[MHO5)
ftalien, Oktober 2005, S.

Peer-to-Pecr and GRID Computing
Andreas Mauthe?, Oliver Heckmann!

* Computing Department
Lancaster University
Lancaster, LAl 4WA

UK
andreas@comp.lancs.ac.uk

' KOM - Multimedia Communications Lab
TU Darmstadt
64283 Darmstadt
Germany
heckmann@kom.tu-darmstadt.de

Abstract
Pecr-to-Pecr (P2P) and GRID computing are two conccpts that have recently
emcrged- within the distributed systems domain. Both have been success{ully
applied in a number of areas and have rcceived considerable attention.
Frequently the two concepts are linked, though a straight forward comparison is
not possible. In this paper the GRID background is described and GRID and
P2P are compared to establish where commonalities and differences are.

1. Introduction

Peer-to-Pcer and GRID computing are two concepts that are frequently linked
and compared. However, since they are basically addressing different areas and
come from a different background, this is not a straight forward comparison of
features and functionalities. The idea of GRID compulting originated in the
scientific community and has been motivated by processing power and storage
intensive applications [[9]. The basic objective of GRID computing is to
support resource sharing among individuals and institutions (organizational
units), or resource entities within a networked infrastructure. Resourccs that can
be shared are for instance bandwidth, storage and proccessing capacity, but also
data [16, 17). The resources pertain to organizations and institutions across the
world; they can belong to a single enterprise or be in an external resource-
sharing and service provider relationship. On the GRID, they form distributed,
heterogeneous, dynamic virtual orgamizations [1].

M E E E S ® B B S B EE = = " "

Andreas Mauthe. Oliver Heckmann. Peer-to-Peer -and GRID Computing;, the 2005
Networking and Electronic Commerce Research Conference (NAEC 2005), Lake Garda,

-400 -

The GRID 1s not a complctely new concept; it builds (as P2P docs) on results of
distributed systems rescarch. With the proliferation of the Internct and the
development of the Web (together with cmerging distributed middleware
platforms), it 1s now possible to build large-scale distributed applications that
can span a widc geographical and organizational arca. This has been taken
advantage of within the P2P and the GRID community more or less at the same
time. The GRID has been driven by the science community, which first saw the
potential of such systems and implemented them on a wider scale. Application
areas here arc distributed supercomputing (e.g. physical process simulations),
high-throughput computing (to utihze unused processor cycles), on-demand
computing (for short-term demands and Joad balancing), data intensive
computing (synthesizing information from data that is maintained
geographically distributed repositories), and collaborative computing [2].

[t is important to note that the prime objective of GRID computing is to provide
access to common, very large pools of different resources that enable innovative
applications to utilize them [13]. This is one of the defining differences between
Pcer-to-Peer (P2P) and GRID computing. Although both are concermned with the
pooling and coordinated usc of resources, the GRID’s objective is to provide a
platform for the integration of various applications, whercas initially P2P
applications have been vertically integrated [15].

Many current GRID implementations are based on the Globus ToolkitTM, an
open source toolkit (20, 21]. Within the Globus projcct, a pragmatic approach
has been taken in implementing services needed to support a computational
GRID. The Open GRID Services Architecture (OGSA) initiative - inspired by
the Globus project - develops the GRID idea further and is also concerned with
issues that have not been in the focus of the Globus project such as architectural
and standardization matters.

In this paper, the main initiatives and concepts driving GRID are introduced.
Subsequently, the relationship of P2P and GRID are discussed in more detail.
The different approaches are being compared considering and it is discussed if
and how these concepts converge.

Section 2 discusses GRID architectural issues. Section 3 introduces the Globus
project whereas section for concentrates on Open GRID Services Architecture
(OGSA) tssues. In section S GRID and P2P arc discussed in context, and finally
section 6 concludes the paper.

2. The GRID Architecture

in

A computational GRID 1s more formally defined as “a hardware and software
infrastructure that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilines™ {2]. Difterent applications can be

nnplemented on top of this mflastructare o utibize the shared tesources
ditferent mstitutions o individuals participate m such 4 shanng relanonship,
they torm a virtual organization [11]. The architectural concept underlving the
GRID facilitates the collaboration across nsttutional boundaries by proposing a
protocol architecture and using standard components that can be used by the
ditterent parties entering into a sharing relationship [13)]

The GRID architecture can be deseribed by a layered model as shown in Figure
[. The ditferent components are placed within a layered structure depending on
their functionahity and capabilities.

Application
J [Collective |
y
‘ [+ Resource®#-™ |
y
(¢34 2351 ConnectivityZ: i+]

(R EERERR REF abriCTsR PR R e |
Figure 1: GRID: A layered View

An bourglass model (comparable to the Intemet) is used to visualize the
different concepts. In this view a small group of core protocols and components
build the link between high-level mechanisms and a number of lower level base
technologies [22]. The components of the architecture (as depicted in Figure 1)
are the Fabric Layer, the Connectivity Layer, the Resource Layer and the
Collecuve Layer [13]. The applications that reside on 1op of this mfrastructure
can use the components of the Collective, Resource and Connectivity Layers
directly, depending on their requirements.

The Fabric Layer within the architecture makes the resources available that are
provided by the different nodes of the GRID for common usage, i.¢. it provides
common access 10 resources that are shared within a virtual organization.
Resources can be classified as computing resources, slorage, network resources,
code storage, and directories. [13). The Fabric Layer impliements the resource
specific operations for particular resources and offers a unified interface to the
upper layers.

The Connectivity Layer hosts the most important communication and
authentication protocols that are required for GRID specific communication. It
allows the data exchange between the resources located at the Fabric Layer. The
communication protocols emploved in this context are predominantly from the
TCP/IP protocol suite. Security is provided by a public key infrastructure based
on special GRID security protocols [23]. On top of the Connectivity Laver, the

401 -

Resource Taver as responsible for resowrce management opeiaitons such as
FESOUICE NCPOANON, fesotice reservilion, resowce daccess aind management,
QoS conttal, accounting, cic Fhe actual resources that are manayed, however,
are the resources under the conttol of the Fabnic Layer.

The Collective Layer iy concerned with the overall co-ordimation ot ditferent
resource groups. It hosts components such as directory services [8], scheduling
and brokenng services, montonng and diagnostic services, data replication
services, workload management, cte. [13].

Finally, the Application Layer comprises the user applications that are used 1o
realize the virtual organization. Applications are utilizing the services offered
by the underlying layers. They can ditectly access these services.

3 The Globus Project

The Globus project started in 1996; 1t 1s hosted. by Argonne Natonal
Laboratory’s Mathematics and Computer Science Division, the University of
Southern California’s Information Sciences Insutute, and the University of
Chicago's Distributed Systems Laboratory. It is supported by a number of
institutional (c.g. National Computational Science Alliance (USA), NASA,
Universitues of Chicago and Wisconsin) and industry pariners (e.g. IBM and
Microsoft) [3]. The project is centered on four main activity areas:

+ Building of large-scale GRID applications such as distnbuted supercomputing,
smart instruments, desktop supercomputing teletmmersion. o

+ Support for planning and building of large-scale testbeds for GRID research
but also for productively used GRID systems

» Research into GRID related issues such as resource management, secury,
information services, fault detection and data management.

» Building of software tools for a vaniety of platforms (the so call Globus
ToolkitTM). These software tools are considered research prototypes.

The Globus ToolkitTM is one of the major results generated by the Globus
project. It supplies the building blocks of the GRID, 1.e. it provides services and
modules required 16 support GRID applications and programming tools. It is a
community based, open architecture, open source set of services and software
libranes [1]. The Globus services can be used independently or together to form
a supporting platform for GRID applications. The application arca is mainly
concerned with distributed science applications. The services are programs that
interact with each other 1o exchange mformation or co-ordinate the processing
of tasks.

A number of Globus services deal with resource selection, allocation, and
management. Resource in this context is a generic term for everything required
to process a task. This includes svsiem resources such as CPU, network

bandwidth and storage capacity. In order to do this, a Resouice Sclection
Service (RSS) is required. It provides a generic resource sclection framework
for all kinds of GRID applications. Such a service identifies a suitable set of
resources by taking into account application characteristics and system status
(4].

The Globus Resource Allocation Manager (GRAM) is part of the lowest level
of the resource management architecture. It provides resource allocation,
process creation, monitoring, and management services. The GRAM service
maps requests expressed in the Resource Specification Language (RSL) into
commands to local schedulers and computers [5]. An end-to-end management
of QoS for different resource types such as bandwidth, CPU, and storage is
provided by the General-Purpose Architecture for Reservation and Allocation
(GARA) system [18][6]. Dynamic feedback is used among resource managers
to coordinate the resource management decisions [7]. The resource management
tools build on existing languages, protocols, and infrastructure. Their
capabilitics depend on the functionality and capacity of the hosting
environments they operate in.

A central service within the Globus Toolkit is the Monitoring and Discovery
Service (MDS-2). This gencric service provides a framework for service and
data discovery. The MDS service supplies information concerning system
configuration and status information to other scrvices. This includes server
configuration, location of data replica, network status, etc. Two protocols are
used for accessing and exchanging information in this context; viz. GRIP - the
GRID Information Protocol (used to access information about entities) and
GRRP - the GRID Registration Protocol (used to notify directory services of the
availability of certain information) [8].

A number of other services are available within the Globus Toolkit to deal with
1ssues such as:

* security, authentication, integrity and confidentiality (provided by the GRID
Security Service, GSI),

» the management of data movement and access strategies (provided by Global
Access to Sccondary Storage, GASS),

+ data transfer in and replication management (for instance provided by
GridFTP),

+ and the monitoring of the system state (provided by Heartbeat Monitor,
HBM), cf. [3,9, 10].

Each Globus service has an API (written in C). In addition Java classes arc
available for important services. The Globus services have been implemented in
a joint effort by the participating project partners. These services support GRID
applications that run on existing hardware platforms and hosting environments.

- 402

Thus, the implementations make extensive use of existing technologies,
platforms, languages (¢.g. CORBA, Java, MP[Python) and services (such as the
LDAP, SLP, DNS, UDDI) whenever deemed appropriate.

4 The Open GRID Services Architecture (OGSA)

The Open GRID Services Architecturc (OGSA) combines GRID technology
and Web services to build an open architecture for GRID services [11]. With
this move the GRID has started to adopt a strong service orientation. The goal is
to provide a set of well-defined basic interfaces and an architecture that is
cxtensible, vendor neutral and adheres and contributes to open standards.
Within OGSA, everything is regarded as a service - including applications that
become Web services. OGSA cnables the development of virtual infrastructures
that form part of virtual organizations. These virtual organizations can be of
different sizes, lifetimes, spanning multiple (physicalj organizations and run on
heterogencous infrastructures (i.e. provide a consistent functionality across
various platforms and hosting environments) [1].

OGSA dcfines the mechanisms required for sophisticated distributed systems
(including change and lifetime management, and notification). This is done
using the Web Services Description Language (WSDL) and associated
conventions. The combination of GRID technology and Web services makes
best use of the advantages of both technologies. Web services define techniques
for descnibing software components and accessing them. Further, Web services
discovery methods allow the identification of relevant service providers within
the system regardless of platform or hosting environment specific features. Web
scrvices are open in that they are programming language, programming model,
and system software neutral.

AT

Other GRID
"~ Services

sttt s

; Coon |

GT 3 Base Services
(rescnroe mansgement. dals trensfer, formailen servicas, reasrvelion, monhoring]

GT3Core

[
[Untertaces L bonadviour)

AVFingC 2: OGS Infrastructur: GT3

With the emergence of OGSA a new version of the Globus Toolkit was
developed (Globus Toolkit Version 3, GT3). Since then the Open GRID
Services Infrastructure and the Globus architecture are defined together. The
latest version i1s GT4. The Open GRID Services Infrastructure is defined as a
minimal layer that enables GRID services to invoke each other as well as
baseline operations. This corresponds to the GT3 Core and GT3 Base Services
Layer as shown in Figure 2. The GT3 Core will implement the service
interfaces and behaviors described in the GRID Services Specification [12].
Existing Globus toolkit components might be reused within the GT3 Core and
GT3 Base Services Layer.

A number of (standard) high-level services that address requirements of
eBusiness and eScience applications are being discussed within the OGSA
initiative. Such services include:

+ distributed data management services (e.g. for database access, data
translation, replica management and location, and transactions),

« workflow services (for coordinating different tasks on multiple Grid
resources),

+ auditing services (for recording usage data),

+ instrumentation and monitoring services (for measuring and reporting system
state information),

+ and security protocol mapping services (for enabling distributed security
protocols to be transparently mapped onto native platform security services).
These services can be implemented and composed in various different ways
replacing some of the current Globus toolkit services for instance dealing with
resource management and data transfer [11].

4.1 GRID Services Characteristics

OGSA defines a GRID service as a network-enabled entity that represent
computational and storage resources, networks, programs, and databases, inter
alia. Within the virtual organization formed by these services, clear service
definitions and a set of protocols are required to invoke these services. The
protocol is independent of the actual service definition and vice versa. It
specifies a delivery semantic and addresses issues such as reliability and
authentication. A protocol that guarantees that a message is reliably received
exactly once can for instance be used to achieve reliability, if required. Since for
the service definition WDSL is used, multiple protocol bindings for a single
interface are possible [11]. However, the protoco! definition itself is outside the
scope of OGSA.

Openness within OGSA is ensured by virtual service definitions that are used to
produce multiple (ideally interworking) implementations. A client invoking a

403 -

service should not have to consider the platform a service instantiation is
running on, or have to know anything about the implementation details. The
interaction betwcen services happens via well-defined, published service
interfaces that are implementation independent. The interfaces address
discovery, dynamic service creation, lifetime management, notification, and
manageability. At the same time, they take into account upgradeability and
naming conventions. In order to increase the generality of the service definition,
authentication and reliable service invocation are viewed as service protocol
binding issues that are external to the core service definition but which have to
be addressed within a complete OGSA implementation. ’

Since within the GRID infrastructure services are not necessarily static and
persistent (i.e. a service can be created and destroyed dynamically), the OGSA
services are also concerned with transient service instances. Furthermore,
OGSA conventions allow identifying service changes siich as service upgrades.
The information about these changes also state whether the service is backward
compatible regarding interface and semantics.

Since GRID services have to run on multiple platforms in a distributed
heterogeneous environment, service implementations should be ideally portable
not only in" terms of their design but also as far as code and the hosting
environment is concerned.

4.2 GRID Service Specification "

A GRID service interface specifies a set of operations that can be invoked by
exchanging a defined sequence of messages. The GRID service interfaces
correspond to WDSL portTypes that are defined by serviceTypes. These
serviceTypes are WDSL extensibility elements defined by OGSA that contain
the portType definition and additiona! information relating to versioning.
Hence, the portType defines the GRID service’s interface and the serviceType
the GRID service. For its lifetime, a GRID service can maintain a state. This
state distinguishes one service instance from others. In the context of GRID
services, a particular instantiation of a service is referred to as GRID service
instance.

Services are dynamic; interfaces are defined for managing their lifetime and
state. In order to distinguish services, each service is assigned a globally unique
name called GRID Service Handle (GSH). This name is unique, i.e. it is created
to name one service instance and will never be (re-)used in connection with any
other GRID service. In the GSH no. reference is made to any protocol or
instance specific information such as network addresses and supported protocol
bindings. For long-lived and persistent services, this information is kept with
the GRID Service Reference (GSR) - together with all other vital instance

specific information. In contrast to the GSH, the GSR may change over a
service’s lifetime and can become invahd.
Information about a GRID service is referred to as service data. There are two
types of service data pertaining to a service instance:
- metadata (i.e. information about a service instance) and
» state data (specifying runtime properties of a service instance).
So-called Service Data Elements (SDE) represent the service data of a particular
service instance. SDE correspond to containers holding XML encoded metadata
and state data elements. The SDE can appear as extensible element in the
portType and serviceType description. The characteristics of an SDE is defined
by the Service Data Description (SDD) that specifies properties such as the SDE
name, the XML type of the service data value elements, how many times such
elements might occur, if they change during the lifetime of an instance, etc. The
SDD must be unique within the SDD elements namespace [12].
The method Notification is used to exchange information between GRID
service instances. This method is a one-way asynchronous delivery from a
notification source to a notification sink. It corresponds to a push model for data
delivery. The semantics of notification are a property of the protocol binding
used to deliver the message. A service can pull information pull is possible by
using FindServiceData. This can for instance be used for service discovery (via
a basic GRID service called registry) [11].
A set of basic OGSA interfaces (i.e. WSDL portTypes) for manipulating service
model abstractions have been defined. The interfaces can be combined in
different ways to from various GRID services. Service interfaces defined so far
are for instance [11):
* FindServiceData to query information about a GRID service instance such as
basic introspection information (handle, reference, primary key, home
handleMap, etc.) and service specific information (e.g. service instances known
to a registry). It provides extensible support for various query languages.
PortType: GridService

SetTerminationTime to set and query the termination time of a GRID service
instance.
PortType: GridService
» Destroy to terminate a GRID service instance
PortType: GridService
* SubscribeToNotificationTopic to subscribe to notifications of service-related
events (based on message types and interest statement; allows the delivery via
third party messaging services).
PortType: NotificationSource
+ DeliverNotification to asynchronously deliver notification messages.

-404 -

PortType: NotificationSink

* RegisterService to conduct soft-state registration of GSH.

ProtType: Registry

» UnregisterService to deregister a GSH.

PortType: Registry

* CreateService to create a new GRID service instance.

PortType: Factory

* FindByHandle to return the GSR currently associated with the supplied GSH.
PortType: HandleResolver

Different scrvice interfaces are associated with different PortTypes. The Factory
PortType for instance refers to a programming model related abstract concept or
pattern. It is used by a client to create an instance of a GRID service. When a
client invokes a CreateService on a Factory it receives as response a GSR for
the newly created service. The HandleRelsolver PortType is a GRID Service for
resolving a GSH to a GSR. It has not yet been decided what the role of the
resolver protocol and the HandleResolver in this context should be [12].

4.3

OGSA defines the basic behavior of a service but does not prescribe how a
service is executed. It does not address issues such as implementation
programming model, programming language, implementation ~tools and
debugging tools, or execution environments. This is determined by the hosting
environment that also defines how a GRID service implementation realizes the
GRID service semantics [1]. The hosting environment is provided for most
GRID applications by an operating system. The service can be implemented in a
number of programming languages on such a hosting environment (e.g. in C,
C++, Java, Fortran, Python). The use of standard programming libraries to
implement services can facilitate the development. However, these have to be
regarded as specific to the hosting environment and are not a general
representation of the respective GRID service. Although the goal is to have
generic, platform independent GRID services, it has to be considered that the
hosting environment to some extend also determines the kind service semantics
that can be offered.

Apart from the traditional OS based implementations, GRID services can also
be built on top of new hosting environments such as J2EE, Web-sphere, .NET,
JXTA, or Sun ONE. These hosting environments tend to offer better
programmability and manageability. They are usually also more flexible and
provide a degree of safety.

Despite OGSA not being concerned with implementation details, the definition
of baseline characteristics can facilitate the service implementation. Issues that

Hosting Environments

have to be addressed in the context of hosting environments should the mapping
of GRID wide names and service handles into programming language specific
pointers or references, the dispatch of invocations into actions such as events
and procedure calls, protocol processing and data formatting for network
transmission, lifetime management, and inter-service authentication.

Hosting environments can be constituted by complex structures that span over a
number of simple hosting environments creating a virtua!l hosting environment.
The resources accessed in such a complex hosting environment are accessed in
the same way than of those GRID services implemented on simple hosting
environments.

4.4 Protocol Bindings

There are various protocol bindings possible for a service, for instance
SOAP/HTTP with TLS (for security). Although the protocol bindings allow a
certain degree of flexibility there are certain requirements protoco! binding
should meet. The following four primary requirements have been proposed in
[11]:

* Reliable transport; this might be required for some service invocation. It can
already be supported by certain protocol bindings such as HTTP-R.

* Authentication and delegation to communicate proxy credentials to remote
side. This can be supported within the network protocol binding (e.g. by TLS
extended with proxy credential support).

+ Ubiquity is required to enable any arbitrary pair of service instances to
interact. .

* GSR format that considers binding specific formats, e.g. WSDL document or
CORBA IOR.

Although OGSA is not chiefly concerned with the specification of
communication protocols, it might be of advantage to define a set of protocols
that specify a small number of protocol bindings for example for service
discovery and invocation to allow any two services to communicate. It has been
acknowledged that this kind of InterGRID protocol could be useful but it is an
open issue if such a protocol will be defined and subsequently accepted.

5 GRID and P2P Computing

There is an ongoing argument about GRID and P2P computing, their merits,
differences, and commonalities. The comparison usually concentrates on certain
aspects in order to highlight specific issues. However, the situation is more
complex since both terms are used in different contexts and sometimes can have
various connotations. In the following we try to capture both as
comprehensively as possible and strive to give an overview of the related issues.

- 405 -

Although P2P is mainly used in connection with file sharing systems, other
areas (such as collaboration support and distributed computing) also use P2P
mechanisms [24). The term GRID is also not solely used for Globus or OGSA
related activities. More and more it is also becoming part of product
descriptions (c.g. of 1BM and Oracle).

A number of publications are combining both concepts or are describing GRID
systems that employ P2P mechanisms [25, 26, 27]. In order 1o compare both
concepts and assess how much they have in common, it is required to
characterize P2P in this context in more detail.

In [28] a P2P system is defined as a self-organizing system of eéqual,
autonomous entities (i.e. peers) that operates preferably without using any
central services based on a communication network with the purpose of
resource sharing. Here, the emphasis is on the system aspect that allows joint
resource utilization. Another characterization [15] stresses that P2P is a class of
applications that takes advantage of resources that are available at the edge of
the network. This latter definition gives a much more concrete view on the
nature of P2P computing in that it describes it as “class of application”, not
systems, components or platform. Therefore, it is important to distinguish
between the P2P paradigm that encompasses decentralization, self-
organization, and autonomous collaboration between indcpendent entities in a
system context, and P2P applications that are mostly vertically integrated
applications used for the sharing of specific resources (e.g. file and infdrmation
sharing [29]). Further, there are also emerging P2P platforms that provide an
operating system independent middleware layer that allows sharing of resources
in a peer-to-peer fashion between participating entities [24].

5.1

The initial motivation behind GRID and P2P applications has been similar, both
are concerned with the pooling and organization of distributed resources that are
shared between (virtual) communities connected via the Internet. The resources
and services they provide can be located anywhere in the system and are made
transparently available to the users on request. Both also take a similar
structural approach by using overlay structures on top of the underlying
communication (sub-)system.

However, there are also substantial differences on the application, functional
and structural level. The applications supported through the GRID are mainly
scientific applications that are used in a professional context. The number of
entities is rather moderate in size, the participating institutions are usually
known. Current P2P applications, in contrast, provide open access for a large,
fluctuating number of unknown participants with highly variable behavior.

Comparing GRID and P2P: Commonalities and Differences

—] -

Therefore, P2P has to deal with scalability and fatlure issues much more than
GRID gpplications. P2I' applications arc largely concerned with file and
information sharing. In addition, they usually provide access to simple resources
(mostly files, somctimes processing power), whercas the GRID infrastructure
provides access to a resource pool (c.g. computing clusters, storage systems,
databases but also scientific instruments, scnsors, ctc.) [15]. P2P applications
usually are wvertically integrated using overly structures as part of the
application. The GRID is essentially a multipurpose infrastructure where the
core functionality is provided by a set of tools and services that are part of the
architecture, the resources can be used by different applications.

In recent years a number of P2P middleware platforms have been developed
that provide generic P2P support: The functionality they support comprises for
instance naming, discovery, communication, security, and resourcc aggregation.
One example is JXTA [32), an open platform designed for peer-to-peer
computing. Its goal is to develop basic building blocks and services to enable
innovative applications for peer groups. JXTA provides a common set of open
protocols and an open source reference implementation for developing peer-to-
peer applications. The JXTA protocols are designed to be independent of
programming languages, and independent of transport protocols. Another,
commercially driven P2P platform is Microsoft’s Windows Peer-to-Pcer
Networking (MSP2P) [33). It provides simple access to networked resources.
There are three central components within MSP2P providing generic P2P
communication and interaction support, i.¢. the Peer Name Revolver Protocol
(PNRP), Graphing API (for the organization of peers in a virtual network
graph), and Grouping API (to form closed groups). The P2P functionality is
closely coupled with the Windows Sockets 2 architecture. There is also ongoing
research in this area. For instance in the EU funded project on Market Managed
Peer-to-Peer Services (MMAPPS) a middleware platform has been created that
incorporates market mechanisms (in particular accounting, pricing and trust
mechanisms) [34]. On top of this platform, a number of applications (i.e. a file
sharing application, a medical application, and a WLAN rooming application)
have been implemented to show how such a generic platform can be used.
However, the emphasis of these platforms is predominantly on the middleware
aspect and not {as with the GRID initiative) in providing access to a universal
computing resource infrastructure comparable to the power grid.

The P2P paradigm has become an underlying theme of the P2P platform
development as well as of most P2P applications. Although there are a number
of applications widely regarded as P2P (c.g. Napster [31], SETI@home [30])
that use central entities. The reason why they are sometimes considered being

- 4006 -

P2P 1s that the participating peers are stll awtonomous in there behavior and
decisions.

In contrast, within the GRID infrastructure centralized components and
clhient/server structures are often used because they are considered best suited
for their specific purposes. However, this is not inherent in the idea or concepts
behind GRID. Rather 1t can be attributed to the nature and scale of the current
implementation, and the requirements placed onto the infrastructure by
applications and the kind of intcgrated components.

5.2 GRID and P2P: Converging Concepts?

The GRID has been successful in operation within the scientific community for
a number of years. However, the potential of the GRID goes beyond scientific
applications and can be for instance also applied to_the government domain,
healthcare, industry and eCommerce sector [14). Many of the basic concepts
and methods could remain unchanged when applied to these new domains.
Other 1ssues not within the scope of the current GRID initiative will have to be
addressed in the context of thesc application arcas {(¢.g. commercial accounting
and [PR issues). Further, with a more widespread adoption of the GRID, there is
a greater need for scalability, dependability and trust mechanisms, fault-
tolerance, self-organization, self-configuration, and self-healing functionality.
This indicates that mechanisms from the P2P application and platform domain
and the P2P paradigm in general are going to be adopted more widely by the
GRID. This would result in more dynamic, scalable, and robust infrastructures
without changing the nature or fundamental concepts behind it. It is just a
further development of the original idea.

P2P applications on the other hand are also developing into more complex
systems that provide services that are more sophisticated. A platform approach
has been proposed by some vendors and research initiative to provide more
generic support for sophisticated P2P applications. It is being expected that
developers of P2P systems are going to become increasingly interested in such
platforms, standard tools for service description, discovery and access, etc. [15].
Such a P2P infrastructure would then have a lot in common with the GRID
infrastructure. However, the ambition behind the GRID (i.e. providing access to
computational resources comparable to the power grid) is not shared by these
middleware platforms. They are built for better and more fiexible application
support.

Essentially, it 15 a matter of substantiating the claims represented by the P2P
paradigm of providing more flexibility, dynamicity, robustness, dependability
and scalability for large scale distributed systems. If this is successful and
additional quality features (such as performance and cfticiency) can also be

ensuted, P21 mechamsims can become core to the GRID P2P applications, on
the other hand, will have 1o adopt a more platform-based development
provide sufficient flexibility 1n a very dynamic environment. It remains o be
scen if this means a convergence of the two arcas or if they will co-exist
mutually influencing cach other.

6 Summary

The 1dea for the GRID was conceived within the science community inspired by
the success of the Internet and results produced by distributed systems research.
The main target application areas are resource sharing, distributed
supercomputing, data intensive computing, and data sharing and collaborative
computing. The idea of the GRID is now being extended into other areas such
as eLearning and eBusiness.

The relationship between peer-to-peer and GRID is a topic sull argued about.
Since GRID is defined as infrastructure, its scope and extent is better defined
than that of P2P. The term P2P 1s on the one hand being used for a group of
distributed applications such as the well known file sharing applications. On the
other hand 1t also refers to a paradigm cncompassing the concepts of
decentralization, self-organization and resource sharing within a system context
[28]. Recently, middleware platforms have been developed that provide generic
support for P2P applications, implementing the P2P paradigm in an operating
system independent fashion. The objective of the GRID is to provide an
infrastructure that pools and coordinates the use of large sets of distributed
resources (i.e. to provide access to computational resource similar to the access
to electricity provided by the power grid). So far, GRID tools and services are
mainly developed using “traditional” distributed systems concepts (such as
client/ server). However, it has been recognized that an adoption of P2P
principles could be beneficial in terms of scalability, dependability, and
robustness. The pooling and sharing of resources is also a common theme in
P2P applications. This could be supported by P2P middleware piatforms in the
future. Though, this does not mean global access to computational resources
anywhere, anytime. The question if and how both concepts converge is stil]
open.

References

[1] 1. Foster, C. Kessleman, J. Nick, S. Tuecke: “Grid Services for
Distributed System Integration™, IEEE Computer, No. 36, June 2002.

[2] I. Faster, C. Kessleman,: "Computational GRIDS" in The GRID:
Blueprint for a Future Computing Infrastructure, 1. Foster, C. Kessleman
(Eds.), Morgan Kaufmann Publishers, 1999.

[11]

(12]

—
w
)

[14]

[15)

“The Globus Project”™, Web site: ww w globus ory, 2002

C. L, L. Yang, 1. Foster, D, Angulu:™ Design and Lvalutation of a
Resource Selection Framework for GRID Applications™ GLOBUS
Technical Report, www globus.orgsiescarch/papers huml. 2002,

K. Crajkoskiw, L Foster, N. Karoms, C. Kesselman, S, Martin, W.
Smuth, S, Tuecke: “"A Resource Management Architecture for
Mectacomputing Systems” Proc. 1PPS/SPDP ‘98 Workshop on Job
Scheduhing Strategics for Parallel Processing, 1995,

V. Sander, W. Adamson, 1. Foster, A. Roy: “End-to-End Provision of
Policy Information for Network QuS™ Proc. of 10th IEEE Symposium on
High Performance Distiributed Computing, 2001.

I. Foster, A. Roy, V. Sander: “A Quality of Service Architecture that
Combines Resource Rescrvation and Application Adaptation” Proc. of
8th IWQoS, 2000. A

K. Czajkowski, S. Fiwzgerald, 1. Foster, K. Kesselman: “"GRID
Information Services for Distributed Resource Sharing™ Proc. of 10th
IEEE Symposium on High Performance Distributed Computing, 2001.

B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, . Foster, K.
Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.Teuck: “Data
Management and Transfer in High-Performance Computational GRID
Environments” in Parallel Computing, 2001.

W. Allcock, 1. Foster, S. Tueck, A. Chervenak, K. Kesselman: v‘-"Protocols
and Services for Disiributed Data-Intensive Science” Proc. of
ACAT2000, 2000.

I. Foster, C. Kesselman, J. Nick, S. Tuccke: “The Physiology of the
GRID" Globus Technical Reoport,
www_globus.org/research/papers.htmi, 2002.

S. Tuecke, K. Czajkowsky, 1. Foster, J. Frey. S. Graham, C. Kesselman:
“GRID Service Specification Globus Technical Reoport,
www. globus.org/research/papers.html, 2002.

1. Foster, C. Kesselman, S. Tuecke: “Die Antomue des GRID™ in Peer-to-
Peer, D. Schoder, K. Fischbach, R. Teichmann, (Hrsg.), Springer- Verlag
Berlin, Heidelberg, 2002.

T. Barth, M. Grauer: “GRID Computing - Ansidtze fir verteiltes
virtuelles Prototyping™ in Pecr-to-Peer, D. Schoder, K. Fischbach, R.
Teichmann, (Hrsg.), Springer- Verlag Berlin, Heidelberg, 2002.

I Foster, A. lamnitchi: “On Death, Taxes, and the Convergence of Peer-
to-Peer and Grid Computing, in Proceedings of 2nd Intermational
Workshop on P2P Svstems (IPTPS'03), 2003.

[16]

(18]

W. Hoschek, J. Jaen-Martinez, A Samar, H. Stockinger, K. Stockinger,
“Data Management in an Internatronal Data Grnid - Project”™. i
Proceedings of the st TEEE/ACM International Workshop on Grie
Computing, 2000

R. Moor, C. Baru, R. Marciano, A. Rajasckar, M. Wan: “Data-Intensive
Computing™ in The GRID: Blucprint for a Future Computing
Infrastructure, [. Foster, C. Kessleman (Eds.), Morgan Kaufmann
Publishcrs, 1999.

[. Foster, A. Roy, V. Sandcr: “A Qualtiy of Service Architecture that
Combines Resource Reservation and Application Adaptation™, 1n
Proceedings of the 8th International Workshop on Quality of Service,
2000.

I. Foster: “The Grid: A new Infrastructure for 21st Century Science”, in
Physics Today, No. 55 (2), 2002.

G. Fedak, C. Germain, V. Nern, F. Cappello: "XtremWeb: A Generic
Global Computing System”, in Proccedings of Workshop on Global
Computing on Personal Devices (CCGRID2001), 2001.

I. Foster, C. Kessleman,: “Globus: A Toolkit-Based Grid Architecture” in
The GRID: Biueprint for a Future Computing Infrastructure, I. Foster, C.
Kessleman (Eds.), Morgan Kaufmann Publishers, 1999.

W. Benger, I. Foster, J. Novonty, E. Seidel, J. Shalf, W. Smith, P.
Walker: ,Numerical Relativity in a Distributed Environment™, in
Proceedings of the 9th SIAM Conference on Parallel Processing for
Scientific Computing, 1999.

I. Foster, C. Kessleman, G. Tsudik, S. Tuecke: “A Security Architecture
for Computational Grids™, in Procecedings of ACM Conference on
Computers and Security, 1998.

A. Mauthe, D. Hutchison: “Peer-to-Peer Computing: Systems, Concepts
and Characteristics’™. Praxis in der Informationsverarbeitung &
Kommunikation (PIK), K. G. Sauer Verlag, Special Issue on Peer-to-
Peer, 2003,

A. Iamnitchi, 1. Foster: “A Peer-to-Peer Approach to Resource Location
in the Grid Environments”, in Grid Resource Management, J. Weglarz, J.
Nabrzyski, J. Schopf, and M. Stroinski, Eds. Kluwer Publishing, 2003.

A. JTamnitchy, [. Foster, D. Nurmi: “A Peer-to-Peer Approach to Resource
Discovery in Grid Environments”, Report TR-2002-06, University of
Chicago, 2002.

T. Ackermann, R. Gold, C. Mascolo, W. Emmerich: “Incentives in Peer-
to-Peer and Grid Networking”, UCL-CS. Research Note 02/24, 2002.

408 -

(28] R. Swinmetz, Ko Wehrle: “Peer-to-Peer-Networking and -Computing”,
Informatik Spektrum, Vol.: 27(1). February 2004,

[29] [F. Kileng: “Peer-to-Peer File Sharing Technologies: Napster, Gnutella
and Beyond”, Technmical Repont, 18/ 2001 Telenor,
http://www telenor.no/fou/publiscring/Rapp01/R18 2001 .PDF, 2002.

[30] SETU@home Web Site: "SETI@home - The Scarch for Extraterrestrial
Intelligence™ University of Berkeley, hitp://setiathome.ssh.berkeley.edw/,
2002.

{31] C. Shirky: “Listing to Napster”, in Pecr-to-Peer — Harnessing the Power
of Disruptive Technologies, A. Oram (Edt.), O'Reilly, 2001.

[32] Sun Microsystems: "JXTA v2.0 Protocol Specifications”,
http://www jxta.org, 2004,

{33] E. Chtcherbina, B. Freisleben, T. Friese: “Peer-to-Peer Computing:
Microsoft P2P versus Sun JXTA*, in JavaSPEKTRUM, vol. 5, 2004.

[34] Ben Strulo, "Middleware to Motivate Co-operation in Peer-to-Peer
Systems (A Project Discussion)”, in P2P Journal, March, 2004.

Authors

Andreas Mauthe s a Scnior lecturer at the Computing Department of Lancaster
University. His rescarch areas are content management and content distribution
architectures and large-scale distributed systems using the P2P paradigm and
autonomous mechanisms for co-ordination.

Oliver Heckmann is a postdoc researcher and research group leader at TU Darmstadt.
His “IT Architectures™ research group investigates service oriented architectures to
support business processes with support for quality of service. In the “Pcer-to-Peer
Networking™ group, the peer-to-pcer communications paradigm and the quality of
service achievable with peer-to-peer communication is investigated.

Acknowledgement

This paper was written in collaboration between KOM, TU Darmstadt and the
Computing Department, Lancaster University supported by the European Network of
Excellence E-Next/ FP6-506869.

