
A Cloud-Oriented Broker for Cost-Minimal
Software Service Distribution

Ulrich Lampe, Melanie Siebenhaar, Dieter Schuller, and Ralf Steinmetz

Multimedia Communications Lab (KOM)
Technische Universität Darmstadt, Germany

Corresponding Author: Ulrich.Lampe@KOM.tu-darmstadt.de

Abstract. In a cloud computing market, Software as a Service providers
face the Dependent Software Service Distribution Problem, i. e., the chal-
lenge of cost-minimally distributing partially dependent software service
instances across infrastructure in the form of discrete virtual machines.
In the work at hand, we introduce the Software Service Distribution
Broker to address this challenge. As integral component of the broker, we
propose a mathematical optimization model and corresponding algorithm.
An evaluation, which is based on data from actual software services and
cloud systems, indicates the applicability of our approach for small-scale
scenarios involving approximately 20 software service instances or less,
but also illustrates the need for the development of heuristic solution
approaches.

1 Introduction

During the past few years, cloud computing has gained tremendous popularity.
A common theme of this novel paradigm is the provision of IT capacities in
a utility-like fashion: scalable, on-demand, and via public networks [6]. This
permits IT users to lease capacities, rather than providing them in-house [10].
A popular service model in this context is the provision of Infrastructure as
a Service (IaaS) in the form of Virtual Machines (VMs), such as in Amazon’s
Elastic Compute Cloud (EC2). A major advantage of this model is that VMs
are highly customizable and thus may run most existing software without any
specific adaptation. On the downside, VMs are discrete compute units, which
means that they have to be explicitly instantiated and only scale up to the level
of the physical machines that host them [5].

Based on these observations, we assume the following scenario, which is in-
spired by the three-layered cloud model of Armbrust et al. [2]: Existing software is
offered in the form of Software as a Service (SaaS) by an SaaS provider. Instances
of the resulting software services are requested by SaaS users and executed using
the leased infrastructure, i. e., VM instances, of various IaaS providers. The
scenario further exhibits the following characteristics: Each requested Software
Service Instance (SSI) has a specific resource demand throughout its execution.
Likewise, IaaS providers offer different VM types, which supply a certain limited

rst
Textfeld
Ulrich Lampe, Melanie Siebenhaar, Dieter Schuller, Ralf Steinmetz: A Cloud-Oriented Broker for Cost-Minimal Software Service Distribution. In: Proceedings of the Second Optimising Cloud Services Workshop (OCS 2011), October 2011.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

amount of these resources at differing costs. In addition, SSIs may have dependen-
cies, which result in resource demands or Quality of Service (QoS) requirements
between pairs of SSIs. Likewise, the IaaS providers specify resource supplies or
QoS requirements for the links between pairs of VM types. Lastly, we assume
that SaaS users may request and terminate SSIs at arbitrary points in time,
resulting in an unknown duration of execution, and that the execution of SSIs is
not interruptible, i. e., that each SSI has to be continuously executed between its
initiation and termination.

A practical example of the outlined scenario is cloud gaming: A game provider
offers video games, which are executed on VMs that transmit the resulting
audio/video stream to end users’ playback devices and in turn receive control
commands from these devices. Not only may various video games be offered, but
these games may also be requested at different visual quality levels depending
on the respective playback device. Thus, during its execution, each game – SSI
– exhibits a specific and continuous resource demand on the VM instance that
executes it, while this VM instance is subject to a restricted resource supply.
Additionally, in the case of multi-player games, those SSIs belonging to the
identical session will exchange data subject to certain QoS constraints, such as
maximal latency.

Under the assumption that the SaaS provider pursues the rational objective of
minimizing the infrastructure leasing cost, the research challenge consists in the
distribution of a set of requested SSIs – which have to be continuously executed –
across a set of leased VMs instances, such that:

1. The resource demands of all SSIs are met by the available resource supplies
of the respective VM instances where the SSIs are executed.

2. The QoS requirements between SSIs are met by the QoS guarantees between
the respective VM instances where the SSIs are executed.

3. The overall cost of leasing the VM instances is minimized.

This poses a combined capacitation (number of leased instances of each VM
type) and assignment (allocation of SSIs to specific VM instances) problem,
which we refer to as Dependent Software Service Distribution Problem (DSSDP)
and address in the work at hand.

The remainder of this work is structured as follows: In Section 2, we present
our solution approach, an integrated broker that addresses the DSSDP through
optimization approaches, based on a formal mathematical model of the problem.
A prototypical implementation of this broker is evaluated in Section 3. Section 4
provides an overview of related work. Eventually, Section 5 concludes the paper
with a summary and outlook.

2 Software Service Distribution Broker

2.1 Outline of the Broker

Our research aims at the design and implementation of an integrated Software
Service Distribution Broker, which addresses the DSSDP in the broader context

Cloud Market

Software Service Distribution Broker

Optimization
Approaches

IaaS
Provider X

push pull

SaaS
Provider

specify

use

propose
VM type
speci-
fication

VM Type
Registry

VM type
speci-
fication

Re-
quested
SSIs

SSI
distri-
bution
strategy

Software
Services

IaaS
Provider Y

Virtual
Machines

Virtual
Machines

SSI
Request
History

useForecasting Approaches

supply

SSI
fore-
casts

Fig. 1. Architectural overview of the Software Service Distribution Broker.

of a future cloud market. The broker will be accessible for SaaS providers and
IaaS providers in this market through a Web-based interface. The interface
permits IaaS providers to register their VM type offers by submitting the relevant
information regarding, e. g., resource supply and price, in a structured form (push
model). The tool will also allow to mine publicly available VM offer descriptions,
e. g., through the Amazon EC2 API1 (pull model). Likewise, SaaS providers may
specify the SSIs that have been requested by their end users.

Based on the submitted information, the Software Service Distribution Bro-
ker computes a SSI distribution strategy for the SaaS provider using suitable
optimization approaches. Such strategy defines how many instances of each VM
type should be leased, and on which of those VM instances the requested SSIs
should be executed in order to achieve minimal infrastructure leasing cost2.

In addition, the broker features a forecasting component. It operates on
historic SSI request and execution data, which is stored in a central database.
Based on different forecasting approaches, the component allows to estimate the
most likely duration of execution for currently requested SSIs. It may also predict
the expected SSI requests at any future point in time. This, for instance, permits
to exploit lower leasing costs through the advanced booking or reservation of VM
instances.

Overall, in accordance with the vision of a future cloud market [6], the broker
facilitates the efficient distribution of SSIs through SaaS providers. Specifically, it
permits the realization of cost savings in leasing infrastructure from the cloud. An
architectural overview of the Software Service Distribution Broker is depicted in
1 http://aws.amazon.com/documentation/ec2/
2 Please note that the term “VM type” denotes an abstract VM offer, whereas “VM in-
stance” denotes an concrete instantiation of such type.

Figure 1. The component optimization approaches has been highlighted, because
it constitutes the focus of the work at hand.

2.2 Formal Model of the Dependent Software Service Distribution
Problem

In order to address the DSSDP through optimization approaches and thus permit
the computation of SSI distribution strategies, we formalize the problem as a
mathematical model.

This model is based on the following assumptions: First, there exists at least
one leaseable VM type that provides a sufficient overall resource supply for each
regarded SSI. If this condition is not met, the SSI cannot be hosted on the
offered infrastructure at all. Second, SSIs may be arbitrarily combined on one
VM instance, as long as the overall resource demands of all SSIs are satisfied
by the overall resource supply of the corresponding VM instance. Third, we
assume that the links between pairs of VM types are shared by all instances
of the same types, which permits to treat the resource demands and supplies
between different VM types as aggregate.

Table 1 provides an overview of the used symbols. The upper part of the
table contains the basic entities in the model, i. e., SSIs, VM and resource types,
and QoS attributes. The remainder of the table introduces data specifications
that are based on these entities.

In accordance with our previously described scenario, resource demands and
supplies are specified on an intra-machine and inter-machine level, i. e., for
individual SSIs and VM types, as well as pairs of SSIs and links between VM
types. In contrast, QoS requirements and guarantees are only specified on an
inter-machine level, because they exclusively apply to pairs of SSIs and links
between VM types respectively. Without loss of generality, we assume that QoS
requirements are expressed in terms of maximal permissible values.

On the intra-machine level, billing is defined both on a per-instance and
per-unit basis. Per-instance means that a flat fee is billed for an VM instance per
(partial) billing period. Per-unit means that a cost applies for each consumed unit
of a resource type. On the inter-machine level, only the latter scheme is applied.
However, we additionally differentiate between incoming and outgoing resource
consumption on this level. Thus, for example, the outgoing network traffic from
one VM type can be billed as incoming network traffic on a linked VM type.

The resulting mathematical model is given in Model 1. The decision variables
are defined in Equations 16 to 19. The binary decision variables xsvi indicate
whether the SSI s has been assigned to a VM of type v with the instance index
i or not. The integer decision variables yvi indicate the number of subsequent
billing periods for which a certain instance i of VM type v is leased. The binary
decision variables zsv indicate whether SSI s has been assigned to a VM instance
of type v or not. Lastly, the binary decision variables dsvs′v′ serve the same
function as z, but do so for a pair (s, s′) of SSIs and corresponding pair of VM
types (v, v′). The respective relations between the individual decision variables
are established in Equations 12 to 14.

Table 1. Used symbols in the mathematical model.

Symbol Description
S Set of requested SSIs.
V Set of leasable VM types.
R� Set of considered intra-machine resource types.
R� Set of considered inter-machine resource types.
Q Set of considered QoS attributes.

Ds ∈ R+ Expected duration of execution of SSI s ∈ S (in time units).
RD�sr ∈ R+ Intra-machine resource demand of SSI s ∈ S for resource type r ∈ R�.
RD�

ss′r ∈ R+ Inter-machine resource demand between SSIs s, s′ ∈ S for resource
type r ∈ R.

RS�vr ∈ R+ Intra-machine resource supply per instance of VM type v ∈ V for
resource type r ∈ R�.

RS�
vv′r ∈ R+ Inter-machine resource supply for the link between VM types

v, v′ ∈ V for resource type r ∈ R�.
QRss′q ∈ R QoS requirements between SSIs s, s′ ∈ S regarding QoS attribute

q ∈ Q.
QGvv′q ∈ R QoS guarantees for the link between VM types v, v′ ∈ V regarding

QoS attribute q ∈ Q.
BIv ∈ R Length of an per-instance billing period for instances of VM type

v ∈ V (in time units).
CIv ∈ R Cost per leased instance of VM type v ∈ V per billing period BIv.
CU�vr ∈ R Intra-machine cost at VM type v ∈ V per consumed unit of resource

type r ∈ R� per time unit.
CU→vv′r ∈ R Inter-machine cost for the link between VM types v, v′ ∈ V per

outgoing consumed unit of resource type r ∈ R� per time unit.
CU←vv′r ∈ R Inter-machine cost for the link between VM types v, v′ ∈ V per

incoming consumed unit of resource type r ∈ R� per time unit.

The objective is to minimize the Total Cost (TC) of leasing the selected
VM instances in Equation 1. The total cost comprises four components: First,
the per-instance cost of leasing VM instances across the respective number of
billing periods (Equation 2). Second, the per-unit, intra-machine resource costs
of the executed SSIs (Equation 3). Third and fourth, the per-unit, inter-machine,
outgoing and incoming resource costs of dependent SSIs (Equations 4 and 5).
For the latter, the minimal execution time of the dependent SSIs is decisive,
i. e., once one of two dependent SSIs is terminated, the inter-machine resource
consumption ceases.

The VM instance indices are defined in Equation 15. The set I consists of |S|
elements, each corresponding to a potential VM instance. The cardinality of the
set is based on the notion that each SSI may be assigned to an individual VM
instance of the same type in the worst case. Through this construct, the DSSDP
can be treated as a pure assignment problem, rather than combined capacitation
and assignment problem.

As far as the constraints are concerned, Equation 6 ensures that each SSI
is assigned precisely once to a VM instance. Equation 7 guarantees that the
resource constraints are held on the intra-machine level for each VM instance.
Equation 8 serves the same purpose on the inter-machine level. Because we
assume that links between VM types are shared, the constraints may be checked
at an aggregate level. Equation 9 guarantees that the QoS requirements are
satisfied for all dependent SSIs. For that matter, pairs of unsuitable VM types
for all pairs of SSIs are determined in Equations 10 and 11.

As such, Model 1 only constitutes a design time approach that permits the
computation of an initial SSI distribution strategy. However, at run time, SSIs
may be additionally requested or terminated at any instant. This triggers the
need for the computation of incremental SSI distribution strategies, which define
adaptations to the leased infrastructure upon changes in the requested SSIs.

In the work at hand, we do not focus on this aspect, but only outline the
principal adaptations that are required in the model: First, terminated SSIs are
removed from the set S, and newly requested SSIs are added to it. Subsequently,
the expected durations of execution for the sustained SSIs are updated. Under
the assumption that sustained SSIs may not be moved between different VM
instances, a new constraint is added to the model for each sustained SSI. These
constraints enforce the assignment of sustained SSI to the same VM instance as
in the previous optimization.

3 Evaluation of the Broker

To date, we have created a prototypical implementation of the Software Service
Distribution Broker. As optimization algorithm, the broker implements Model 1,
which can be transferred into an Integer Program (IP), i. e., a special form
of Linear Program (LP) that exclusively contains integer and binary decision
variables. Such IP can be solved using well-known methods from the field of
operations research, most notably, branch and bound [7]. The algorithm will
always compute the optimal, i. e., cost-minimal, solution to a DSSDP, but it can
be very costly in terms of required computational power.

The prototypical broker has been implemented in Java. In the implementation,
we employed IBM ILOG CPLEX Optimizer, a commercial solver framework for
linear programs3.

3.1 Evaluation Methodology

To assess the practical applicability of the prototypical broker approach, we
have conducted an extensive evaluation. The focus of the evaluation lies on
the performance of the employed optimization algorithm, as measured by the
computation time for a SSI distribution strategy. Specifically, in order to assess
the scalability of our approach, we created 20 different classes of DSSPSs with
3 http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Model 1 Dependent Software Service Distribution Problem

Min. TC(x, y, z, d) = α+ β + γ + δ (1)

α =
∑

v∈V ;i∈I

yvi ∗ CIv (2)

β =
∑

s∈S;v∈V ;i∈I;r∈R�

xsvi ∗RD�sr ∗Ds ∗ CU�vr (3)

γ =
∑

s,s′∈S;v,v′∈V ;r∈R�

dsvs′v′ ∗RD�
ss′r ∗min(Ds, Ds′) ∗ CU→vv′r (4)

δ =
∑

s,s′∈S;v,v′∈V ;r∈R�

dsvs′v′ ∗RD�
s′sr ∗min(Ds, Ds′) ∗ CU←vv′r (5)

∑
v∈V ;i∈I

xsvi = 1 ∀s ∈ S (6)

∑
s∈S

RD�sr ∗ xsvi ≤ RS�vr ∀v ∈ V ; i ∈ I; r ∈ R� (7)∑
s,s′∈S

RD�
ss′r ∗ dsvs′v′ ≤ RS�

vv′r ∀v, v′ ∈ V ; r ∈ R� (8)

zsv + zs′v′ ≤ 1 ∀(v, v′) ∈ Uss′ ; s, s′ ∈ S (9)
Uss′ = ∪q∈QUss′q ∀s, s′ ∈ S (10)

Uss′q = {(v, v′) ∈ V 2|QRss′q ≤ QGvv′q} ∀s, s′ ∈ S; q ∈ Q (11)

yvi ≥ xsvi ∗
⌈
Ds

BIv

⌉
∀s ∈ S; v ∈ V ; i ∈ I (12)

zsv ≥ xsvi ∀s ∈ S; v ∈ V ; i ∈ I (13)
dsvs′v′ ≥ zsv + zs′v′ − 1 ∀s, s′ ∈ S; v, v′ ∈ V (14)

I = {1, ..., |S|} (15)
I ⊂ N

xsvi ∈ {0, 1} ∀s ∈ S; v ∈ V ; i ∈ I (16)
yvi ∈ N ∀v ∈ V ; i ∈ I (17)

zsv ∈ {0, 1} ∀s ∈ S; v ∈ V (18)
dsvs′v′ ∈ {0, 1} ∀s, s′ ∈ S; v, v′ ∈ V (19)

varying size. Each class contained 200 valid individual problems with a different
number of requested SSIs (ns) and QoS attributes (nq). In addition, we varied
the ratio of SSIs that exhibit dependencies (r).

For the VM and resource types, we used the specifications of the Windows-
based, on-demand Amazon EC2 VM offers in the European Union4. The specifi-
cations yield eight VM types, which provide limited supplies of three different
intra-machine resource types (processor, memory, and hard disk storage) at
differing per-instance costs. Based on the same specifications, we additionally
consider Internet-bound network bandwidth and provider-internal network band-
width as intra-machine and inter-machine resource type, respectively. Both types
of network bandwidth are billed based on actual consumption. In total, four
intra-machine and one inter-machine resource types are considered.

In accordance with the scenario of cloud gaming from Section 1, we obtained
realistic SSI execution data by measuring the absolute resource demands of five
contemporary video games on a local desktop computer. We further estimated the
resource demands for Internet-bound and provider-internal network bandwidth
of dependent SSIs. These demands result from the audio/video stream to the
SaaS user and data exchange between the SSIs in a multi-player session.

Because no actual data for the QoS requirements and guarantees is available,
we randomly drew the values from the intervals [0, 1] and [0, 0.5], respectively.
Additionally, the expected duration of execution for the SSIs was randomly drawn
from the interval [1800, 9000]. Assuming seconds as time unit, this range corre-
sponds to a duration of 0.5 to 2.5 hours, which we believe to reflect a reasonable
length for a cloud gaming session. In the final Software Service Distribution
Broker, this information will be delivered by the forecasting component.

The generated DSSDPs in each class were subsequently attempted to solve
using the prototypical broker. For each evaluated DSSDP, the computation time
of the optimization algorithm was measured, with a timeout of 1 minute being in
place. This timeout represents the maximum waiting time that a SaaS provider
would be willing to accept for the computation of a SSI distribution strategy.
For the evaluation, we employed a dedicated laptop computer, equipped with an
Intel Core i5-450M processor and 2 GB of memory.

3.2 Evaluation Results and Discussion

Table 2 provides an overview of the evaluated DSSDP classes. The table also
contains the number of decision variables and constraints in the corresponding
optimization models as first indicator of computational complexity5. In addition,
the number of problems per class that could be solved within the specified timeout

4 http://aws.amazon.com/ec2/#instance
5 Because the values for the QoS requirements and guarantees are randomly drawn,
the number of unsuitable VM types and thus, the number of constraints is non-
deterministic. Accordingly, the expected average number of constraints is provided.

Table 2. Overview of the evaluated DSSDP classes with computational complexity
(DC: Number of decision variables; Con: Number of constraints) and ratio of solved
problems.

Class DC Con. Solved Class DC Con. Solved
ns nq r [%] ns nq r [%]
10 0 0 7360 8394 100.0 20 0 0 29120 32724 100.0
10 1 0.125 7360 8594 100.0 20 1 0.125 29120 33524 100.0
10 2 0.125 7360 8744 100.0 20 2 0.125 29120 34124 98.5
10 1 0.25 7360 8794 100.0 20 1 0.25 29120 34324 99.5
10 2 0.25 7360 9094 100.0 20 2 0.25 29120 35524 100.0

15 0 0 16440 18559 100.0 25 0 0 45400 50889 100.0
15 1 0.125 16440 19009 100.0 25 1 0.125 45400 52139 97.5
15 2 0.125 16440 19347 100.0 25 2 0.125 45400 53077 96.5
15 1 0.25 16440 19459 100.0 25 1 0.25 45400 53389 94.5
15 2 0.25 16440 20134 99.5 25 2 0.25 45400 55264 96.0

period is given6. These problems constitute the sample for the mean computation
times that are depicted in Figure 2.

As can be seen from Table 2, the algorithm is able to solve practically all
problems involving 20 SSIs or less within the specified timeout period. For the
largest problem classes involving 25 SSIs, the share of solved problems starts to
notably drop, however. In accordance with this finding, Figure 2 shows that the
mean computation times of the algorithm quickly grow with increasing problem
size, already reaching a magnitude order of seconds for those problems involving 15
SSIs or more. In accordance with the number of decision variables and constraints
in the mathematical model (cf. Table 2), the growth of computation times is not
linear, but rather follows the squared number of regarded SSIs.

Notably, at least for those problem classes involving 20 SSIs or more, the
introduction of SSI dependencies leads to a decline in mean computation times.
The effect, which is also statistically significant at a confidence level of 95%
(α = 0.05) for the largest problem classes with 25 SSIs, becomes more evident
with an increasing ratio of dependent SSIs and growing number of QoS attributes.
This finding is interesting, since the determination of pairs of unsuitable VM
types (cf. Equations 10 and 11 in Model 1) requires substantial computational
efforts. However, it can be reasoned that the process also leads to a substantial
reduction of the problem space by restricting the valid assignments, and thus,
results in an overall reduction of computation times.

In summary, we conclude that the proposed IP-based algorithm is well ap-
plicable for DSSDPs that involve about 20 SSIs or less. Thus, the algorithm

6 In fact, the figure refers to problems that were optimally solved within the timeout
period. In some cases, a valid, yet non-optimal solution may be obtained upon the
occurrence of a timeout. The non-optimality arises from the fact that the solution
space could not be completely examined.

 0.1

 1

 10

 100

1
0
|0

|0

1
0
|1

|0
.1

2
5

1
0
|2

|0
.1

2
5

1
0
|1

|0
.2

5

1
0
|2

|0
.2

5

1
5
|0

|0

1
5
|1

|0
.1

2
5

1
5
|2

|0
.1

2
5

1
5
|1

|0
.2

5

1
5
|2

|0
.2

5

2
0
|0

|0

2
0
|1

|0
.1

2
5

2
0
|2

|0
.1

2
5

2
0
|1

|0
.2

5

2
0
|2

|0
.2

5

2
5
|0

|0

2
5
|1

|0
.1

2
5

2
5
|2

|0
.1

2
5

2
5
|1

|0
.2

5

2
5
|2

|0
.2

5

M
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

SSDP class (ns|nq|r)

IP-based algorithm

Fig. 2. Mean computation times of the optimization algorithm per evaluated DSSDP
class, excluding timed-out problems (with 95% confidence intervals; please note the
logarithmic scaling).

provides a viable approach to facilitate cost-efficient SSI distribution at small
scale. However, for a scenario such as cloud gaming, which may involve hundreds
of SSIs and requires the swift computation of distribution strategies, the algorithm
appears unsuitable due to its high computational requirements. This indicates
the need for the development of heuristic optimization approaches, which trade
potentially large reductions in computation time against preferably small reduc-
tions in solution quality, i. e., increases in the cost of the computed distribution
strategies. The development of such heuristics is complex due to the introduction
of software service instance dependencies, because these dependencies render
common solution approaches for assignment problems inapplicable.

4 Related Work

The challenge of distributing software service instances across virtual machines
has previously been addressed in our own research [9]. In this past work, we
introduced a basic version of the problem – i. e., SSI distribution under intra-
machine resource constraints – and provided initial findings on its computational
complexity. We substantially extend this research through the consideration of
SSI dependencies and different resource pricing schemes in this paper.

Ardagna et al. [1] provide an approach for the distribution of SLA-bound
Web services across various IaaS providers and the subsequent admission of

user requests, which is modeled using queuing theory. In contrast to our work,
the authors do not distinguish different resource types and do not consider a
combination of multiple software services on individual VM instances.

Breitgand and Epstein [3] consider the optimal placement of VMs on physical
machines in a data center, with sets of VMs executing a specific software service.
Their work is focused on the role of a cloud provider, rather than a SaaS provider.
Also, the authors neither consider predefined VM types nor specific resource
types.

Breitgand et al. [4] extend the previously described work, based on an identical
scenario. Their approach, which is also based on linear programming, regards
specific resource demands, as well as resource supplies of different physical ma-
chines in a federated cloud. However, the authors assume SLA-bound, temporally
interruptible software services and do not regard SSI dependencies. In addition,
Breitgand et al. do not provide any evaluation results for their proposed approach.

Kwok and Mohindra [8] present an approach for the optimal placement of
multi-tenant SaaS applications in a data center under consideration of different
resource types and QoS constraints. However, the authors do not specifically
regard different VM types at varying price levels; accordingly, their objective
consists of optimal resource exploitation on physical machines, rather than cost
minimization.

Wu et al. [11], in accordance with our work, address the distribution of
SaaS-style software services to different IaaS providers under SLA restrictions.
However, the authors only consider a given set of quantifiable resource demands,
such as processor cycles, rather than arbitrary resource types, and assume job-
oriented, rather than continuously executed software services. In addition, they
only implement and evaluate heuristic solutions, rather than an optimal approach.

In summary, as important distinctive feature, our approach considers con-
tinuously executed SaaS instances, rather than interruptible job- or task-style
requests for software services. In addition, we address arbitrary resource types
and VM types, as well as software service dependencies, which allows a more
flexible and detailed representation of actual cloud systems. We further formulate
a mathematical model that provides an optimal – rather than non-optimal, heuris-
tic – solution to the DSSDP and thus may serve as a performance benchmark for
other approaches.

5 Summary and Outlook

In the work at hand, we have addressed the Dependent Software Service Distribu-
tion Problem as a research challenge in the context of a cloud computing market.
The problem concerns the distribution of partially dependent software service
instances across leased cloud infrastructure in the form of virtual machines at
minimal cost, with these distribution being subject to resource and quality of
service constraints.

As solution approach, we have proposed the Software Service Distribution
Broker, which facilitates cost-efficient software service deployment through the

computation of distribution strategies. We have formulated a mathematical model
of the software service distribution problem, based on integer programming, and
implemented a corresponding optimization algorithm. This algorithm has been
evaluated based on actual software service execution and virtual machine data.

The evaluation shows that the proposed optimization algorithm features
reasonable computation times for problems involving 20 software service instances
or less and thus facilitates cost-efficient software service distribution at small
scale. However, due to the rapid, non-linear growth in its computational demand,
the algorithm is unsuitable for scenarios involving a higher number of software
service instances, such as cloud gaming. Thus, our primary goal currently consists
in the development of heuristic approaches, which involve reduced computational
demand, but also achieve a favorable solution quality in terms of the resulting
infrastructure leasing cost.

Acknowledgments
This work has partly been sponsored by the E-Finance Lab e.V., Frankfurt am
Main, Germany (http://www.efinancelab.de).

References
1. Ardagna, D., Ghezzi, C., Panicucci, B., Trubian, M.: Service Provisioning on the

Cloud: Distributed Algorithms for Joint Capacity Allocation and Admission Control.
In: Di Nitto, E., Yahyapour, R. (eds.) Towards a Service-Based Internet, LNCS,
vol. 6481, pp. 1–12 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., et al.: A View of Cloud Computing.
Communications of the ACM 53(4), 50–58 (2010)

3. Breitgand, D., Epstein, D.: SLA-aware Placement of Multi-Virtual Machine Elastic
Services in Compute Clouds (TR H-0287). Tech. rep., IBM Research (2010)

4. Breitgand, D., Maraschini, A., Tordsson, J.: Policy-Driven Service Placement
Optimization in Federated Clouds (TR H-0299). Tech. rep., IBM Research (2011)

5. Briscoe, G., Marinos, A.: Digital Ecosystems in the Clouds: Towards Community
Cloud Computing. In: 3rd Int. Conf. on Digital Ecosystems and Technologies. pp.
103–108 (2009)

6. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as
the 5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

7. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill, 8th
edn. (2005)

8. Kwok, T., Mohindra, A.: Resource Calculations with Constraints and Placement of
Tenants and Instances for Multi-Tenant SaaS Applications. In: 6th Int. Conf. on
Service-Oriented Computing. pp. 633–648 (2008)

9. Lampe, U.: Optimizing the Distribution of Software Services in Infrastructure
Clouds. In: 7th IEEE World Congress on Services, Ph.D. Symp. pp. 69–72 (2011)

10. Walker, E.: The Real Cost of a CPU Hour. Computer 42(4), 35–41 (2009)
11. Wu, L., Garg, S.K., Buyya, R.: SLA-based Admission Control for a Software-as-a-

Service Provider in Cloud Computing Environments (CLOUDS-TR-2010-7). Tech.
rep., The University of Melbourne (2010)

