
Introducing Component-Based Templates into a Game Authoring Tool

Florian Mehm, Stefan Göbel, Ralf Steinmetz
Multimedia Communications Lab, Technische Universität Darmstadt
Florian.Mehm@KOM.tu-darmstadt.de
Stefan.Goebel@KOM.tu-darmstadt.de
Ralf.Steinmetz@KOM.tu-darmstadt.de

Abstract:

Serious Games, including educational games, can be created based on various business models.
Commercial Serious Game developers as well as non-professionals (teachers, employees) tasked
with creating a game face significantly smaller budgets available for such games compared to games
for entertainment. A use case is epitomized by a teacher investigating how he or she can create a
small digital educational game for use in the classroom. The exemplified group of users does not
have programming skills or experience in game development.
Authoring tools for games, analogously to authoring tools in the field of e-learning, allow a non-
technical expert to compose content (such as images, sounds or videos) into a game by specifying
the kind of game to create and then integrating the content. An example is the authoring tool StoryTec
previously presented by the authors.
In this paper, an extension to the authoring tool StoryTec is described, which is intended to assist
non-programmers and novices by offering specialized authoring functionality for the integration of
content into gameplay templates. These templates are based on the software engineering paradigm
of component-orientation, resulting in a number of rich templates that are offered to the author during
the game creation workflow in order to facilitate the authoring process. They provide authoring
capabilities specialized for certain highly dynamic or complex gameplay types, which would be
cumbersome or impossible to author using general-purpose authoring functionalities also found in
StoryTec. In further steps, the components can be augmented with more information, for example
metadata about their usage in order to help authors understand them better or wizards which assist
novice authors in correctly and efficiently filling out the gameplay templates.
A first implementation of a gameplay template was chosen based on the analysis of the authoring
process of a “city rallye”-type game which involves learning about the target city in order to advance
the game. This template was implemented and the authoring effort as well as the complexity were
evaluated, yielding in the result that an equivalent game (with the same content) could be authored in
a smaller amount of time and with reduced complexity.

Keywords: Component-based Software Engineering, Authoring Tool, Serious Game

1. Introduction

The developers of Serious Games, including the large field of Digital Educational Games (DEGs), are
often faced with problems such as limited budgets or highly interdisciplinary work due to the required
interaction between game designers, domain experts and game programmers. These problems are
commonly more pronounced than in the production of regular entertainment games, since the market
for Serious Games is smaller while the requirements for content and educational design are higher in
comparison.
We have previously presented the authoring tool StoryTec (Mehm et al., 2009; Mehm, 2010) as a tool
which can be used to create Serious Games more efficiently by allowing non-technical experts
(especially those without the ability to program using traditional programming languages) to work
directly on a game and enter content according to their expertise in the authoring tool.
In this paper, we describe a concept and implementation of the introduction of component-based
templates into this game authoring tool. While component-based software engineering (CBSE) is a
practice often found in the games industry, we here focus on its usage in an authoring tool,
highlighting the different means of author support that become possible by adopting the CBSE
approach in an authoring tool. In the following we use the term “gameplay template” for a component
which the StoryTec authoring tool integrates at runtime and which encapsulates a certain type of
gameplay which can be configured and filled with content by an author. A non-digital analogy are the
“Frame Games” described by Stolovitch and Thiagarajan (1980): board games which are designed so
that they can be filled with arbitrary educational content (for example by putting it on blank playing
cards).

rst
Textfeld
Florian Mehm, Stefan Göbel, Ralf Steinmetz: Introducing Component-Based Templates into a Game Authoring Tool. In: Dimitris Gouscos, Michalis Meimaris: 5th European Conference on Games Based Learning, p. 395 - 403, Academic Conferences Limited, Reading, UK, October 2011. ISBN 978-1-908272-19-5 CD.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

A use case for the concept can be found in a project recently carried out by the authors of this paper
in which a virtual city rallye for the city of Darmstadt was developed using StoryTec. The gameplay is
centered around a thriller story in which the player has to move around town (visualized by videos),
collect knowledge and answer questions. The finale of the game is a “word puzzle” in which the player
has to arrange letters in the right order to form the code word (see Figure 1). This mini-game was
originally built using multimedia primitives available to the author in StoryTec, which required a large
amount of images of letters and some programming using the visual programming approach used in
StoryTec. In sections 4 and 5 we show how the concept is applied to this use case and how it was
implemented, resulting in easier and faster authoring of this game.

Figure 1: The simple use case chosen for this paper: The gameplay template in question models the
gameplay of a “word puzzle”: by clicking on each letter, the user can cycle through different letters in
order to enter the correct codeword.

2. Related Work

Component-Based Software Engineering (CBSE) (see Szyperski, 1997) is a common practice in
software development and is based on the idea of splitting up a system into maximally independent
components which are developed to carry out clearly defined tasks. These components have several
positive features than can be utilized:

• Well-defined interfaces: Components commonly feature a strong separation between the
definition of their interface and the implementation of this interface inside the component

• Self-describing: By using a standardized format to describe their interfaces, components
describe their functionality themselves

• Separation of concerns: Apart from communication with other components via defined
interfaces, components are able to complete all their tasks on their own

• Substitutability: Since interfaces for components are separated from the actual
implementation inside the component, they are substitutable for another component
implementing the same interface. In game development, this can be used to produce different
versions for different platforms, allowing portability

• Tool support: Using tools developed for this purpose, users without a programming
background can combine components by manipulating graphical representations of the
components, for example by connecting the output of one component with the input of
another component

In the development of games and especially of game engines, CBSE has been used to some extent.
Research results of applying CBSE to the development of games include the work of Folmer (2007),
in which a general reference architecture for game engines based on components is described.
Specifically for the development of educational games, Maciuszek et al. (2010) show how an
intelligent tutoring system centred around component-orientation is used in educational games.
Similarly, Bisognin et al. (2010) demonstrated a learning environment which integrates components
which encapsulate parts of the game. In conjunction with this system, the EDoS authoring system
presented by Tran et al. (2010) targets this game architecture.
An authoring tool designed to be running on a very minimal mobile system (Nintendo DS) is the e-
Training DS system (Tornero et al., 2010). This tool incorporates the idea of component-orientation in
an authoring tool in a similar way as presented here.

3. StoryTec

In this section, we give a short and concise overview of the authoring process in StoryTec as far as it
relates to the content of this paper. For more details, see (Mehm, 2009, 2010) as well as the website
of the authoring tool

1
.

Figure 2: The user interface of StoryTec with the main editor windows visible (from bottom left in
clock-wise order): Story Editor, Stage Editor, Objects Browser and Properties Editor.

An author in StoryTec usually starts by defining the overall structure of the game as well as the
game’s story by entering it in an abstract fashion in the Story Editor window of StoryTec (see Figure
2). In this editor, the whole game is visualized by boxes representing scenes (parts of the game) as
well as transitions between scenes visualized by arrows connecting the scenes.
When this structure has been laid down, the author can continue with filling the game with content by
choosing a scene to work on and switching to the Stage Editor window, which is a WYSIWYG-editor
showing the objects currently placed inside the scene. Objects can be dragged from the Object
Repository window to the scene and then be configured using the Property Editor window. Objects
include multimedia primitives such as images, sounds, videos, characters or label texts. Objects
added in the Stage Editor are also indicated by icons which are placed in their respective scene
boxes.
In a final step, the interaction between the game and the player has to be defined. For this, StoryTec
utilizes a visual programming approach found in the ActionSet Editor window, in which the reaction of
the system to an event generated by the player is defined. This again uses boxes to represent actions
such as playing a video, having a character perform a speech act or changing the scene. The boxes
are aligned in a flow diagram-like structure allowing branches based on variables such as the score of
the player or the number of previous attempts at a certain task.
This general workflow is currently being changed towards specialized workflows for different experts.
For example, a content provider would be unable to change the overall structure and instead be
confined to just adding the content they have available.

1
 http://www.storytec.de

4. Concept

In the following, a concept for the integration of component-based game templates into the authoring
tool StoryTec is described. Each component captures a certain kind of gameplay to be found in the
final game. The individual aspects the components provide are shown in Figure 3 and will be
described in the following sections.

Figure 3: An overview of component-based gameplay templates as described in section 4. A
component consists of an implementation (for the authoring tool and for each player
application/platform it will run in) and is described by metadata including an interface definition and
documentation. Finally, the authoring implementation can also provide specific assistance to the
author e.g. in the form of software wizards.

4.1 Interface Definition

Each component is equipped with a description of the available ways to configure it. The first major
part of this definition are parameters (in the use case, parameters might include the correct code word
and the difficulty of the task). The second are Objects in the sense used in StoryTec, denoting content
such as images as well as logical structures such as variables. For the use case of the word puzzle
game, content could be an optional background image. Finally, the interface definition includes the
events generated by the component, such as events generated when a task is successfully or
unsuccessfully finished by the user. Authors can use these events to program the reactions of the
overall game, e.g. increase a score or go to a different scene in the game.
This interface definition is beneficial in several areas. Programmers implementing the component are
given a specific set of requirements by having to implement the interface definition exactly as defined.
In the authoring tool, the interface definition can be used to generate documentation or wizards
automatically. For example, if the component features a slot for a background image, the authoring
tool could ask a novice user in a wizard to specify a background image.

4.2 Implementation

Each component has to be implemented for a specific player application running on a target platform.
This implementation is provided with the configuration (parameter values and objects) specified by the
author in the authoring tool and consists of the actual implementation of the gameplay.
Implementations for different target platforms can provide different input mechanisms or make other
adjustments to adapt to different platform specifics (e.g. mobile devices with small screens and touch
input vs. deskop PCs with large displays and mouse/keyboard input). Since all implementations are
driven by the same configuration as specified in the authoring tool, this promotes portability, since the

re-usable templates have to be ported once to a new target platform in order to play the same games
without adapting the input files.

4.3 Authoring Implementation

Apart from the implementations of the components to be used in the player application, programmers
can provide a specialized implementation for the authoring tool, which is used in the Stage Editor of
StoryTec to provide specialized WYSIWYG authoring for the specific gameplay modelled in the
gameplay template. Using the example of the use case, the Stage Editor in StoryTec could be
replaced by a view of the component in which the user can enter the correct codeword in a
WYSIWYG-fashion and immediately test the game. Without this authoring implementation which
provides the user interface for this, the user could only edit the parameters of the gameplay template
using the Properties Editor of StoryTec, without the possibility to immediately see changes.

4.4 Metadata

Apart from the interface definition described in section 4.1, further metadata of the component and
associated gameplay can be included. As an example, information about the appropriateness for a
certain type of player (� player modelling, see Göbel et al. (2010)) can be added, so that authors can
see what kind of player will appreciate the gameplay provided in the component and choose it
accordingly when creating an adaptive game in StoryTec.

4.5 Documentation

Documentation of the gameplay template can be automatically created or be added by the
programmer/provider of the component manually. Automatically generated documentation can be
built by the system dynamically by using the information provided in the interface definition (cf. section
4.1). For example, when an author requests help for a specific template, the system could generate
an overview page listing optional and mandatory parameters or assets.
Manually added documentation can increase the quality of the documentation by providing textual as
well as multimedia presentations of the gameplay template. For example, the documentation could
include a small tutorial video how the component is used and also a preview video to give authors an
impression what kind of gameplay is realized in the gameplay template.

4.6 Assistance

Especially for novice authors starting out with using StoryTec for game authoring, a gameplay
template provider can include assistance mechanisms for these users in the authoring implementation
(cf. section 4.3). The main assistance mechanism is the provision of software wizards, i.e. dialogue
windows which guide the user through the correct usage of the component. In the “word puzzle” use
case, a programmer could provide a wizard asking the user for the correct code word on one page,
then for the difficulty on the next page, followed by the optional step of including a background image.
This is shown in detail in section 5. The settings made in the wizard are then reflected in the settings
found in StoryTec, so that advanced authors can then later fine-tune the settings. Expert users can
disable the wizards if they feel that they can make the changes more efficiently themselves.

5. Prototype

In the following, a prototypical implementation of the concept described in the last section is shown,
demonstrating how the concept is related to implementation and usability issues.
Gameplay templates are shown in StoryTec along with the general-purpose objects such as images,
videos or variables built into StoryTec. However, these templates are not hard coded in StoryTec, but
are rather loaded dynamically from a repository of templates which also includes the associated data
such as the documentation or preview videos. Using this mechanism, the core StoryTec program
does not have to be adapted each time a new gameplay template is added or an old one is removed.
Additionally, the cohesion between the authoring tool and the templates is reduced, since template
programmers only have to provide the implementation of their component and do not have access to
the remaining parts of StoryTec.

a)

b)

c)

d)
Figure 4: a) The initial wizard for selecting the gameplay template. b) A wizard page for the correct solution of the game. c) Choosing the background image
for the scene. d) A wizard page for setting up the game’s reaction to player inputs.

5.1 Authoring Tool Implementation

First we show the implementation in the authoring tool, specifically a set of wizard pages which guide
the user through the choice and configuration of the gameplay template specified in the use case.
The first step towards this process is shown in Figure 4 a) where the novice user is shown a set of
available gameplay templates. For each template, the automatically generated and the manually
provided documentation is shown in a summary page, including a preview video of a reference
implementation authors can view in order to get a feeling of how the component can be used.
Additionally, the required and optional assets as well as parameters and events are listed.
Once an author has chosen one of the gameplay templates available to them, a second wizard
assists in filling out the relevant information and with integrating content. Figure 4 b) shows the wizard
page asking the user to enter the correct codeword. This wizard page can be automatically generated
by the system by parsing the interface definition of the component and providing an input field for
each parameter found. Additionally, the authoring implementation provider can deposit additional
documentation such as the description of the purpose of individual parameters such as the code
word.
Figure 4 c) is another instance of a wizard page that can be automatically generated from the
interface definition and be enriched with documentation provided by the authoring implementation
provider/programmer. This screen asks the user for the (optional) background image to be shown
behind the game during gameplay.
Finally, the author has to configure the reaction of the game system to the events generated while the
player is playing the game. This is shown in Figure 4 d). The visual programming approach of
StoryTec is centred around the ActionSet Editor window (cf. Mehm (2010)). This editor is symbolized
by a button with a capital “A” inside it, which can be seen in the figure. Using this editor the author can
specify what will happen in the game once the player has entered the correct codeword. Among the
possible actions are adding points to the score of the player, transitioning to another scene with a
different gameplay template, having a character comment on the performance of the player or any
other actions supported by StoryTec.

5.2 Player implementation

For demonstrating the separation of content and gameplay as well as portability as stipulated above,
different implementations of the gameplay component found in the use case have been created. Apart
from a 2D implementation as seen in Figure 1, an alternative representation has been built using the
Unity3D engine

2
 (see Figure 5). This implementation maps the characters found in the original

implementation to sides of polyhedra which can be turned by using the mouse. While the
representation is quite different from the 2D representation, the input parameters are identical and the
game is controlled using the same overall mechanism.

2
 http://www.unity3d.com

Figure 5: An example implementation in the Unity3D Game Engine, keeping the same core gameplay
and parameters as the implementation shown in Figure 1 in place but replacing the visualization by an
alternative presentation in 3D.

6. Conclusion

We describe a concept and prototypical implementation of the integration of component-based
gameplay templates into the game authoring tool StoryTec. Each template captures the essence of a
certain gameplay and is realized as a software component. During the authoring process, the aspects
of these components are utilized by the authoring tool, for example by providing documentation or
wizards for novice users. The two major results especially relevant for the production of Serious
Games are the level of assistance authors can be provided with using this approach (see section 5)
as well as the increased performance of an author.
No formal comparison studies have been carried out yet, however, several authors (including the
original author of the city rallye game) were given the old version of StoryTec where the “word puzzle”
sequence had to be constructed manually by the use of multimedia primitives (specifying images for
each of the letters and then specifying in which order the images were exchanged when clicked on by
the user). These authors were then given the newer version which included the gameplay template
described here. It was found that the authors were able to complete the authoring task given to them
in a considerably smaller amount of time. Additionally, all authors pointed out that the specific
authoring implementation with the WYSIYG-approach made the task much clearer and easier to work
on.
The work described herein is currently being merged with other work being undertaken in StoryTec,
including the role-specific authoring mentioned in section 3 as well as the semi-automatic generation
of authoring workflows based on the concepts introduced in this paper.

References
Bisognin, L., Carron, T. and Marty, J. (2010) “Learning Games Factory: Construction of Learning
Games Using a Component-Based Approach”, Proceedings of the 4

th
 European Conference on

Games-Based Learning (ECGBL 2010), pp. 19-30, Academic Publishing, Reading, UK
Folmer, E. (1997) “Component based Game Development - A solution to escalating costs and
expanding deadlines?”, Component-Based Software Engineering, 2007, pp. 66-73
Göbel, S., Wendel, V., Ritter, C. and Steinmetz, R. (2010) “Personalized, Adaptive Digital Educational
Games using Narrative Game-based Learning Objects”, Edutainment'10 Proceedings of the
Entertainment for education, and 5th international conference on E-learning and games, Springer
Verlag Berlin/Heidelberg
Maciuszek, D., Ruddeck, G. and Martens. A. (2010) “Component-based development of educational
games: The case of the user interface”, Proceedings of the 4

th
 European Conference on Games-

Based Learning (ECGBL 2010), pp. 208–217, Academic Publishing, Reading, UK
Mehm, F., Göbel, S., Radke, S. and Steinmetz, R. (2009) “Authoring Environment for Story-based
Digital Educational Games”, Proceedings of the 1st International Open Workshop on Intelligent
Personalization and Adaptation in Digital Educational Games, pp. 113-124.

Mehm, F. (2010) “Authoring Serious Games”, Proceedings of the Fifth International Conference on

the Foundations of Digital Games, pp. 271-273, ACM, June 2010. ISBN 978‐1‐60558‐937‐4

Stolovitch, H.D., Thiagarajan, S. (1980) Frame Games, Educational Technology Publications,
Englewood Cliffs, N.J.
Szyperski, C. (1997) Component Software: Beyond Object-Oriented Programming. ISBN: 0-201-
17888-5. ACM-Press, Addison-Wesley
Tornero, R., Torrente, J., Moreno-Ger, P., Fernandez-Manjón, B. (2010) “e-Training DS: An Authoring
Tool for Integrating Portable Computer Science Games in e-Learning” Advances in Web-Based
Learning – ICWL 2010, pp. 259-268, Springer Berlin / Heidelberg
Tran, C., George, S. and Marfisi-Schottman, I. (2010) “EDoS: An Authoring Environment for Serious
Games Design Based on Three Models”, Proceedings of the 4

th
 European Conference on Games-

Based Learning (ECGBL 2010), pp. 393-402, Academic Publishing, Reading, UK

