

Abstract—Cooperation mechanisms for agents monitoring

service-based workflows are a means to address the increasing
complexity of modern enterprise architectures. These
mechanisms are inspired by existing biological mechanisms
and extend an existing decentralized monitoring architecture
in order to handle deviations from Service Level Agreements
autonomously. As the core cooperation mechanisms have been
subject of our previous work and have been described in detail
earlier, we present now an evaluation of our concepts
regarding both effectiveness and efficiency, based on an
implemented prototype.

Index Terms—Agents, Cooperation, Self-organization,
Service-oriented Architectures.

I. INTRODUCTION AND SCENARIO

Modern economies have become highly competitive and,
therefore, require enterprises to adapt both quickly and
continuously to changing circumstances and demands. The
evolution of the underlying information systems (IS) and
technologies is closely related to the businesses they
support. Thus, IS face challenging requirements, such as
high flexibility and adaptability [9]. While these
requirements can be addressed properly in initial releases of
IS, subsequent changes often decrease the system’s
adaptability seriously.

Maintaining the fulfilment of these requirements, i.e.,
using techniques such as loose coupling and interoperability
can be achieved by the Service-oriented Architectures
(SOA) paradigm [15]. SOAs are based on the “service”
concept, where services can be seen as black boxes
representing business functionalities and which are used to
assemble business processes as service compositions. These
processes and compositions may even cross enterprise
boundaries, thus, enabling service-based, cross-
organizational workflows [8][14] (cf. Fig. 1). In the last
years, the SOA concept has become a successful way of
addressing the enterprise issues mentioned above, e.g.,
using Web service technology as an implementation.

However, as enterprise information systems increase in
flexibility, they become more and more complex as well
[9]. Complex, tedious management and maintenance tasks
have to be performed manually by system administrators,
leading to increased risk and costs. A possible solution to
this problem is to introduce concepts of self-organization to
the SOA domain. Self-organization is rooted in particular in
the biological field, i.e., to successfully manage the
complexity of living beings [13][18]. Inspired from
biological concepts, the integration of self-organization
mechanisms into SOAs is proposed as a way to improve
their management and to reduce external human
intervention [12].
 The concrete application scenario for our research is the
domain of cross-organizational workflows: in order to
execute its business processes, an enterprise often needs to
integrate third-party services offered by different external
service providers. In our scenario, one enterprise plays the
role of a service requester while its business partners are the
service providers. Service clients and providers have to
negotiate contracts defining the requirements for both
parties. This way, Service Level Agreements (SLAs) are
contracted, i.e., specifying service performance and
availability by metrics such as response time and
throughput [10]. However, the specification of the SLAs
itself is no guarantee. The monitoring of their fulfilment
during runtime is needed as well, as the actual service
performance and availability have to be compared with the
contracted ones. In addition, potential deviations from the
defined requirements have to be handled timely and
effectively.

The goal of this paper is to evaluate self-organization
mechanisms designed and implemented for the SOA
paradigm, i.e., cooperation mechanisms between agents for
SLA monitoring and deviation handling.

The rest of this paper is structured as follows. Section 2
gives an overview of related work. The successive Section
3 presents the basic ideas of our cooperation concepts and
describes important implementation details. Thereafter,
Section 4 discusses the evaluation methods and the obtained
qualitative and quantitative results. The paper closes with
conclusions and an outlook on future research.

II. RELATED WORK

The related work for our research consists of three areas:
self-organization, multi-agent systems, and monitoring.

André Miede, Jean-Baptiste Behuet, Apostolos Papageorgiou, Michael Niemann,
Nicolas Repp, Ralf Steinmetz, Fellow, IEEE

Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany
Corresponding Author’s E-Mail: Andre.Miede@KOM.tu-darmstadt.de

Qualitative and Quantitative Aspects of Cooperation Mechanisms
for Monitoring in Service-oriented Architectures

Service Consumer
Layer

Service Provider
Layer

Business
Process Layer

Enterprise Boundary
Fig.1 Service-based, cross-organizational workflow

rst
Textfeld
André Miede, Jean-Baptiste Behuet, Apostolos Papageorgiou, Michael Niemann, Nicolas Repp, Ralf Steinmetz:Qualitative and Quantitative Aspects of Cooperation Mechanisms for Monitoring in Service-oriented Architectures. In: Proceedings of the Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009), p. 563--568, IEEE Computer Society, June 2009. ISBN 978-1-4244-2346-0.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

A. Self-Organization

Lots of existing systems from various fields have self-
organizing capabilities [3][5]. In biology for example, the
neural and hormonal systems in living beings are self-
regulated, many animals tend to organize themselves within
colonies, the human immune system has the ability to react
to new threats, although it has not been specifically planned
to handle them [5][18]. Self-organization is achieved by
different mechanisms facilitating cooperation, e.g.,
stigmergy, feedback, or heart-beats.

One of the most famous cooperation mechanisms
existing in nature is the stigmergy principle, which can be
observed in ant colonies [3]. Stigmergy is a form of indirect
communication between agents via their environment. Ants
cooperate in this way by releasing and sensing pheromones.

Another widely used mechanism for self-organization is
the feedback concept [3][5]. Positive feedback is used as a
way to amplify changes in systems. In order to avoid
endless and uncontrollable amplifications, negative
feedback is used in combination and can be seen as a
counteracting mechanism aimed at stabilizing systems.

The heart-beat mechanism is a form of cooperation
which is used for local monitoring [12][13]. In biological
organisms, cells monitor each other in a decentralized
manner by sending heart-beats periodically to other cells.
Heart-beats are typically very simple messages, containing
almost no information, since their only goal is to notify
neighbours that their sender is alive. Heart-beats with more
information are named pulses. Pulse monitors are used as
reflex signals to give urgent warning about an undesirable
situation [18].

B. Multi-Agent Systems

 When it comes to cooperation (and more generally to
self-organization) mechanisms, agents are the basic entities
these mechanisms are based on. Multi-Agent Systems
(MAS) are sets of agents interacting with each other. As
stated by Gabbai et al. [6], in MAS more attention is paid
on interactions than on the agents’ individual actions.
Agents composing an MAS accomplish complex global
tasks, while they have limited individual capabilities and
operate only at a local level [20]. Since global tasks at the
system level are based on interactions between autonomous
agents, the latter have to rely on each other to execute their
own actions. However, some agents in the system may be
malicious or experience problems. The theory of reputation
in Multi-Agent Systems has been developed in order to
support agents in their interactions with their peers. Here,
reputation is the perception one agent has of another. It can
be modelled centralized or decentralized, i.e., storing
reputation information among the agents. Agents evaluate
each other and use this perception of the others to decide
which actions to perform.

C. Monitoring

In order to detect and then to react to violations of SLAs,
the fulfilment of these contracts has to be monitored during

runtime. Monitoring approaches can be divided into
centralized and decentralized ones.

Many centralized approaches mainly deal with service
monitoring and not with the reactions to detected problems
[4][17][19]. Furthermore, centralization is here often rather
limiting and can lead to scalability and performance
problems.

For these reasons, we use decentralized monitoring for
our concept. Decentralized monitoring approaches do not
rely on a central entity, as they make use of distributed data
gathering and distributed decision making. Approaches for
decentralized monitoring are generally based on agent
technology. In the field of service-based workflows, Zeng
et al. have proposed a management system based on agents
[21] integrating dynamically and effectively cross-
enterprise workflows.

Our approach is built on the AMAS.KOM architecture
(Automated Monitoring and Alignment of Services), which
is a decentralized monitoring and deviation handling
architecture based on agent technology [16]. This
architecture has been designed to monitor Web service-
based workflows and to support the handling of SLA
violations autonomously. Fig. 2 gives a simplified overview
of the AMAS.KOM architecture. In this monitoring
infrastructure, Web service calls are redirected by proxies to
Monitoring and Alignment Agents (MAAs). Each agent is
used as a monitoring unit for a given Web service with a
given SLA. MAAs then act as proxies for their assigned
Web services, while monitoring them and checking the
fulfilment of the associated SLAs.

III. BASIC CONCEPTS AND IMPLEMENTATION

The details of our agent cooperation concept have been
published previously [11]. However, this section is a
necessary foundation for our evaluation approach and
briefly recapitulates the major aspects.

A. Agent Cooperation Concept

In the AMAS.KOM architecture, one Monitoring Agent
is monitoring the fulfilment of one SLA for one Web
service. Obviously, a Web service is not dedicated to only
one client. To use Web service technology to its full extend,
a Web service serves several service consumers
concurrently. As a result, a Web service may be subject to
several contracted SLAs and, thus, be monitored by several
agents simultaneously, each agent monitoring the fulfilment
of one SLA in particular.

Using all the agents monitoring the same Web service
we create a grouping, called an Agent Cluster as the

Client

Proxy Monitoring Factory

Web Service

AgentAgent Agent

Web Service

Service Requester

Service Providers

Monitoring Architecture

Fig.2 Simplified overview of the AMAS.KOM architecture [11]

foundation for further cooperation. Fig. 3 gives an overview
of this clustering concept. Within this cluster, the agents
exchange their monitoring information and, thus, as a
whole, the cluster is capable of specialized diagnosis. It can
distinguish a Web service crash from the inability to fulfil
an SLA, or from problems in the monitoring infrastructure.

With this more accurate perception of the monitored Web
service, the Agent Cluster is able to perform suitable
reactions to detected violations autonomously. These
reactions may include, e.g., the invocation of alternative
Web services, the delegation of monitoring to other agents
(which may be generated for this purpose), and the
renegotiation of SLAs. As a result, while a single agent is
responsible for the monitoring of the fulfilment of an SLA
contracted by a given Web service, the associated Agent
Cluster is, as a whole, in charge of monitoring this Web
service and handling the detected deviations. The cluster
accomplishes these tasks on its own without external
intervention. In addition, the cluster manages itself by
treating potential problems occurring in the agent
infrastructure inside the Agent Cluster.

For tasks in the Agent Cluster that could better be
centralized, one agent is elected among the Monitoring
Agents in the cluster: the Cluster Leader. This is a concept
known, for example, from hierarchical routing protocols in
Wireless Sensor Networks [1] or the Cougaar architecture
[7]. After its election, the Cluster Leader still acts as a
regular Monitoring Agent, but it has additional
responsibilities, e.g., receiving requests from other Agent
Clusters. It has to decide whether to accept them, according
to its perception of the Web service it monitors as well as its
perception of its Agent Cluster. In case that it accepts such
external requests, the Cluster Leader treats them by
delegating them to the Monitoring Agents in its cluster.

As its main task, the Cluster Leader is responsible for the
management of its Agent Cluster. To achieve this, the
Cluster Leader is the centre of the heart-beat mechanism
inside the cluster. Periodically, it sends heart-beats to the
other Monitoring Agents in the cluster to notify them of its
presence. In their turn, the other agents send heart-beats
back (cf. Fig. 4). In this way, the Cluster Leader is aware of
the presence of all the Monitoring Agents inside its cluster

and can detect agent failures. In such a case, the leader tries
to delegate the monitoring tasks of the problematic agent to
another one in the cluster, or it creates a new agent which
will replace the damaged one and take over its tasks.

The Cluster Leader stores only some basic information
about the other agents in the cluster, thus, its storage is no
point of failure. In case of failure of the Cluster Leader, a
dedicated election mechanism ensures the election of a new
leader which will retrieve and regenerate this information as
soon as it is elected.

In general, choosing one agent per cluster to treat
incoming communication from other Agent Clusters is a
scalable way to design inter-cluster cooperation. Moreover,
electing one agent per cluster for extra responsibilities is a
robust way of dealing with central non-critical functionality
in the clusters (intra-cluster cooperation).

B. Implementation Details

Building on the original AMAS.KOM architecture, our
prototype with the cooperation enhancements discussed in
this paper is implemented using the JADE (Java Agent
DEvelopment) framework [2], an Open Source Java
framework for agent development compliant with the FIPA
specification (Foundation for Intelligent Physical Agents).
To ensure extensibility and reusability, special care has
been taken of the proper definition of new behaviors in
JADE in order to enable future work.

Apache AXIS2 is used for Web service deployment and
the following Web service standards are supported by the
original as well as by the enhanced architecture: WS-BPEL
2.0 for workflow description, WSDL 1.1 for Web service
description, SOAP 1.2 as the protocol for exchanging XML
messages, REST as the style for Web service
communication, and WS-Policy and WS-SecurityPolicy as
policy formats.

IV. CONCEPT EVALUATION

This section discusses the evaluation of the previously
described agent cooperation concept. It is structured into the
description of the used methodology and the presentation of
the obtained results.

A. Methodology and Infrastructure

In order to evaluate our agent cooperation concept, two
general methods are possible. The evaluation could either
be performed by upgrading the implemented architecture to
make it support simulations, or by using a special simulator,
e.g., OMNeT, running separately from the developed
prototype. The second evaluation process has one great
drawback compared with the first one: the performed
simulations would be totally independent from the
implemented architecture. Obtaining good simulation
results this way would not guarantee at all that the
implemented concept runs effectively. In addition, this
method would require re-implementing the concept for the
simulator, possibly introducing new sources for errors.
Therefore, we decided to evaluate the agent cooperation

Client

Proxy Monitoring Factory

Web Service

Agent

Agent

Agent

Web Service

Agent

Agent

Agent Cluster Cluster LeaderIntra-Cluster Cooperation
Inter-Cluster
Cooperation

Agent Cluster

Fig.3 Overview of the Agent Cluster concept [11]

Fig.4 The Cluster Leader sends heart-beats to all the agents in the cluster

(left) and receives heart-beats in return (right)

concept by using the implementation sketched in the
previous section. In order to support simulations and to
facilitate the handling of the results, a simulation interface
has been developed and integrated into our prototype. The
basic idea is to have one user interface for each Monitoring
Agent created during run-time. A screenshot of such an
interface is shown in Fig. 5.

The interface for an agent is used on the one hand to
display logging information for this agent and on the other
hand to enable the user performing the evaluation to modify
certain simulation parameters. These parameters include the
reachability of the Web service from the agent, the latency
of the Web service from the agent’s point of view, and the
reachability of the agent itself from the rest of the cluster’s
point of view. By interacting with the simulation interface,
the user is able to simulate the different types of causes for
SLA violations, which are described in the next section as
our evaluation use cases.

B. Qualitative Evaluation of Our Agent Cooperation

In this section, the different types of SLA violations for
which the agent cooperation concept has been designed are
presented as use cases:

- Web service problems are simulated by decreasing the
value of the parameter “WS Reachability” or by increasing
the value of the parameter “Latency in WS calls” for each
agent monitoring this Web service.

- Connectivity problems between an agent and its Web
service are simulated by decreasing the value of the
parameter “WS Reachability”, which causes service
failures, or by increasing the value of the parameter
“Latency in WS calls”, which increases the service’s
response time.

- Agent problems are simulated by increasing the value of
the parameter “Agent Reachability”, or by even destroying
the agent (closing the interface window).

- Simulating a too optimistic SLA is realized by setting a
very small value for the maximum response time in the
policy file corresponding with this SLA (which is passed to
the agent at its creation time).

In addition to the use cases above, the “regular case” has
to be considered where no SLA violation occurs. The goal
here is to prove that the basic mechanisms the whole
architecture is based on run effectively, i.e., the creation of
Monitoring Agents, the “yellow pages” service, the intra-
cluster releasing feedback according to the “Publish-

Subscribe” pattern, the heart-beat, and the election
mechanisms.

The implemented mechanisms were evaluated
qualitatively for each use case, using the simulation
interface presented in the previous section. Using the
information gathered from the logs displayed in the user
interface, sequence diagrams were drawn in order to give a
better overview of the interactions occurring between the
different entities of the monitoring architecture, i.e.,
showing the effectiveness of the used mechanisms. Due to
the severe space constraints, in this paper only one of the
use cases is presented in detail. (Further results are available
from the authors upon request.)

The main use case for the presentation of our evaluation
is when the monitored Web service experiences problems.
All agents monitoring the Web service detect SLA
violations, e.g., too high response times or failures of the
service calls. Both cases are evaluated in the following:

Failure of Service Calls: In case of failures of service
requests due to Web service problems, the other agents of
the cluster also detect violations. The Monitoring Agent
should not contact other agents in its cluster for the results
of the requests, but it should contact the Cluster Leader of
an alternative Web service. After experiencing several
failures, it should delegate its monitoring tasks to an agent
of another Agent cluster associated with an alternative Web
service.

The following describes what happens in detail, for better
differentiation, we use numbers for the participating agents
and Web services: after experiencing a failure, Agent 1
sends negative feedback to its cluster. In response, the other
agents check the Web service, experience failures in their
turn, and release negative feedback into the cluster as well.
After receiving these feedback messages, Agent 1 decides
to contact Agent 5, Cluster Leader of the alternative Web
service Web service 2, for the result of the service request.
Afterwards, Agent 1 considers the current situation as
satisfying and decides to continue in this way. After
experiencing a new failure and receiving negative feedback
from the other agents of the cluster, Agent 1 requests once
again Agent 5 for the result of its service request.
Afterwards, it decides to delegate its monitoring tasks to an
agent of an alternative Web service by sending a call for
proposals. The Cluster Leader Agent 5 makes a proposal
which is accepted by Agent 1. It creates a new agent Agent
1’ which takes over the tasks of Agent 1 and monitors Web
service 2. Finally, Agent 1 dies. When there is no
alternative Web service, inter-cluster requests are not
possible and the agent finally has to return a failure
message. Without an alternative Web service, it cannot
delegate its tasks to another agent and must go on this way.
The sequence diagram in Fig. 6 depicts this special case.

Slow Web Service: After experiencing several simple
SLA violations because of the high latency of the Web
service, the Monitoring Agent should delegate its
monitoring tasks to an agent of another Agent Cluster,
which is associated with an alternative Web service. This
use case is equivalent to the previous one without the inter-

Fig.5 Simulation interface for the evaluation of our concept

cluster requests for results.

C. Quantitative Impact of the Cooperation Mechanisms

Our agent cooperation model was designed with the
objective of detecting and handling SLA deviations. In the
preceding section, we have shown our implementation of
the concept to deal with these violations successfully.

However, it seems obvious that the cooperation
mechanisms integrated into the AMAS.KOM architecture
introduce communication overhead in the regular case, i.e.,
when no deviation occurs. The exchange of messages
between agents enables them to react to violations
successfully, but it has no effect otherwise. Therefore, we
discuss in this section the overhead measurements of the
cooperation mechanisms in the regular case. We evaluate
this overhead based on the response time for service
requests on the client side, i.e., the time for the client to
obtain results for service requests. This metric can be seen
as the most relevant one for this case since the agent
cooperation concept is aimed at offering advantages to the
service customers. The comparison of the response time
with and without cooperation is a way to check its impact
on the clients, i.e., performance drawbacks.

In addition, this comparison is closely related to the
number of messages between the agents for cooperation,
since these messages induce some latency into the system.
As most of the exchanged messages between agents come
from intra-cluster cooperation, the amount of these
messages mainly depends on the size of the clusters.

Therefore, we modify the number of agents per cluster in
our experiment. For each cluster size, we send 10 service
requests to each Monitoring Agent and we average the
response time. Fig. 7 shows the results of this experiment.
Response times with and without cooperation are compared,
for cluster sizes ranging from 1 to 20. Fig. 8 represents the
relative difference between the two cases. As expected, the
overhead due to the exchange of messages between agents
for cooperation increases with the cluster size. This is
expected since the number of messages exchanged between
the agents in the cluster (feedback, heart-beats) depends on
the size of the Agent Cluster. For bigger clusters, e.g., with
25, 30, or 50 agents, the response time increases in a serious

way, leading to client timeouts, i.e., 30 seconds with
Apache Axis2 while response times are around 100
milliseconds without cooperation. After carefully checking
the logs, we noticed that in a bigger cluster, elections are
launched all the time. The Cluster Leader has to manage
more heart-beat messages, while the defined timeout for
election launching (15 seconds) is too small to allow it to
cope with all these messages. Therefore, flooded by the
high amount of heart-beat messages as well as dealing with
the service requests and the feedback messages, the Cluster
Leader cannot handle these heart-beats within the election
timeout. An election is then launched. As result, a newly
elected leader has the same difficulties as the former one,
another election is launched and so on.

Consequently, the Agent Cluster experiences endless
election launching. As election messages contain the
agents’ perception vectors and are quite big messages, they
overflow the whole JADE agent platform. Not only the
Cluster Leader but also the other agents cannot treat their
service requests in time. In order to prevent this endless
election launching process, one possibility is to increase the
timeout for election launching. Even for smaller clusters,
increasing the different timeouts in the system, e.g., the
leader’s period of sending heart-beats, would also reduce
the overhead (by reducing the number of heart-beats).
However, by increasing the timeouts, the system gets less

Proxy Monitoring Factory Agent 1 Agent 2 Agent 3 Web service 1

doAgentCall(request,WS1,policy1) find agent(WS1,policy1)

send request call(request)

failure

negative feedback
negative feedback

negative feedback

call()

failure
call()

failure

negative feedback
negative feedback

negative feedback

negative feedback negative feedback negative feedback

failure

failure

Fig.6 Web service problem: failure of service call

(without alternative Web Service)

Fig.8 Relative difference of response time for service requests with and

without cooperation

Fig.7 Comparison of response time for service requests with and without

cooperation

reactive. If the current election timeout may be too small
(15 seconds) and could be increased, this can be done only
up to a certain extent. Anyway, for each timeout value,
there will be cluster sizes for which the above problem will
occur.

Therefore, we propose to limit the size of Agent Clusters
to prevent this problem, e.g., 15 agents per cluster. If too
many agents monitor the same Web service, it will be
decided to create other Agent Clusters for this Web service.
This way, a Web service will not be assigned only one
Agent Cluster, but could be associated with several ones.
Special inter-cluster cooperation will be required to achieve
this, i.e., between the leaders. This opens opportunities for
future work, as described in the next section.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the evaluation of our agent
cooperation model which focuses on monitoring and
handling SLA deviations autonomously and which
enhances an existing monitoring architecture for cross-
organizational, Web service-based workflows.

As a proof of concept, we implemented our agent
cooperation model and integrated it into the original
AMAS.KOM architecture.

For evaluation purposes, we developed a simulation
interface and integrated it into the enhanced architecture.
The different types of SLA violations considered in our
scenario were presented as use cases and the concept was
qualitatively evaluated for each type of violation. One
special use case was discussed in detail. This way, we
proved that our implementation of the agent cooperation
concept made Monitoring Agents handle SLA violations
suitably. While our cooperation model brings benefits to the
monitoring architecture by enabling it to react to detected
deviations, we also had to investigate its impact on the
operation of the architecture in the regular case, i.e., when
no violation occurs. For this purpose, we measured the
overhead due to the cooperation mechanisms in the regular
case. We observed that the overhead increased with the
cluster size, which was expected since the number of
messages exchanged between the agents depends on the
size of the Agent Cluster. Therefore, an important step is to
limit the number of agents within a cluster, using even
multiple clusters for the monitoring of the same service, if
necessary.

Other levels of cooperation could be added and other
functionalities could be integrated into the monitoring
architecture: in our concept, inter-cluster cooperation
remains limited to requests for results and calls for
delegation. Inspired by hierarchical routing in Wireless
Sensor Networks [1], we could imagine some exchange of
information between leaders of different clusters. As we
finally decided to limit the cluster size and then to allow the
assignment of several Agent Clusters per Web service,
special cooperation mechanisms between Cluster Leaders
assigned to the same Web service have to be considered.

VI. ACKNOWLEDGMENTS

This work is supported in part by E-Finance Lab e.V.,
Frankfurt am Main, Germany and BearingPoint
Management and Technology Consultants.

VII. REFERENCES

[1] J.N. Al-Karaki and A.E. Kamal, "Routing Techniques in Wireless
Sensor Networks: A Survey," IEEE Wireless Communications, vol.
11, no. 6, 12, 2004, pages 6–28.

[2] F.L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
Agent Systems with JADE, Wiley, 2007.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press, Inc.,
New York: 1999.

[4] L. Baresi and S. Guinea, "Towards Dynamic Monitoring of WS-
BPEL Processes," in Proceedings of the International Conference on
Service Oriented Computing, 2005, pages 269–282.

[5] S. Camazine, N.R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg,
and G. Theraulaz, Self-Organization in Biological Systems, Princeton
University Press, Princeton: 2001.

[6] J.M.E. Gabbai, H. Yin, W.A. Wright, and N.M. Allinson, "Self-
Organization, Emergence and Multi-Agent Systems," in ICNN&B’05:
The 2005 IEEE International Conference on Neural Networks and
Brain, 2005, http://gabbai.com/files/ICNNB.

[7] A. Helsinger and T. Wright, "Cougaar: A Robust Configurable Multi
Agent Platform," in IEEE Aerospace Conference, 2005.

[8] N. Josuttis, SOA in Practice: The Art of Distributed System Design,
O’Reilly Media, Inc., 2007.

[9] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-
Oriented Architecture Best Practices, Prentice Hall PTR, Upper
Saddle River: 2004.

[10] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck, Web Service
Level Agreement (WSLA) Language Specification, version 1.0,
technical report, IBM Corporation, 2003.

[11] A. Miede, J.-B. Behuet, N. Repp, J. Eckert, and R. Steinmetz,
"Cooperation Mechanisms for Monitoring Agents in Service-oriented
Architectures," in Tagungsband der 9. internationalen Tagung
Wirtschaftsinformatik, 2009, volume 1, pages 749–758.

[12] A. Miede, N. Repp, J. Eckert, and R. Steinmetz, "Self-Organization
Mechanisms for Information Systems - A Survey," in Proceedings of
the Fourteenth Americas Conference on Information Systems, 2008.

[13] R. Nagpal, "A Catalog of Biologically-Inspired Primitives for
Engineering Self-Organization," in Engineering Self-Organising
Systems, Volume 2977 of Lecture Notes in Computer Science, G. Di
Marzo Serugendo, A. Karageorgos, O.F. Rana, and F. Zambonelli
(editors), Springer, 2003, pages 53–62.

[14] E. Newcomer and G. Lomow, Understanding SOA with Web
Services, Addison-Wesley Professional, 2004.

[15] M.P. Papazoglou, "Service-Oriented Computing: Concepts,
Characteristics and Directions," in Proceedings of the 4th
International Conference on Web Information Systems Engineering,
2003, pages 3–12.

[16] N. Repp, J. Eckert, S. Schulte, M. Niemann, R. Berbner, and R.
Steinmetz, "Towards Automated Monitoring and Alignment of
Service-based Workflows," in IEEE International Conference on
Digital Ecosystems and Technologies, 2008.

[17] A. Schmietendorf, R.R. Dumke, and S. Stojanov, "Performance
Aspects in Web Service-based Integration Solutions," in 21st UK
Performance Engineering Workshop, 2005, pages 137–151.

[18] R. Sterritt and M.G. Hinchey, "Biologically-Inspired Concepts for
Self-Management of Complexity," in ICECCS ’06: Proceedings of
the 11th IEEE International Conference on Engineering of Complex
Computer Systems, 2006, pages 163–168.

[19] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, "Towards
Security Monitoring Patterns," in SAC ’07: Proceedings of the 2007
ACM Symposium on Applied Computing, 2007, pages 1518–1525.

[20] J.M. Vidal, Fundamentals of Multiagent Systems: Using NetLogo
Models, 2006, http://www.multiagent.com/fmas/.

[21] L. Zeng, A. Ngu, B. Benatallah, and M. O’Dell, "An Agent-based
Approach for Supporting Cross-enterprise Workflows," in ADC ’01:
Proceedings of the 12th Australasian database conference, 2001,
pages 123–130.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

