
Automatic Detection and Visualisation of Overlap for
Tracking of Information Flow

Lasse Lehmann1, Arno Mittelbach1, James Cummings2, Christoph Rensing1 and

Ralf Steinmetz1

1KOM Multimedia Communications Lab
Technische Universität Darmstadt

Rundeturmstr. 10, 64283 Darmstadt, Germany
{lasse.lehmann, arno.mittelbach, christoph.rensing, ralf.steinmetz}@kom.tu-darmstadt.de

2Research Technologies Service

Oxford University Computing Services - University of Oxford
13 Banbury Road, Oxford, OX2 8NP, UK

James.Cummings@oucs.ox.ac.uk

Abstract: The detection of redundant or reused passages in texts is an important basis
for various tasks including tracking of information flow, plagiarism detection, origin
detection, web search and information retrieval. Being able to track the evolution of a
piece of information through different revisions or instances of documents can
generally help to gain an impression of the document's background. In this paper we
propose an efficient algorithm for detection of textual overlap between documents as
well as a tool for its visualisation, created in the course of the Holinshed Project at the
University of Oxford. The Evaluation on an annotated corpus shows that the proposed
algorithm performs better than state of the art approaches.

Keywords: Information Flow, Information Tracking, Overlap Detection, Overlap
Visualisation, String Matching
Categories: H.3.3, H.3.1, H.5.2

1 Introduction and Motivation

The detection of redundant or overlapping passages in texts is an important basis for
various tasks including tracking of information flow [Metzler, 2005] [Kim, 2009],
plagiarism detection [Clough, 2003], origin detection, web search and information
retrieval [Hamid, 2009]. Being able to track the evolution of a piece of information
through different revisions or instances of documents can generally help to gain an
impression of the document's background. When considering information flow in
historic works like e.g. Holinshed's Chronicles or the Bible, it is even possible to draw
conclusions about historic events or changes in attitude by studying how and when
information has been changed or adapted.

In this paper we present an algorithm for the detection of overlap between textual
documents as well as an intuitive tool that can be used for its visualisation and
annotation. Both have been created during the Holinshed Project. One main goal of
this project was to detect, localize, annotate and visualise the overlap between the two
versions of Holinshed's famous Chronicles, which we describe in Section 2. Section 3
is dedicated to overlap detection. Herein we propose an approach for detection and

rst
Textfeld
Lasse Lehmann and Arno Mittelbach and Christoph Rensing and Ralf Steinmetz:
Automatic Detection and Visualisation of Overlap for Tracking of Information Flow. In: Klaus Tochtermann and Hermann Maurer: Proceedings of I-KNOW 2010, 10th International Conference on Knowledge Management and Knowledge Technologies, p. 186-198, Verlag der Technischen Universität Graz, Austria, September 2010.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

localization of textual overlap and compare it to existing state of the art techniques
using a corpus created in the course of the Holinshed Project. In Section 4 we
describe the TEI Comparator, a tool that can be used for the visualisation and
annotation of overlapping text, while Section 5 concludes the paper and gives an
outlook on possible future work.

2 The Holinshed Project

The Holinshed Project at the University of Oxford has created an online parallel text
edition of Holinshed's Chronicles of England, Scotland, and Ireland. This sixteenth-
century work was at once the crowning achievement of Tudor historiography and the
most important single source for many contemporary playwrights and poets, above all
Shakespeare, Spenser, Daniel, and Drayton. Although the work is popularly known as
Holinshed's Chronicles, it was necessarily a collaborative endeavour, the authors and
revisers contained a range of individuals.

The work was first printed in 1577 and then a much revised and expanded second
edition was printed in 1587. The difference between these two editions is significant
and the revisions help us understand the changing attitudes of the day. Although the
significance of the importance of Holinshed's Chronicles in helping us to understand
Elizabethan literature, politics, and history is undisputed, there has not been a
complete scholarly edition of them or an in-depth systematic analysis. The aim of the
Holinshed Project is to stimulate new interest in the Chronicles, through first
publishing a secondary handbook on the making, transmission, reception,
appropriation, and literary and historical significance of the Chronicles as well as
eventually creating a complete original-spelling annotated edition [Holinshed, 2010].

In order to undertake any systematic investigation of the two editions of
Holinshed's Chronicles there are many stumbling blocks. One of the most important is
simply being able to trace the changes from one edition to the other. In the absence of
an existing critical edition detailing the movement, reorganisation, fragmenting,
amalgamation, excising and rephrasing of all aspects of the text it was decided that it
would be helpful to have a very basic set of electronic texts to commence with in
order to start work on the secondary handbook. These texts would then have to be
linked or aligned in some manner to allow jumping from any paragraph-level object
to the corresponding one(s) in the other edition often moved quite a distance from its
original location. By doing this, authors of articles for the secondary volume about
Holinshed's Chronicles could compare what had happened to certain portions of the
document from one edition to the other concerning the particular topic they were
writing about and thus draw conclusions about changes in attitude of the authors or
the political landscape of that time.

Literature published about the Holinshed Project and Holinshed's Chronicles are
available at http://www.cems.ox.ac.uk/holinshed/bibliography.shtml. The texts
themselves have been released publicly and are available at:
http://www.english.ox.ac.uk/holinshed/ and free for academic re-use. Also available is
an HTML version that has been created on the basis of above mentioned analysis,
which allows for navigation between matching portions of the two editions.

3 Overlap Detection

One of the first goals of the Holinshed Project was to create a parallel text edition that
was to form the basis for an in-depth analysis of the two editions of Holinshed’s
Chronicles. This meant that overlapping text sequences between the 1577 and 1587
version had to be identified and localised. As the two editions each consist of almost
20,000 paragraphs (roughly 2.5 million words in the 1577 edition and almost 4
million words in the 1587 edition) it was decided to start with an automatically
created initial comparison that could then be refined by domain experts. There are
several existing approaches that can be used for the detection of textual overlap in the
given scenario. Section 3.2 describes these state of the art algorithms. The algorithm
we have designed for this task is described in section 3.3 while Section 3.4 covers the
evaluation we did on the corpus created in the course of the Holinshed Project.

3.1 Definitions and Preprocessing

Before the overlapping sequences in two texts can be determined, the texts usually
need to be preprocessed. Typical preprocessing steps include cleaning (removal of
special characters and/or punctuation), case-folding, stemming and stopword filtering.
In case of the Chronicles difficulties were for example a difference in spelling
between the two editions (and sometimes even within one edition) or the substitution
of similar looking letters for one another (e.g. 'v' instead of 'u' or a '~' instead of 'n').
We found that a drastic cleaning step worked best, where for example all vowels were
removed and special characters were replaced by their canonical counterpart
(exchanged all '~' with 'n').

Usually a text is then divided into tokens. When the input strings represent natural
language texts, a token is typically a word, as for DNA sequences usually character
based tokenization is used as each character in a DNA string represents a special
nucleotide.

An n-gram, also called shingle, is a sequence of n consecutive tokens extracted
from the text. Transforming the title - The description and Chronicles of England - of
one of the books within the Chronicles into 3-grams would hence result in [The
description and], [description and Chronicles], [and Chronicles of], [Chronicles of
England]. A match between two strings A and B is a string which is substring of both
A and B.

A commonly used symmetric measure of similarity is the Jaccard measure
[Jaccard, 1901] which is defined as the intersection of A and B divided by the union
of A and B:

J(A,B) = | A∩ B |
| A∪ B |

The problem herewith is that differences in length between the two strings A and
B are not reflected in the measure. If, for example, a short string A is entirely included
in some longer string B then the Jaccard measure will indicate that the two strings are
not very similar.

Another approach to determine if two strings overlap is to calculate their
containment [Broder, 1997]. Since containment is an asymmetric measure it can be
calculated in two ways, depending on the length of which string is used as divisor,
thus reflecting differences in length of the two input strings: The containment of
string A in string B is calculated by dividing the intersection of A and B by the length
of string A and vice versa:

C(A,B) = | A∩ B |
| A |

3.2 Related Approaches

N-gram-overlap [Lyon, 2001] is a basic approach for detecting overlapping passages
in strings. In a first step overlapping n-grams (shingles) are extracted from the strings
by sliding a window of size 'n' over both strings. The shingles are stored (e.g. in lists)
and the sets of n-grams of both texts compared. To determine the containment of two
strings the number of matching shingles, i.e. the intersection of the two shingle sets is
divided by the number of shingles in string A or B respectively. N-gram-overlap does
not take into account the order of shingles in both strings. To do so, an offset has to be
stored in addition to each shingle. N-gram-overlap runs in linear time.

Greedy String Tiling (GST) proposed by Wise [1993] is a heuristic that
approximates the maximal tiling of two strings. A tile is an association of a substring
of string A with an equal substring of string B. Each token of a string can only be
present in one tile. A tiling with minimal tile length m between strings A and B is a
list of unique tiles where the length of each tile is m or greater. The GST algorithm
searches for matches of maximal length, marks them as tiles and then continues the
search ignoring the marked tiles until no more matches with the given minimal length
can be found. The heuristic prefers tiles of maximal length over an optimal tiling of
two strings, e.g. a tiling with one tile of length six is preferred over a tiling with two
tiles of length three and four. If, for example, the minimal tile length is 3 and a tiling
was to be generated for “ACCAAT” and “ACCACAAT” then GST would choose a
single tile “ACCA” rather than the two smaller tiles “ACC” and “AAT”. Containment
can now be calculated by dividing the overall length of all tiles in the tiling by the
length of strings A or B respectively. The GST heuristic has a worst case complexity
of O(n3) [Loose, 2008].

A classical problem in computer science is the identification of the longest
common subsequence (LCS) [Maier, 1978] of two (or more) strings. A longest
common subsequence is the longest sequence of common tokens of two input strings
where the order of tokens has to be preserved but non matching tokens may be
skipped. Usually tokens on character basis are used to determine the LCS. The LCS
of two strings "ACCAAGCT" and "TACCCGCAT" thus is "ACCGCT". When the
longest common subsequence is known, its length can be divided by the length of
either of the strings to calculate containment measures. This approach suffers from the
fact that it is extremely prone to changes in the order of the strings to compare. When
the position of one sentence changes, the resulting subsequence can be significantly
different. Thus we do not expect the approach to perform well in the given use case.

3.3 ShingleCloud Approach

ShingleCloud is an extended and adapted version of the n-gram-overlap approach. It
is designed for efficient detection and localisation of overlapping sequences between
two strings. The intended use case of the algorithm is a needle-haystack search, where
it has to be determined whether, where, and to which extend a comparatively short
string A (the needle) is present within a longer string B (the haystack). However it
works equally well if needle and haystack have approximately the same length.

After preprocessing the input strings, shingles are extracted from both strings and
stored in lists. For performance considerations the shingles extracted from the needle
should be stored in a data structure optimized for fast lookups (e.g. a hash table). The
shingle size (n) is thus the first of three relevant parameters used by the algorithm. In
the next step the so called ShingleCloud, in its simplest form a sequence of bits, is
created. This is done by traversing the shingles of the haystack in the order they
appear and adding one bit to the ShingleCloud for each traversed shingle. A one is
appended, if the n-gram is also present within the needle, i.e. is contained in the
corresponding list, and a zero is appended otherwise.

Based on the resulting ShingleCloud, it can be determined manually or
automatically whether and where parts of the needle are present within the haystack.
A simple ShingleCloud could be, for instance:

00000000000001110000000011110000000000

In this example the needle has been split up into two parts. If we assume that 3-
grams were used (i.e. the shingle size is 3) then we could, for example, conclude that
the first part of the needle can be found at position 15 (13 consecutive zeros represent
15 tokens if n=3). If we knew more about the needle, such as for example its length,
we could further conclude whether it is completely enclosed in the haystack or
whether it was shortened.

There are two parameters needed for the automatic evaluation of a ShingleCloud:
The minimal number of consecutive ones (mno) needed for a sequence of ones in the
ShingleCloud to count as a match and the maximal number of zeroes (mnz) that may
exist within a match without it being interrupted. The second parameter only has an
effect when a match has been detected in the first place. Usually the value of this
parameter is greater than the shingle size, as a difference in one token would result in
n non-matching shingles (where n is the shingle size). Hence if mnz=n+1
ShingleCloud would allow for two consecutive unmatched tokens without splitting up
a match.

A decision regarding the detection of overlap can be found in different ways:
Either by judging if a sufficiently large part of the needle is present in the haystack,
i.e. if a consecutive sequence of ones of the given minimal length exists in the
ShingleCloud, by means of a containment measure or by a combination of both.
When the containment exceeds a given threshold the needle is assumed to be present
within the haystack. This containment measure is calculated by dividing the weighted
overall number of ones in the ShingleCloud by the length of needle and haystack
respectively. The weighted length of ones in the ShingleCloud is calculated as
follows: If a one is preceded by a zero, the shingle size is added to the weighted
length, otherwise 1 is added. Thus it is not the number of matching shingles that is

used for the calculation of the containment but the number of matching tokens which
can be significantly different, depending on the parameters chosen and the
distribution of matches within the ShingleCloud.

The ShingleCloud concept is very flexible. In the course of the project we have
extended the simple ShingleCloud as described above to include marker shingles that
allow for fast lookup of the paragraph in which a match occurred. Furthermore, they
allow matches inside one paragraph to be grouped together which can be used to
compute containment scores not on the basis of the entire haystack but on a per
paragraph level. We also experimented with wildcard shingles that match anything if
encountered in a match (a sequence of “ones”). As several words or characters were
illegible in the original manuscript we had hoped to improve the initial matching
created by ShingleCloud. However, at least for the Chronicles the differences were
not significant.

For a thorough documentation and download of ShingleCloud see [Mittelbach,
2010].

3.4 Evaluation

During the course of the Holinshed Project all the ~20,000 paragraphs (approximately
2.5 million words in the 1577 edition and almost 4 million words in the 1587 edition)
of the 1577 and 1587 versions of Holinshed's Chronicles have been inspected
manually. An initial matching was created using the ShingleCloud algorithm as
described above which was then inspected and refined by a domain expert. Each
paragraph in the 1577 version has been annotated regarding whether this paragraph
still exists in the 1587 version and in which paragraph(s) of the 1587 version its
content can be found. Thus an annotation set has been created that can serve as gold
standard for the evaluation of approaches for automatic detection of overlapping
textual paragraphs.

We have split the corpus into several parts using two of them for the evaluation
presented here. This had to be done due to the poor runtime performance of GST,
which has a worst case complexity of O(n3), while ShingleCloud and n-gram-overlap
run in linear time. Holinshed’s Chronicles are internally split up into several books.
Part one of the evaluation corpus consists of the first four books plus the preface
while part two consists of book five. The following table gives an overview of the two
parts.

 Part 1 Part 2
Books Preface, Book 1-4 Book 5
Paragraphs in 1577 version 3135 4476
Words in 1577 version 454,662 554,311
Paragraphs in 1587 version 2685 4377
Words in 1587 version 489,881 1,001,724
Number of matches in annotation 3384 4720
Theoretically possible Matches 8,4*106 19,6 * 106

Table 1: Characteristics of subsets used for evaluation

Since it is possible that a paragraph of the 1577 version has been split up and
distributed over several paragraphs in the 1587 version there are possibly more
matches in the annotation set than paragraphs in the source version. Due to the high
number of possible combinations the number of possibly matching paragraphs has to
be narrowed down. Thus the evaluation process is done in two steps:

1. Each algorithm selects a set of candidate pairs of paragraphs. The
algorithm selects a pair when one of the containment measures is >0.02.

2. The problem is then transformed into a categorization problem with two
categories (hit and miss) using a ten fold cross validation approach based
on the given annotations with the containment measures of the paragraph
pairs as features. An optimal threshold is computed on the training set
(using a brute force approach) which is then used as discriminant to
categorize the test set. To achieve high confidence the ten fold is run 10
times.

Now quality measures like the F1 measure, precision and recall can be calculated to
compare the different algorithms.

As expected, the LCS algorithm did perform significantly worse on the given
corpus than ShingleCloud, n-gram-overlap, or GST; the LCS algorithm reached
values for F1 lower than 0.50. Thus the results for LCS are not included in the
following. Table 2 shows the F1 measures as well as precision and recall on both
parts for n-gram-overlap, GST, and ShingleCloud (SC) in comparison.

Approach F1 (σ)
Pt. 1

Precision /
Recall (Pt. 1)

F1 (σ)
Pt. 2

Precision /
Recall (Pt. 2)

GST (MTL = 7) 0,9665
(0,0005)

0,9763 /
0,9577

0,9752
(0,0004)

0,9827 /
0,9681

GST (MTL = 5) 0,9568
(0,0020)

0,9626 /
0,9518

0,9819
(0,0003)

0,9835 /
0,9815

GST (MTL = 6) 0,9669
(0,0008)

0,9742 /
0,9638

0,9794
(0,0004)

0,9827 /
0,9770

SC (n=3, mno=3, mnz=3) 0,9803
(0,0003)

0,9851 /
0,9748

0,9841
(0,0004)

0,9838 /
0,9843

SC (n=3, mno=3, mnz=0) 0,9798
(0,0002)

0,9872 /
0,9721

0,9844
(0,0003)

0,9844 /
0,9845

SC (n=5, mno=1, mnz=0) 0,9713
(0,0005)

0,9730 /
0,9694

0,9853
(0,0003)

0,9867 /
0,9843

SC (n=4, mno=3, mnz=4) 0,9751
(0,0005)

0,9826 /
0,9671

0,9854
(0,0002)

0,9884 /
0,9826

n-gram-overlap (n=5) 0,9637
(0,0008)

0,9659 /
0,9638

0,9854
(0,0001)

0,9880 /
0,9830

n-gram-overlap (n=6) 0,9721
(0,0003)

0,9806 /
0,9638

0,9820
(0,0006)

0,9860 /
0,9792

n-gram-overlap (n=4) 0,9663
(0,0004)

0,9700 /
0,9633

0,9847
(0,0002)

0,9865 /
0,9830

Table 2: Evaluation results

The results show, that all of the algorithms perform similarly well on the given corpus
with slight advantages for ShingleCloud over n-gram-overlap and GST, specifically
on part one. However, as for most true matches (those that were confirmed by a
domain expert) the containment measures were quite high – usually above 33% – and
the optimal threshold computed during the evaluation was around 5-10%, smaller
differences in the containment measures between the algorithms are not reflected in
the results. Figure 1 shows a visualization of the evaluation results on both parts of
the Chronicles.

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

SC (n
=3

, m
no

=3
, m

nz
=3

)

SC (n
=3

, m
no

=3
, m

nz
=0

)

SC (n
=4

, m
no

=3
, m

nz
=4

)

SC (n
=5

, m
no

=1
, m

nz
=0

)

n-g
ram

-ov
erl

ap
 (n

=6
)

GST (M
TL=

6)

GST (M
TL=

7)

n-g
ram

-ov
erl

ap
 (n

=4
)

n-g
ram

-ov
erl

ap
 (n

=5
)

GST (M
TL=

5)

Approach

F1
-M

ea
su

re

Part1
Part 2

Figure 1: Evaluation Results in Comparison

Since ShingleCloud is based on n-gram-overlap it is expected that both perform
almost equally well. However, ShingleCloud has several advantages, including the
built-in localisation of matches, the small amount of storage it needs and its runtime
efficiency in needle-haystack scenarios. As the ShingleCloud approach is very
flexible (see Section 3.3) it can easily be adapted to work in different scenarios; it can
be fine-tuned to a certain use-case or run with a one-fits-all configuration. The huge
disadvantage of GST is its runtime complexity. While ShingleCloud when run over
the entire Chronicles is done in less than three hours, GST needs days if not weeks for
this task without producing better results.

4 Visualisation of Overlap - The TEI Comparator

There are some approaches that deal with the visualisation of overlap. In [Klerkx,
2006] relations resulting from the reuse of PowerPoint slides are visualised in various
ways to show the form and extent of reuse within the ARIADNE repository.

Visualisation methods like dotplots or Patterngrams are used in the area of plagiarism
detection to determine whether there are overlapping sequences between documents
or not [Clough, 2001]. Plagiarism detection tools like docoloc use a rather pragmatic
method of visualisation and simply add linked annotations to the overlapping text
passages. [Johnson, 1994] uses Hasse diagrams to visualise redundancies in legacy
source.

The TEI Comparator is a database backed web application that was originally
developed as frontend for the Holinshed Project and is designed for the visualisation
of overlapping passages in two XML files. It was created to allow domain experts to
browse through, revise and annotate the initial matching created by ShingleCloud. It
works on items of a paragraph-like granularity and allows detecting of how these have
been changed from one document to the next. Two matching items can be linked (i.e.
marked as matching) and users can put notes on either items or on links. An initial
matching (propositions for matching paragraphs) can be created, as a starting point for
a more in depth comparison. In case of the Holinshed Project the initial matching
achieved an accuracy of more than 90% using an early version of the ShingleCloud
algorithm (see Section 3.4).

Figure 1 shows the user interface of the TEI comparator. The user can choose
which of the two input documents is seen as source document and can then select a
“chapter” from the source document to work on. A table of contents, to select the
chapter from is automatically generated from the underlying XML structure. The
work unit is then displayed in the left column allowing the user to browse through its
paragraphs. For each of the paragraphs, the right hand column shows linked
paragraphs in the target document and allows the user to confirm links created by the
initial matching process or further refine them (remove matches or search for new
matches either with ShingleCloud, via the document’s structure or via full text
search). The matching portions of two paragraphs can be highlighted.

Figure 2: The TEI Comparator GUI

The resulting data (matches and notes) can be exported into a TEI-marked-up XML
file [TEI, 2010], which can then be further processed with standard XML tools (see
for example http://www.english.ox.ac.uk/holinshed/). For documentation and
download see [Mittelbach, 2010b].

5 Conclusions and Future Work

In this paper we have proposed an algorithm and tool to support the tracking of
information flow. Specifically in the context of historical documents this can help
greatly to understand and interpret events and changes in attitudes and the political or
religious landscape of those times. The evaluation has shown that the proposed
ShingleCloud algorithm is better suited for the task of overlap detection task than
state of the art approaches. Evaluations we have done on other corpora have
confirmed this experience. Besides its use in the Holinshed Project the proposed
system can be used in arbitrary scenarios where textual overlap needs to be detected
and visualised in an effective and fast manner. Future work in this area might include
the adaptation of the tool and algorithm for slightly different use cases like
comparison of and search in DNA sequences or functional extensions to the given UI.

References

[Broder, 1997] Broder, A. Z. (1997), On the Resemblance and Containment of Documents, in
'SEQUENCES '97: Proceedings of the Compression and Complexity of Sequences 1997', IEEE
Computer Society, Washington, DC, USA, pp. 21.

[Burrows, 2007] Burrows, S.; Tahaghoghi, S. M. M. & Zobel, J. (2007), 'Efficient plagiarism
detection for large code repositories', Softw. Pract. Exper. 37(2), 151--175.

[Clough, 2001] Clough, P. (2001). Measuring Text Reuse and Document Derivation.
Postgraduate transfer report, Department of Computer Science, University of Sheffield, UK.

[Clough, 2003] Clough, P. (2003), 'Old and new challenges in automatic plagiarism detection',
Online: http://ir.shef.ac.uk/cloughie/papers/pas-plagiarism.pdf, (zuletzt abgerufen am
16.11.2009).

[Hamid, 2009] Hamid, O. A.; Behzadi, B.; Christoph, S. & Henzinger, M. (2009), Detecting the
origin of text segments efficiently, in 'WWW '09: Proceedings of the 18th international
conference on World wide web', ACM, New York, NY, USA, pp. 61--70.

[Holinshed, 2010] Holinshed's Chronicles, Online, http://www.cems.ox.ac.uk/holinshed/

[Jaccard, 1901] Jaccard, P., 'Étude comparative de la distribution florale dans une portion des
Alpes et des Jura', Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547--579.

[Johnson, 1994] Johnson, J. H. (1994), Visualizing textual redundancy in legacy source, in
'CASCON '94: Proceedings of the 1994 conference of the Centre for Advanced Studies on
Collaborative research', IBM Press, , pp. 32.

[Kim, 2009] Kim, J. W.; Candan, K. S. & Tatemura, J. (2009), Efficient Overlap and Content
Reuse Detection in Blogs and Online News Articles, in '18th International World Wide Web
Conference'.

[Klerkx, 2006] Klerkx, J.; Verbert, K. & Duval, E. (2006), Visualizing Reuse: More than Meets
the Eye, in 'Proceedings of the 6th International Conference on Knowledge Management (I-
KNOW) 2006', pp. 489-497.

[Loose, 2008] Loose, F.; Becker, S.; Potthast, M. & Stein, B. (2008), Retrieval-Technologien
für die Plagiaterkennung in Programmen, in Joachim Baumeister & Martin Atzmüller,
ed.,'Proceedings of the Information Retrieval Workshop at LWA 2008', University of
Würzburg, Germany, , pp. 5-12.

[Lyon, 2001] Lyon, C.; Malcolm, J. & Dickerson, B. (2001), Detecting Short Passages of
Similar Text in Large Document Collections, in Lillian Lee & Donna Harman, ed.,'Proceedings
of the 2001 Conference on Empirical Methods in Natural Language Processing', pp. 118--125.

[Maier, 1978] Maier, D. (1978), 'The Complexity of Some Problems on Subsequences and
Supersequences', J. ACM 25(2), 322--336.

[Metzler, 2005] Metzler, D.; Bernstein, Y.; Croft, B. W.; Moffat, A. & Zobel, J. (2005),
Similarity measures for tracking information flow, in 'CIKM '05: Proceedings of the 14th ACM
international conference on Information and knowledge management', ACM, New York, NY,
USA, pp. 517--524.

[Mittelbach, 2010] Mittelbach, A. & Lehmann, L. (2010), 'ShingleCloud Library for
approximate string matching', Online: http://www.kom.tu-
darmstadt.de/en/downloads/software/shinglecloud/, Zuletzt abgerufen am 13.01.2010.

[Mittelbach, 2010b] Mittelbach, A. & Cummings, J. (2010), 'TEI-Comparator, Online:
http://tei-comparator.sourceforge.net/, Zuletzt abgerufen am 03.03.2010.

[TEI, 2010] TEI Consortium, eds. TEI P5: Guidelines for Electronic Text Encoding and
Interchange. 1.6.0. Last updated on February 12th 2010.. TEI Consortium. http://www.tei-
c.org/Guidelines/P5/ (last accessed 01.06.2010).

[Wise, 1993] Wise, M. J. (1993), 'Running Karp-Rabin Matching and Greedy String Tiling',
Technical report, Basser Department of Computer Science - The University of Sydney.

