2%
and 97.6% compared to the optimal solution. On average
across all classes, the figure corresponds to approximately
96.7%. That means, due to the application of the heuristic
allocation approach, the cloud provider would incur an
average reduction in profit of 3.3% compared to the optimal
solution.

In summary, the results indicate that the computation of
an optimal solution to the EPAAP is difficult to achieve
under practical conditions. A cloud provider will usually
receive thousands of bids that have to be regarded in the
allocation process. At the same time, the cloud provider
underlies stringent time constraints, given that the timespan
between accepting the last bids in an auction period and the
announcement of the resulting equilibrium prices and VM
allocations should be minimal. For such application scenarios,
our proposed heuristic approach presents a viable option. It
achieves substantial reductions in computation time, but also
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Figure 2. Mean absolute computation times per problem for both
optimization approaches.
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Figure 3. Ratios of computation times between both optimization
approaches (based on micro-average).

90

92

94

96

98

100

A
1
:1

;1
0

A
2
:2

;1
0

A
3
:3

;1
0

A
4
:4

;1
0

B
1
:1

;2
0

B
2
:2

;2
0

B
3
:3

;2
0

B
4
:4

;2
0

C
1
:1

;3
0

C
2
:2

;3
0

C
3
:3

;3
0

C
4
:4

;3
0

D
1
:1

;4
0

D
2
:2

;4
0

D
3
:3

;4
0

D
4
:4

;4
0

-A
ll

-

R
at

io
of

pr
ofi

t[
%

]

EPAAP class (ID:dP ;dB)

Heuristic / Optimal approach

Figure 4. Ratios of profits between both optimization approaches (based
on micro-average).

retains a favorable solution quality in terms of profit for the
cloud provider.

IV. RELATED WORK

To the best of our knowledge, we are the first to scien-
tifically examine the Equilibrium Price Auction Allocation
Problem, i. e., the challenge of concurrently pricing and
distributing VM instances based on an auction scheme.
However, in the broader context of cloud computing, a
substantial amount of work has been conducted with respect
to related topics. In the following, we focus on a set of
papers that we consider representative for each topic area.

Breitgand et al. [14], for instance, have proposed an
optimization model and corresponding heuristic for the
distribution of VM instances on physical hosts through
a cloud provider. The authors take into account various
constraints, including resource demands and supplies, and
also permit the definition of different objectives, including
profit maximization. However, their research does not address
the aspect of pricing the VMs in an auction-based setting.

Korupolu et al. [15] have proposed an optimization scheme
for the placement of applications, which comprise compute
and storage components, in data centers. In accordance with
our work, their heuristic approach is inspired by the Knapsack
problem. However, the work of Korupolu et al. does not
involve an auction-based pricing mechanism.

Zaman and Grosu [3] have examined the allocation of
VM instances to physical machines based on combinatorial
auctions, where cloud users bid for arbitrary bundles of VM
instances. The authors propose multiple heuristic allocation
strategies, which are evaluated with respect to different
objectives, including maximization of revenues. In contrast
to our work, the prices of identical VM types may be
discriminated between different users, which is not the case
in equilibrium price auctions. Furthermore, the authors do
not explicitly regard the distribution among physical hosts
under resource constraints.

Zaman and Grosu [16] have additionally addressed the
issue of auction-based VM allocation in a more recent paper.
However, the focus of this work lies on bidding strategies
for the cloud user, rather than optimization approaches for
the cloud provider.

Lin et al. [17], in accordance with our work, have
proposed an allocation mechanism for second-price (i. e.,
equilibrium price) auctions. However, the authors solely focus
on the optimal pricing of resources, but do not consider the
concurrent distribution of VM instances across physical hosts.

Özer and Özturan [18] have proposed an optimal approach,
as well as different heuristics for the allocation of grid and
cloud resources. In contrast to our work, the authors assume
combinatorial auctions, where users submit bids for bundles
of resources, which results in a different pricing approach. In
addition, Özer and Özturan do not consider the distribution
to physical hosts as part of the allocation process.



In our own previous research [9], we have examined
the Software Service Distribution Problem. This challenge
concerns the cost-minimal distribution of Software as a
Service instances across leased VM instances under resource
constraints. We have presented an optimal, as well as heuristic
solution approach. However, these approaches only address
the distribution process. They do not cover the concurrent
pricing of entities, which constitutes a major challenge in
the EPAAP.

V. SUMMARY AND OUTLOOK

In the work at hand, we have introduced the Equilibrium
Price Auction Allocation Problem (EPAAP), a challenge
in the context of cloud computing. This problem concerns
cloud providers and involves the concurrent pricing and
distribution of virtual machines across physical machines
based on equilibrium price auctions.

As first major contribution, we have introduced a mathe-
matical formulation of the EPAAP as binary integer program.
This model serves as the basis of an optimal allocation ap-
proach, which permits the computation of profit-maximizing
solutions to the EPAAP. As second major contribution, given
the computational complexity of the optimal approach, we
have developed a heuristic approach. This heuristic trades
substantial reductions in computation time against small
reductions in overall profit.

Through an evaluation based on realistic data from the
cloud computing domain, we have demonstrated the practical
applicability of our approaches. Specifically, we have shown
that the heuristic is able to achieve reductions in computation
time of more than 99.9% compared to an optimal approach.
At the same time, it achieves profits that correspond to about
96.7% of the optimal solution on average. Thus, our work
is not only of scientific interest, but can also provide a
foundation for the practical application of equilibrium price
auctions in the cloud computing domain.

In our future work, we will aim at the further improvement
of the heuristic approach with respect to the solution quality.
In addition, we plan to extend the proposed approaches
such that the specific requirements of an optimization
across multiple subsequent auction periods, such as the live
migration of virtual machines, are supported.
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ERRATA

Please note that the following errata were identified in the
originally published version of this paper:
• In Figure 1, the price of bid 1 should correspond to
W1 ≥ 0.25, given the assumption that all bids are
ordered by descending prices.

• In Model 1, Equation 1, the term “CFpj” should read
“CFp”.

• In Algorithm 2, Line 27, the variable “xbvjp̂” should
read “xbpjp̂”.

• In Table I, the values for columns dP and dB have been
incorrectly stated. For problem classes A, B, C, and
D, the number of bids dB corresponds to 10, 20, 30,
and 40 respectively, whereas the subscript denotes the
actual number of PM types dP . The labels in Figures 2
through 4 are correct.

• In Section IV, concerning the discussion of the work
by Zaman and Grosu [3], the expression “to physical
machines” should be dropped from the first sentence.
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