
Adaptive Matchmaking for RESTful Services based on
hRESTS and MicroWSMO

Ulrich Lampe
ulrich.lampe@kom.tu-

darmstadt.de

Stefan Schulte
stefan.schulte@kom.tu-

darmstadt.de

Melanie Siebenhaar
melanie.siebenhaar@kom.tu-

darmstadt.de

Dieter Schuller
dieter.schuller@kom.tu-

darmstadt.de

Ralf Steinmetz
ralf.steinmetz@kom.tu-

darmstadt.de
Multimedia Communications Lab (KOM)

Technische Universität Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Germany

ABSTRACT
Matchmaking – i.e., the task of finding functionally
suitable service offers based on a service request – has only
been addressed in the context of WS-* Web services.
However, RESTful services are gaining increasing
attraction and have been adopted by major companies,
thus increasing the need for suitable matchmaking
solutions. This paper introduces XAM4SWS, an adaptive
matchmaker for semantic Web services that supports
multiple service description formats, including hRESTS
and MicroWSMO for RESTful services. XAM4SWS
adapts existing methodologies from WS-* matchmaking
and extends them through the inclusion of REST-specific
service features. A prototypical implementation of the
matchmaker is evaluated with respect to multiple
information retrieval metrics using an adapted semantic
Web service test collection.

1. INTRODUCTION
In the past few years, the paradigm of Service-oriented

Architecture (SOA) has received significant attention from
both practitioners and researchers. At the core of SOA are
services that represent certain (business) functionalities and
are exhibited through a well-defined interface. Key char-
acteristics of services include interoperability, composabil-
ity, and loose coupling. That is, fine-granular services can
be combined into more powerful, coarse-granular composite
services, and individual services in such composition can be
substituted through functionally equivalent counterparts [1].
In the envisioned Internet of Services (IoS), service con-
sumers will be able to purchase services from providers by
the means of public marketplaces in order to realize cer-
tain IT functionality. Such a scenario requires effective and

.

efficient matchmaking, i.e., the ability to identify suitable
service offers based on functional requirements, as defined
in a service request.

Today, Web services have become the de facto implemen-
tation of the SOA paradigm. Web services are based on
a stack of so-called WS-* standards, most importantly the
SOAP communication protocol and the Web Services De-
scription Language (WSDL). Matchmaking for WS-* Web
services has been a prominent field of research recently [2–6].
It is mostly based on the notion of semantic Web services
(SWS), i.e., syntactic service descriptions that have been
augmented with machine-processable semantic information
[7, 8]. Meanwhile, in many application scenarios, Web ser-
vices are perceived as too complex and heavyweight. As a
result, so-called RESTful Web services have gained increas-
ing interest. RESTful Web services constitute a lightweight
alternative to SOAP-based Web services. They are based
on standard Web technologies, such as Hypertext Transfer
Protocol (HTTP), Uniform Resource Identifier (URI), and
Extensible Markup Language (XML) [9]. RESTful services
have been adopted by major companies, such as Google,
Facebook, or Flickr. However, the problem of matchmaking
has not been addressed for RESTful services so far, notably
due to a lack of common description standards.

In the work at hand, we present XAM4SWS (“Cross-
Architectural Matchmaker for Semantic Web Services”), an
adaptive matchmaker that supports semantic matchmaking
for both SOAP-based and RESTful Web services. It extends
LOG4SWS.KOM, a matchmaking approach we presented
in [6], to support the HTML for RESTful Services (hRESTS)
description format in conjunction with MicroWSMO seman-
tic annotations [10, 11]. XAM4SWS uses a generic founda-
tion which is complemented by specific components for each
supported service description format.

The remainder of this paper is structured as follows: In
Section 2, we briefly introduce description formats for Web
services. A focus lies on the hRESTS and MicroWSMO
formats for RESTful services. This provides the background
for Section 3 which discusses related work. In Section 4,
the matchmaking algorithm in XAM4SWS is introduced in
detail. In Section 5, we present the evaluation results for
XAM4SWS. Section 6 concludes the paper and provides a
brief outlook on future research.
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2. (SEMANTIC) SERVICE DESCRIPTION
The issue of (machine-readable) description of SOAP-based

services has been a field of research for almost a decade
now. The most popular result is WSDL, a World Wide
Web Consortium (W3C) specification; its latest version is
WSDL 2.0 [12]. WSDL allows to syntactically describe a
Web service. Both standards have been augmented by the
Semantic Annotations for WSDL and XML Schema (SA-
WSDL) recommendation [13]. SAWSDL constitutes a light-
weight framework to add semantic annotations to syntactical
WSDL files. Matchmaking for SOAP-based Web services is
often based on SAWSDL documents [2].

With respect to RESTful services, there exists no com-
monly accepted description standard yet [9]. RESTful Web
services are often described using non-normative, human-
readable documents, e.g., in the form of Web pages [11]1.
Fairly recently, however, two machine-readable service de-
scription formats have been proposed. Web Applications
Description Language (WADL) constitutes a full-fledged ap-
proach that adapts some of the ideas of WSDL, most notably
the utilization of XML Schema (XSD) for the description of
input and output messages [14]. However, WADL only pro-
vides syntactic service descriptions and does not define any
semantic annotation mechanism to date (an exception is the
ability to leverage SAWSDL for the annotation of XSD def-
initions within a WADL document).

In contrast to WADL, hRESTS provides a lightweight
mechanism to augment existing service descriptions. Service
descriptions in hRESTS are based on textual descriptions
of RESTful Web services in the form of Hypertext Markup
Language (HTML) Web pages. hRESTS assumes a minimal
service model, which essentially defines a service as a set of
operations that in turn relate to a distinct set of input and
output parameters [10]. For each of these service compo-
nents and their related attributes, hRESTS defines classes.
These classes can be used within an (existing) HTML page,
thus marking certain elements in that page as specific ser-
vice component types. Thus, hRESTS provides a machine-
readable service description within a human-readable docu-
ment. Due to the fact that a multitude of plain HTML ser-
vice descriptions already exists on the Web, we believe that
hRESTS currently constitutes a more practical approach
than WADL. Thus, the matchmaking approach presented
in this paper focuses on hRESTS.

As such, hRESTS documents only carry syntactic infor-
mation. In order to include semantic information, the use of
the MicroWSMO microformat has been proposed [10,11]. In
accordance with the SAWSDL specification, MicroWSMO
introduces three types of semantic annotations. Most im-
portantly, the model construct adds a link to one or more
arbitrary semantic concepts, which semantically describe a
service component. The lifting and lowering constructs de-
fine how to transform data. For an overview of the hRESTS
component model, we refer to Kopeckỳ et al. [10].

In order to facilitate the automated processing of seman-
tic information, we assume that all referenced concepts are
represented in the Web Ontology Language (OWL); more
specifically, OWL’s description logic (DL) variant. This is a
common assumption in the context of matchmaking.

1E.g., Flickr’s App Garden http://www.flickr.com/
services/api/

3. RELATED WORK
Matchmaking for semantic Web services (SWS) has been

a dynamic field of research in recent years, resulting in the
creation of numerous approaches for different Web service
description standards. The wide range of participants in the
annual International Semantic Service Selection (S3) Con-
test resemble this variety [2]. However, to the best of our
knowledge, no specific matchmaking approach for hRESTS
has been proposed so far. XAM4SWS builds on a match-
making approach we presented previously, LOG4SWS.KOM,
which operates on service descriptions in the SAWSDL for-
mat.

LOG4SWS.KOM [6] is based on “traditional” subsump-
tion matching, as introduced by Paolucci et al. [8]. How-
ever, it maps the discrete Degrees of Match (DoM) into nu-
merical equivalents using an Ordinary Least Squares (OLS)
estimator to allow for a combination with additional numer-
ical similarity measures. As proof-of-concept, the inverse
path length between two classes in an ontology is utilized.
The approach is complemented by a WordNet-based fallback
strategy.

The general applicability of adaptation mechanisms to
SWS discovery has been demonstrated by Kiefer and Bern-
stein [15]. Their approach, iSPARQL, implements a query
mechanism for OWL-S based service descriptions based on
the SPARQL Query Language for RDF (SPARQL). Kiefer
and Bernstein apply both string-based and vector-based stra-
tegies for the determination of similarities. The optimal ag-
gregation of these similarity measures over a whole service
is consecutively determined using various machine learning
techniques.

Different SWS description formats have been addressed
by the “MX” family of matchmakers by Klusch et al. [3, 4].
OWLS-MX is a hybrid matchmaker for OWL-S based ser-
vice descriptions. It combines logic-based matching with ad-
ditional similarity metrics from the field of text information
retrieval (IR). SAWSDL-MX, which operates on SAWSDL
descriptions, follows a comparable approach to OWLS-MX.
In its latest version, SAWSDL-MX additionally features a
component for structural analysis of WSDL documents and
applies machine learning techniques for an optimal aggrega-
tion of the applied similarity measures.

Battle and Benson [16] introduce the Semantic Bridge for
Web Services (SWBS). It provides means to access services
and their underlying data in a unified manner using an ex-
tended version of SPARQL. For that matter, SWBS wraps
existing Web services based on their WSDL or WADL de-
scription files. SWBS automatically distributes single queries
across multiple endpoints and thus offers rudimentary ser-
vice discovery and composition features. However, its match-
making capabilities are limited to semantic information.

In summary, XAM4SWS adapts many ideas from our pre-
viously presented matchmaker LOG4SWS.KOM. Most no-
tably, this concerns the mapping of discrete DoMs into nu-
merical equivalents using OLS. In contrast to other match-
making approaches, XAM4SWS uses syntactical informa-
tion only as a substitute, not as a complement to semantic
information. Our matchmaker further leverages the spe-
cial features of hRESTS service descriptions, e.g., the ex-
plicit definition of operation types. By supporting multi-
ple service description formats, including (SA)WSDL and
hRESTS, XAM4SWS permits the discovery of services across
architectural boundaries.



4. MATCHMAKING ALGORITHM

4.1 Operations-focused Matching
The matchmaker we previously presented for SAWSDL,

LOG4SWS.KOM, applies the notion of operations-focused
matching [6]. This approach is based on the observation
that operations provide the essential functionality a service
requester is looking for. Thus, similarity values from all
levels of abstractions in a service are aggregated at the op-
eration level. Subsequently, pairs of operations are matched,
regardless of how these operations are organized into inter-
faces. In XAM4SWS, the same notion is applied. In fact, the
approach is even more intuitive, because hRESTS does not
provide an equivalent to SAWSDL’s interface component.
As a substitute, we utilize the information available from the
topmost level of abstraction in hRESTS documents, namely
the service level.

An overview of the matchmaking process is provided in
Figure 1. For each pair of operations in service request and
offer, XAM4SWS determines the similarity for the respective
input (simin), output (simout), native operation (simop),
and service (simser) levels. These individual similarities are
combined using the weights win, wout, wop, and wser, result-
ing in an aggregated similarity value simagg for each pair of
operations. Formally expressed, with both a and b denoting
an operation, the following holds:

wser + wop + win + wout = 1 (1)

simagg(a, b) = simser(a, b) ∗ wser
+ simop(a, b) ∗ wop
+ simin(a, b) ∗ win
+ simout(a, b) ∗ wout

(2)

Based on these aggregated similarities, the overall service
similarity simov is given by computing an optimal match-
ing of operations. Formally, let A and B be the sets of
operations in the service request R and service offer O re-

spectively. Let xab be a binary variable, indicating whether
a ∈ A has been matched with b ∈ B. The overall service
similarity is computed as follows:

simov(R,O) =
1

|A| ∗
∑

a∈A,b∈B

xab ∗ simagg(a, b) (3)

The matching process for sets of components (i.e., op-
erations, inputs, and outputs) is conducted using bipartite
graphs, as initially suggested by Guo et al. [17] and further
elaborated by Bellur et al. [18]. The sets of components
from service request and offer each constitute a partition
of nodes in the graph. Each node in the first partition is
connected to each node in the second partition through a
weighted edge. The edge weight corresponds to the simi-
larity between the two components. Using the well-known
Kuhn-Munkres algorithm [19], optimal 1-to-1 assignments
of nodes are determined. Because cardinalities may differ
between the two partitions, we apply an adapted version
of the algorithm by Nedas that may potentially leave some
operations unmatched [20].

Following the matching process, the edge weights of all
matched edges are summed up and divided by the cardi-
nality of the original component sets. If these cardinalities
differ, the following strategy is employed: In general, the
cardinality of the service request’s component set is deci-
sive. In the case of inputs, however, the cardinality of the
service offer’s component set is decisive. Thus, if an offer
lacks requested operations or outputs, its overall similarity
diminishes. The same is true if an offer requires more inputs
than the request provides. This procedure does not exclude
any service offers because of a mismatch in the number of op-
eration or parameters a priori. Instead, these offers are im-
plicitly punished by a reduction in similarity. As tie-breaker
for sorting service offers with identical overall similarity, we
use the alphabetical order of their associated hRESTS de-
scription URIs.

4.2 Assignment of Similarities

Service OfferService Request

simin(a,b)

Operation a

Service R

Operation b

Service O

simop(a,b)

simserv(a,b)

Aggregation
1:n 1:n

win

Input Parameters

Output Parameters

Input Parameters

Output Parameterssimout(a,b)

1:n

wout

wop

wserv

Aggregation

Aggregation

Aggregation

simagg(a,b)

1:n 1:n1:n

Figure 1: Matchmaking Process



The shortcomings of “traditional” subsumption reasoning
in the context of matchmaking have been extensively dis-
cussed in our previous work on LOG4SWS.KOM [6]. In the
same work, we presented and successfully evaluated a novel
approach which maps discrete DoMs onto numerical equiv-
alents. The same procedure is applied in the work at hand.
We will thus limit our discussion to the most fundamental
aspects and refer the interested reader to our previous work
for additional details.

Essentially, subsumption matching based on discrete DoMs,
as suggested by Paolucci et al. [8], and applied in similar
form in related work [3, 4], has three significant disadvan-
tages. First, traditional DoMs are discrete in nature and
thus only permit a coarse-grained ranking of services. Sec-
ond, discrete DoMs are non-numerical, which complicates
the combination with complimentary continuous numerical
measures. Third, the ranking of DoMs is based on certain
assumptions that do not necessarily hold true in every ap-
plication domain.

Our approach specifies four generic types of matches bet-
ween semantic concepts. These DoMs can be applied to any
service abstraction level and type of parameter. Given two
arbitrary semantic concepts, A (from the service request)
and B (from the service offer), the DoM is defined as

DoM(A,B) =


exact ifA ≡ B
super ifA v B
sub ifA w B
fail else

(4)

We map these four discrete DoMs onto a continuous nu-
merical scale, ranging from 0 (no similarity at all) to 1
(perfect similarity). This approach allows the combination
with other numerical measures and a much more fine-grained
ranking of services. On each individual matching level L ∈
{iface, op, in, out}, each DoM D ∈ {exact, super, sub, fail}
is assigned a numerical equivalent, dL.D, in the range [0; 1].
Formally,

dL.D ∈ [0; 1] ∀ L ∈ {iface, op, in, out},
D ∈ {exact, super, sub, fail}

(5)

To allow for a more fine-grained similarity assessment, in
the case of a super or sub match, the DoM’s numerical equiv-
alent is merged with the path length between two concepts.
One intuitive approach to conduct such merging is simply
dividing the numerical equivalent by the path length, based
on the assumption that the similarity between two concepts
(linearly) shrinks with their distance in an ontology.

Formally, let PL(A,B) denote the shortest path between
the two concepts A and B in an ontology. Furthermore, let
L be the level on which the matching of components that
point to these concepts is conducted. Then, the similarity
cs(A,B) between A and B (and thus, the two underlying
components) is given by:

cs(A,B) =


dL.exact ifA ≡ B

dL.super/PL(A,B) ifA v B
dL.sub/PL(A,B) ifA w B

dL.fail else

(6)

The task of defining numerical equivalents for DoMs is am-
bigious and would require significant manual tuning effort.

To address this problem, we apply an OLS estimator for the
determination of optimal numerical DoM equivalents.

The process is based on the notion that a dependent vari-
able ya.bL – corresponding to the similarity of two operations,
a and b, on a certain matching level, L, – can be derived
through the linear combination of a set of independent vari-
ables xa.bL.D, corresponding to the frequency of a certain DoM
D when matching a and b on that level. That is, we assume
that the weighted linear combination of the different DoM’s
frequencies predicts the similarity of two operations.

The OLS estimation is independently conducted for each
matching level. That is, the numerical weights differ for
inputs, outputs, operations, and services. As training data,
a set of services is required along with a predefined similarity
(or relevance) rating. A subset of a test collection, such as
employed in the evaluation of XAM4SWS (cp. Section 5.1),
fulfills this requirement.

In the training phase, XAM4SWS computes similarities
between all pairs of operations in all service requests and
offers. For each pair and each abstraction level, it stores the
types of subsumption matches in the assigned components
along with the path length. XAM4SWS then determines the
predefined similarity between the two operations (or, if the
similarity is unavailable at the operations level, of the parent
services). The predefined similarity rating constitutes the
vectors of predictors (yser, yop, yin, and yout) for the OLS
process. Each entry corresponds to a pair of operations.

The design matrices (Xser, Xop, Xin, and Xout) are de-
rived in the following manner: Each pair of operations yields
one row with four entries, where each entry corresponds to
the frequency of a certain type of DoM with respect to all
matched components on a certain level. In detail, the fre-
quency count is incremented by 1 for an exact and fail match
between two components. For super and sub matches, it is
incremented by 1 divided by the path length. The row is
finally divided by the total number of matched components
on the current level.

Given a design matrix and vector of predictors, the stan-
dard OLS estimator can be applied in the following manner
on each matching level L:

β̂L = (X ′LXL)−1X ′LyL (7)

β̂L corresponds to the optimal estimate of numerical weights.
To derive the actually utilized vectors of weights, dL, all en-
tries are mapped to the range [0; 1]. For that matter, the
minimum value in the vector is added to all entries. Then,
all entries are divided by the new maximum value. This en-
sures that all similarity values will also be in the specified
range, i.e., [0; 1].

4.3 Consideration of REST-specific Features
In contrast to WSDL, OWL-S, or WADL, the hRESTS

format provides a rather rudimentary service description.
This makes it difficult to identify specific features which can
be exploited in the context of matchmaking.

However, in hRESTS, each invocation of an operation is
associated with a command in the underlying HTTP trans-
fer, the so-called HTTP verb. These HTTP verbs are POST,
GET, PUT, and DELETE. With respect to RESTful ser-
vices, the verbs can be mapped to the four elementary op-
erations of data storage or retrieval systems, namely Cre-
ate, Read, Update, and Delete (the so-called CRUD opera-
tions) [16]. Thus, in theory, operations that exhibit a differ-



ent HTTP verb for invocation can be deemed incompatible,
resulting in a similarity value of 0. Unfortunately, the map-
ping between HTTP verbs and CRUD operations is non-
normative, and its strict application can or will not always
be enforced by providers of RESTful services. A common
exception in practice is, e.g., the exchangeable use of POST
and GET. Additionally, the coherent use of HTTP verbs is
complicated by technical restrictions, e.g., the limited size of
GET requests or the filtering of DELETE requests through
firewalls. To account for these deficits, we allow for the ex-
plicit specification of verb similarities between each pair of
the four aforementioned verbs. Verb similarities are numer-
ical values ranging from 0 to 1. This allows for the specifi-
cation of (relative) compatability between operations types.
The verb similarities are regarded in the determination of
operation similarities. That is, the initially determined sim-
ilarity value is multiplied with the verb similarity. An ex-
ample configuration of verb similarity values is depcited in
Table 1.

Another potential source of information in an hRESTS
document are the resources (also referred to as HTTP nouns).
These resources are specified using Uniform Resource Identi-
fiers (URI), e.g., http://quotes.provider.ex/stock/XYZ.
Such resource URI may potentially prove useful in the match-
making process. We refrain from the utilization of resources
in XAM4SWS, however, because we assume that the un-
derlying semantics of any resource should be specified using
the model attribute of the corresponding parameters. This is
based on the notion that semantic information (as specified
in a model attribute) provides more certainty than purely
syntactical information (such as a resource URI).

Finally, we would like to discuss two possible lightweight
extensions to the hRESTS format that may be valuable in
the matchmaking process. As Pautasso et al. state, REST-
ful services encode their payload in various formats, e.g.,
Plain XML, Java Script Object Notation (JSON), or Mul-
tipurpose Internet Mail Extensions (MIME). The explicit
specification of the payload format would introduce the po-
tential to filter service offers for a specifically desired format.
MIME is of additional elevated interest, because it specifies
an Internet Media Type (also referred to as content type).
This content-related information would also allow to filter
service offers, given that a specific type of content – such
as an image or a Portable Document Format (PDF) docu-
ment – is requested. Accordingly, we suggest to augment
hRESTS descriptions with a payload format and content
type attribute for each operation.

4.4 Fallback Strategy and Caching
One potential problem in matchmaking is the lack of se-

mantic annotations or the inability to process them. To
address this issue, XAM4SWS implements a basic fallback

Table 1: Examplary Verb Similarity Values

Request Verb
POST GET PUT DELETE

O
ff

er
V

er
b POST 1 0.8 0.5 0

GET 0.8 1 0.2 0
PUT 0.5 0.2 1 0

DELETE 0 0 0 1

strategy. It determines the similarity between two com-
ponents based on their associated concept (or component)
names using the WordNet ontology of the English language
[21]. For that purpose, names are split into tokens using
common separators, such as dash, underscore, and camel-
Case. Tokens that do not correspond to words in WordNet
are recursively scanned for meaningful strings, again with
the substrings being validated against WordNet. The re-
sulting sets of words from the service request and offer com-
ponent constitute partitions of a bipartite graph. The edge
weights are assigned using the inverse distance of a pair of
words in WordNet. The overall similarity of two names, and
thus components, is then given by the average edge weight
obtained in bipartite graph matching and lies in the range
0 to 1.

In the implementation, XAM4SWS employs different mech-
anisms for caching in order to improve the run-time perfor-
mance. In detail, we use caches for the path length between
semantic concepts, aforementioned splitting of names, and
WordNet distances between pairs of words. This is moti-
vated by the fact that all three processes consume a con-
siderable amount of performance. The caches can be per-
manently stored for future reference and may not only be
populated at query time, but also at registration time. For
that matter, every new service offer is optionally matched
against all registered services, thus increasing the number of
entries and potential matches in the caches.

5. EVALUATION

5.1 Setup
To date, to the best of our knowledge, there exists no

standard test collection for hRESTS. For the evaluation of
XAM4SWS, we have selected SAWSDL-TC 2 as a basis. It
constitutes the de facto standard that is employed both in
related work [4,5], as well as in the annual S3 contest of se-
mantic matchmakers [2]. SAWSDL-TC consists of 894 ser-
vice offers that cover various domains. It provides 26 service
queries and corresponding (binary) relevance sets, encoded
as WSDL 1.1 documents. As an important restriction, all
services provide only one interface with one operation. Fur-
thermore, semantic annotations are solely included at the
parameter level, i.e., in the XSD section of the WSDL files.
In line with our assumption in Section 2, all referenced se-
mantic concepts are contained in OWL DL ontologies.

We have mapped all services from SAWSDL-TC to their
respective hRESTS counterparts using a self-developed XSLT
stylesheet. The stylesheet and the resulting test collection,
hRESTS-TC, are available via SemWebCentral3. All afore-
mentioned restrictions of SAWSDL-TC also apply to hRESTS-
TC. In the mapping process, SAWSDL interface components
have been converted into hRESTS service components; both
constitute the level of abstraction right above operations.
For the parameters, we only include the topmost XSD type
that is referenced by a WSDL part construct, ignoring the
underlying potentially complex structure of individual ele-
ments. Finally, all operations in hRESTS are assigned a
default HTTP method of POST. Aforementioned restric-

2http://projects.semwebcentral.org/projects/
sawsdl-tc/
3http://projects.semwebcentral.org/projects/
hrests-tc



tions should be kept in mind when comparing the results of
XAM4SWS for hRESTS to those of competing matchmak-
ing approaches that natively operate on SAWSDL-TC.

We have conducted evaluation runs for different configu-
rations of XAM4SWS. The variation concerns the weighting
of abstraction levels and the assignment of numerical DoM
equivalents. Version 1 conducts matching based on the ser-
vice signature, i.e., input and output parameters. Input and
output levels are given identical weights of 0.5 each. This
version exclusively operates on semantic information, i.e.,
does not employ the fallback strategy. In Version 2, we
assign a weight of 0.1 to the service and operation levels
and of 0.4 to the input and output parameter levels respec-
tively. This accounts for the fact that semantic information
is only available on the parameter levels and should thus
be regarded to a larger extent for similarity assessment. In
Version 3, a naive approach is pursued, with all abstraction
levels being assigned an identical weight of 0.25. For every
version, we evaluate two different Variants, a and b. In Vari-
ant a, we follow a suggestion by Syeda-Mahmood et al. [22]
and manually set the numerical DoM equivalents to 1 (for
an exact DoM), 0.5 (for a sub and super DoM), and 0 (for
a fail DoM) respectively. In Variant b, the numerical equiv-
alents are determined by means of the OLS estimator. The
weights are determined using k-fold cross-validation [23]. In
our evaluation, k = 26 is given by the number of queries
and corresponding relevance from hRESTS-TC that serve
as partition from the service set. An overview of configura-
tions is provided in Table 2. Due to the fact that all oper-
ations exhibit the POST method for invocation, a default
verb compatibility of 1 was assumed for all operations.

XAM4SWS has been implemented in Java, using Pellet
2.0 for logic reasoning and JWNL 1.4 as the interface to
WordNet. hRESTS documents are first converted into an
equivalent Resource Description Framework (RDF) repre-
sentation using a stylesheet by Kopecký4. For more details
on the conversion process, we refer to Kopecký et al. [10].
The RDF document is consecutively read using JENA 2.6.
To conduct the actual evaluation process, we utilize the Se-
mantic Matchmaker Evaluation Environment (SME2)5.

5.2 Utilized Metrics
To assess the matchmaking quality of XAM4SWS, we em-

ploy several metrics from the domain of IR. SME2 automat-

ically computes Precision = |A∩B|
|B| and Recall = |A∩B|

|A| ,

with A denoting the set of all relevant offers for a request
and B denoting the set of all retrieved offers for a request.

In order to determine a mean precision for answer sets at
standard recall levels, we also make use of macro-averaged
precision Precisioni = 1

|Q|×
∑
q∈Q max{PO|RO ≥ Recalli∧

(RO, PO) ∈ Oq}, with Oq representing the set of recall pre-
cision value pairs of the relevant documents for query q.
Oq is determined by a stepwise comparison of the sorted
result set in descending order with the corresponding rel-
evance set from hRESTS-TC [4]. SME2 uses equidistant
steps n

λ
, n = 1 . . . λ for the individual recall and precision

levels. For our evaluation, the default value λ = 20 is ap-
plied. To assess the precision at low recall levels, i.e., for
the first k offers in a result set, we employ Precision at k

4http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/
hrests.xslt
5http://projects.semwebcentral.org/projects/sme2/

(P(k)). For k, we use the common values 5 and 10 (P(5)
and P(10), in short). Additionally, we provide R-Precision
(RP), which corresponds to Precision at k, with k being the
number of relevant services for a specific request. For RP,
recall and precision is identical, i.e., RP identifies the break-
even point of recall and precision. Finally, the Average Pre-
cision (AP) corresponds to the mean precision rate over all
recall levels [24]. All these metrics are macro-averaged over
all queries.

5.3 Results
Table 2 provides an overview of evaluation results for all

previously described variants of XAM4SWS. Figures 2a and
2b further depict the recall-precision curves for the manually
tuned and OLS-based variants respectively.

Results for other matchmaking approaches have not been
included for two reasons. First, XAM4SWS is currently the
only matchmaker to operate on hRESTS services. Second,
as was explained in Section 5.1, the transformation from
SAWSDL-TC to hRESTS-TC necessarily leads to a loss of
information. This renders the results of XAM4SWS largely
incomparable with those of SAWSDL-based matchmakers.

As it is evident from the result overview, the signature-
based Version 1 delivers the worst performance with respect
to the considered IR metrics. The inclusion of information
from the service and operations level, which is employed in
Versions 2 and 3, leads to a significant improvement. Fig-
ures 2a and 2b indicate that the gain in precision is most
significant for low recall levels. This fact is also reflected in
the changes in the P(5) and P(10) metrics. It is important
to note that Version 2, which emphasizes the semantically
annotated parameter level, achieves the best overall results.
That means, the increasing consideration of non-semantic
information in Version 3 triggers a decline of overall match-
making precision. The utilization of OLS leads to significant
improvements with respect to all IR metrics. A single ex-
ception can be observed for Version 1, where the use of OLS
results in a reduction in P(5). The highest absolute per-
formance gain is achieved for Version 2, with Variant 2b
delivering the best overall results.

5.4 Discussion
As this work demonstrates, the principal mechanisms of

matchmaking for WS-* services can be transferred to the
RESTful world with limited effort. This is specifically true
for the description formats that have been at the focus of this
work, namely hRESTS and MicroWSMO. The combination
of these two formats exhibits a significant number of com-
mon charateristics with the popular WSDL and SAWSDL
standards. Most commonly, this concerns the structural or-
ganization of services and a comparable model for semantic
annotation. As has been shown in our previous work [6],
the extension of traditional subsumption reasoning with a
numerical mapping may provide very good matchmaking re-
sults. The evaluation of XAM4SWS supports these findings
in terms of the observed IR metrics. Unfortunately, the spe-
cific features of hRESTS could not be utilized due to the
lack of a suitable test collection. This problem will hope-
fully be elevated by the research community in the future
through the creation of such test set. Hence, our evaluation
should be seen as preliminary.

Because XAM4SWS is based on LOG4SWS.KOM, it also
exhibits a potential drawback: In traditional subsumption



Table 2: Configurations and Evaluation Results for XAM4SWS

# Level Weights Num. DOM Equivalents AP P(5) P(10) RP

1a (0, 0, 0.5, 0.5) (1, 0.5, 0.5, 0) 0.718 0.869 0.792 0.647
1b (0, 0, 0.5, 0.5) From OLS 0.742 0.846 0.827 0.678
2a (0.1, 0.1, 0.4, 0.4) (1, 0.5, 0.5, 0) 0.747 0.931 0.842 0.685
2b (0.1, 0.1, 0.4, 0.4) From OLS 0.810 0.962 0.885 0.736
3a (0.25, 0.25, 0.25, 0.25) (1, 0.5, 0.5, 0) 0.725 0.931 0.842 0.661
3b (0.25, 0.25, 0.25, 0.25) From OLS 0.758 0.954 0.835 0.700
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Figure 2: Recall-Precision Curves

matching, as applied by Paolucci et al. and Klusch et al.
[3,4,8], the overall DoM of two services is determined by the
worst individual DoM between two matched components.
This global DoM can be interpreted as a guaranteed lower
bound of similarity between a service offer and the initial
request. In contrast, XAM4SWS computes the overall sim-
ilarity between two services based on the average DoM bet-
ween all matched components. This average value reflects
the degree of adaptation which is required to “fit” a service
offer to the service request. As discussed in our previous
work, this approach also has its advantages. First, if only a
small number of services is publicly available, the similarity
value provides a good estimate of required manual adap-
tions effort for the discovered services candidates. Second,
it is more tolerant toward single outliers in the DoMs of the
matched components.

6. CONCLUSIONS
The SOA paradigm is gaining increasing momentum for

the realization of large, distributed IT systems and cross-
organizational workflows. Today, WS-* (SOAP-based) Web
services constitute the de facto standard for the implemen-
tation of SOA within business entities. However, RESTful
services are receiving attraction as a lightweight alternative,
e.g., in the realization of mashups. This development trig-
gers the need for suitable matchmaking solutions, i.e., al-
gorithms that discover functionally adequate service offers

based on a given service request.
In the work at hand, we have introduced XAM4SWS,

an adaptive matchmaker for RESTful services, based on
the hRESTS description format in conjunction with Mi-
croWSMO annotations. XAM4SWS extends our previously
presented matchmaker LOG4SWS.KOM. XAM4SWS maps
traditional Degrees of Match from subsumption reasoning
into numerical equivalents. It thus allows for the integra-
tion of additional numerical similarity measures. As proof
of concept, our matchmaker implements a path length-based
measure as well as a WordNet-based fallback strategy.

XAM4SWS has been evaluated using the adapted version
of a commonly accepted test collection for semantic Web
services, SAWSDL-TC. In the evaluation, our matchmaker
exhibits promising evaluation results with respect to com-
mon IR metrics such as precision and recall.

In our future work, we will address the inclusion of the
WADL service description format in XAM4SWS. We will
further evaluate additional adaption mechanisms besides the
currently utilized OLS estimator. Lastly, we are encourag-
ing the SWS community to participate in the creation of a
commonly accepted test collection for RESTful services.
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