[MHD+07] Parag Mogre, Matthias Hollick, Nico d'Heureuse, Hans Wamer Heckel, Tronje Krop, Ralf
Steinmetz; A Graph-based Simple Mobility Model; 4. Workshop <u Mo™ilen # | hoc Netran
(WMAN'07) im Rahmen der 15. ITG/GI Fachtagung Kommunikation in Verteilten Systemen

(KiVS'07), Bern, Marz 2007, S. 421-432.

A Graph-based Simple Mobility Model

Parag S. Mogre, Matthias Hollick, Nico d’'Heureuse, Hans Werner Heckel,
Tronje Krop, Ralf Steinmetz

Multimedia Communications Lab (KOM), Technische Universitét Darmstadt,
Merckstr. 25, 64283 Darmstadt, Germany
{pmogre/mhollick } @ KOM.tu-darmstadt.de

Abstract Simulation of mobile ad hoc networks requires mobility mod-
els to calculate the movement of the mobile nodes being simulated. Due
to their simplicity and ease of instantiation, random mobility models are
very popular in the research community. However, these models cannot
easily be used to realistically model the movement of nodes in an urban
scenario (i.e., terminals carried by pedestrians or in cars). Many of the
existing mobility models for urban environments are based on extensive
empirical data collection and. hence, are quite complex and inflexible. We
adapted existing random mobility models to model movement within a
city more realistically, while keeping the virtue and simplicity of random
models. Our new models are graph-based, where the graph represents the
streets of a city. Realistic speeds are assigned to the nodes, and, as in
real life, nodes can travel together in a group. Thus, the work presented
in this paper enables the use of simple and realistic random mobility
models in a city scenario. Additionally, our models are designed to avoid
the common pitfalls of existing random mobility models.

1 Introduction and Motivation

Simulations are a fundamental tool for rescarchers in the domain of mobile ad
hoc networks, c.g., to test the performance of newly developed protocols. The
aim of a simulation study is to obtain insights on how the system might react in
practice, to sec what problems might occur, and where improvement is needed.
This allows researchers to avoid the costs involved for testing new protocols
in real testbeds or reality. The simulation must take into account all relevant
parameters and represent the real world as precisely as required. Simulations
usually model a limited area of investigation. Important parameters include the
size of this simulation area, the number of simulated nodes, where and how the
nodes are placed {e.g., according to a random distribution), how nodes commu-
nicate with each other, and how they move. This paper focuses on the latter:
realistic node movement within urban areas.

Existing, well known, models to describe node movement include (standard)
random walk and (standard) random waypoint, both of which are memoryless,
and models with memory such as the Gauss-Markov mobility model. Random
waypoint and random walk are modeled to capture the behavior of individual

users. However, the standard versions of these models arc not bound to streets.
Hence, nodes can move around freely in the simulation area. In general, most ex-
isting random models have not been designed for city environments, but consider
the simulation area to be homogeneous, i.e., they neglect streets, buildings, etec.
Our goal is to capture random city scenarios, i.c., a user (e.g., a taxi-driver) is
traveling through random streets of the city, with no obvious destination, going
back and forth, and pausing every now and then.

There have been attempts in the literature to develop realistic mobility mod-
els for citics. Typically, these models are graph-based mobility models or obstacle
mobility models, which restrict the movement of the mobile nodes to the strects
within the simulation area or avoid obstacles such as buildings. Unfortunately,
many realistic mobility require cxtensive empirical data collection, and in gen-
eral are quite complex. The simpler stochastic mobility models often exhibit
unrealistic node density distributions. Qur goal is to achieve a realistic mobility
model that. is as simple and efficient as existing random models.

Qur greph-based mobility models fill the gap aud lanit ratdomn imoveent to
a graph. In addition we design an cfficient mechanism for controlling the density
distribution of nodes over the simulation area (e.g., uniform distribution of nodes
on streets). This involves the design of a suitable mechanism for choosing the
initial position of nodes as well as the selection of the next waypoint in our so-
called graph random waypoint mobility model. Additionally, we tackle grouped
mobility: a number of mobile nodes may which are close together and move along
the same path. The radios are still independent of each other, but the group itself
behaves like a single node and will follow the same mobility pattern.

Qur contribution is as follows:

— We design a graph random walk and a graph random-waypoint model, which
are both, realistic and simple/efficient.

~ We describe an extension to allow for modeling of group mobility using our
models.

— We give a detailed description of the implementation of the models in the
JiST/SWANS simulation environment [1].

— We analyze our models by means of a simulation study, which also serves as
a proof-of-concept to validate our design goals.

In the following, we bricfly present related work and describe cxisting mobil-
ity models. This is followed by a detailed description of our novel graph-based
mobility models. In particular, we describe the model assumptions and require-
ments and thoroughly describe the implementation of the models. As a proof-of-
concept, we then perform an cxperimental analysis to obtain selected properties
of our model. We conclude our work by discussing possible future work.

2 Related Work

Mobility models can be categorized in macroscopic and microscopic models.
Macroscopic mobility models realistically describe the aggregated effects of mo-
bility for large arcas. Instantiation of these models is typically performed using

census data. Activity-based macroscopic models borrow the concept of trips to
describe the inobile user’s behavior on different scale [2,3]. For a detailed discus-
sion of realistic macroscopic mobility models for metropolitan areas see (4]. The
process of instantiation of the macroscopic mobility models is, however, rather
complex and involves empirical data collection.

In contrast, microscopic models describe the average mobility behavior of
individual entities, usually, by means of a mathematical description of the paths
of these entities in the simulated area. Most synthetic or random models fall into
this class [5], which includes the random walk as well as the random waypoint
mobility model [6]. In the latter, each mobile node randomly selects a position in
the simulation area as its destination. The node then moves toward this destina-
tion with a constant velocity chosen uniformly and randomly from [0,V,,q-]. The
parameter V.- specifies the maximum speed of the mobile nodes in the simula-
tion. On reaching the destination the mobile node may pause for a short interval
while it chooses the next destination to travel to. In contrast to the random
waypoint model, the nodes in the random walk model move with a randomly
sclected constant speed in a randomly selected direction for an interval of time.
After this time interval, the individual nodes sclect another random direction of
travel and another random speed. The main strength of these random models is
the virtue and simplicity of implementation and usage. Due to their simplicity
and case of use, they are available widely in simulation platforms and have been
used extensively in performance evaluations of ad hoc routing protocols.

A typical scenario where ad hoc networks (or vehicular networks) composed
of mobile nodes arc expected to thrive and exist in future are urban, city based
scenarios. Both random walk and random waypoint models, however, describe a
"flat” simulation area without. forbidden or preferred zones of movemnent. (obsta-
cles, buildings, streets). This is one of the major points of criticism for the above
mobility models. Recently, the authors in {7] proposed the random trip mobility
model, which provides a generalization of random waypoint and the random walk
mobility models in realistic settings. Although it is a generic framework to obtain
good mobility models, it is quite complex and requires careful parameterization
on part of the user. One of the simpler random mobility models that attempts
to model the movement of mobile terminals in realistic scenarios such as a city
can be found in [8]. The authors introduce obstacles as a means to model the
movement of users in a city-like scenario. However, the choice of the position at
which new nodes are to be spawned in the simulation field and the strategy of
nodes to select. their next destination are lefi open. One can find many other mo-
bility models which intend to introduce realistic aspects to the mobility model
by introducing various mobility patterns for different types of nodes (9], or by
restricting mobility to certain areas, for example via graphs, see Refs. [8-11] for
some proposed mobility models. These models allow a fair amount of freedom
in defining the scenario (streets, buildings, node velocity, street signals, traffic
congestion ctc. However, the initialization of the above models is quite tedious
and the protocol performance results obtained from the above simulation hold
for the above scenario, but may be completely different for a different city mod-

cls, street speeds, obstacle placements, etc. Thus, to obtain statistically sound
and representative results it is necessary to carry out a simulation study of the
protocol in a sufficiently large number of scenarios. With the complex setup re-
quired for the above models, this can be quite time consuming (both for setup
of the scenario and for the actual simulation execution). Thus, these mobility
modcls are not perfectly suited for simulation studies where one wants to test
the protocol quickly in a large number of city-like scenarios.

Our work closes the above gap and provides an efficient and realistic algo-
rithm for positioning nodes and determining the path towards the next des-
tination. We implement a flexible framework which enables researchers to use
simple random mobility models in a fairly realistic city-like scenario. The imple-
mentation also permits assigning a different mobility model to each individual
node in the simulation. In addition, we address the well-known problems of the
random waypoint model [12], which lead to undesired density distributions as
shown in {13].

3 Proposed Graph-based Models

Our graph-based models necessitate various extensions to the existing random
models. In particular, we need to devise a solution for the initial placement of the
nades on the simulation ficld such that the boundary conditions (nodes have to
be located on the street graph only) are fulfilled. Also, the random destinations
have to be chosen such that they fulfill the boundary conditions. For our solution.
we have different alternatives. For the initial node placement, we can follow the
node placement strategy of the standard wodels in a first step and then snap
the node to the closest point on a street. Another possibility is to place nodes
according to a random distribution on the streets at initialization time. For the
choice of the random destination, we can again follow a strategy that randomly
sclects a position on the available streets or that choses a random destination
on the simulation area and then snaps the node to the nearest street.

Without loss of generality, for the implementation of our model, we choose to
place the nodes on the simulation area and then calculate the nearest point on
a strect. Thus, by using different (uncven) random distributions, we can casily
account for different population densities in the simulated area.

3.1 Models

Graph Random Walk (GRW). In the (standard) random walk (SRW) model,
a mobile node chooses a random direction and speed, and moves for either a cer-
tain time or a certain distance. It then pauses and starts over, choosing new
values, uncorrelated with the last direction and speed.

In our novel graph random walk (GRW) model, a node starts on an edge of
the simulated graph. It randomly selects a total distance it is willing to travel.
For starting the movement, the node has two possibilities to move along the
edge. As soon as it hits a vertex, one of the edges leaving the vertex is randomly

chosen. Our algorithm does implement some memory here: the node will never
move back to where it came from, unless it has cntered a dead-end street and
has nowhere else to move to. The step size memorized is 1. When the distance
chosen in the beginning has been traveled, the node stops (on the edge), pauses
for & random time, and starts over.

Graph Random Waypoint (GWP). In the (standard) random waypoint
model (SWP), a node selects a random point anywhere within the simulation
area. It then moves to the selected destination with a randomly selected speed,
following the shortest path. It then pauses and starts over. Imitating that behav-
ior, our new GWP modet selects a random destination somewhere on an edge of
the graph. It then calculates the shortest path to get there. The cost of a seg-
ment, used to calculate the shortest path, is the time necessary to travel along
that strect segment. The mobile node follows that path until the destination is
reached. It then pauses and starts over, sclecting a new destination.

3.2 Implementation

The implementation was performed using the JIST/SWANS framework [1]. The
JiST/SWANS documentation gives further information about the simulation
AP1 and the interfaces for handling mobility models, node locations, etc.

Random Values. To allow for flexible parameterization of our models. we de-
cided to be as generic as possible with respect to the employed random number
generator. Our proposed models make use of random values, e.g., to determine
where a new node should be positioned, how fast it should travel, or how long
a pause should he. To be flexible, we need to be able to incorporate differ-
ent random distributions for these different tasks. While the position of a new
node might be uniformly distributed over the entire simulation area, the travel
speed could be Gaussian distributed with a certain variance and a mean cor-
responding to the speed limit on the street. We have chosen a flexible random
nunber generator to fulfill the aforementioned requirements. The ValueServer-
class of the commons.math-package [14] is such a generic number generator. Its
default iiplementation allows to specify different distributions (constant. uni-
form, Gaussian, exponential) and their respective parameters (mean, variance),
which can be specified in the sinmlation setup.

GraphRandomWalk (GRW). The implementation of the GRW mobility
model as described in Section 3.1 is guite straight forward: the Mobility-interface
of JiST/SWANS specifies two nethods which have to be implemented: public
MobilityInfo init() and public void next().

The irit()-method is called to initialize the mobility model. It returns an
object of type MobilityInfo (in our case GraphRandomWalkInfo) which stores the
information about the movement that is needed in the next movement step. This
includes:

— the remaining distance until the node pauses for a certain time,

— the current speed the nodc is traveling with,

— the next waypoint (a vertex on the graph) the node is traveling to, and

— the number of movement steps remaining until the next waypoint is reached.

The waypoint is an object of type LocationContainer. It stores the Location the
node started from and the Location the node travels to as well as the correspond-
ing vertices of the graph. The start and end locations may be situated anywhere
on the edge given by the two vertices.

The init()-method is called by the MobileInterface (usually of type Field)
containing the node to be moved. When the method is called, the id and the
current location of the node are passed to the method. The first step in the move-
ment process is to snap the node to the nearest edge on the graph (since the
passed location might not be on the graph). Afterwards, one of the vertices of the
edge is randomly sclected as the next destination. These two steps arc both done
by a call of MobilityGraph.getNext(int xPosition, int yPositiom). It returns
an object of type LocationContainer which is stored in GraphRandomWalkInfo and
contains a start location (the location the node is snapped to) and a destination
location. This destination is the first waypoint. A travelling speed is generated
by a ValueServer (specified upon construction of GraphRanudowrWalk) using the
mean speed of the edge the node is currently traveling on as the mean of the
random distribution. The last step of the initialization process consists of choos-
ing a random distance after which the node pauses. This is again done by a
ValueServer specified in the coustructor.

The next()-method is called by the MobilelInterface each time the node
should perform or schedule its next step. The node moves along the edge un-
til either the waypoint is reached or the random distance, chosen in init(),
has been travelled. If a waypoint is reached, a new waypoint is generated as
explained in Section 3.1 by calling MobilityGraph._getNext(Vertex startVertex,
Vertex destinationVertex). A new travel speed is chosen accordingly.

The distance of each step is subtracted from the random distance chosen in
init (). If this distance finally becomes zero, the node pauses for a randow time.
This time is again generated by a ValueServer. After the pause, the movement
process has to be restarted, which is achieved by calling init Q.

GraphRandomWaypoint (GWP). In the GWP model, the nodes follow a
path, which is chosen as explained in Section 3.1. We basc our implementation
on the JUNG Graph classes (Java Universal Network/Graph, see [15]), thus, a
path returned by the JUNG methods contains a List of JUNG Edges. These can
not be directly used for the movement of the nodes in JiST/SWANS. Instcad
the Location of the vertices and the mean specd on the edges has to be extracted
from this List. To represent the path in an adequate way, the class Waypoint is
introduced. An object of this type stores a Location, the speed that should be
used to travel to this Location, and the next Waypoint (which is null if the last
Location was the end location of the path).

For the concrete implementation, the two methods init(...) and next{...)
have to be implemented once more. For this mobility model, the information
that has to be passed from one step to the next is stored in an object of type
GraphRandomWaypointInfo, which contains:

- the current speed the node is traveling with,
— the path the node still has to travel on, and
— the number of movement steps remaining until the next waypoint is reached.

During the initialization, the node has to be snapped to an edge of the graph first
(see section 3.2). A random destination Location is generated using ValueServers.
The fastest path from the current Location to the newly gencrated destination
(see section 3.1) can now be computed. This path is stored in the Waypoint object
of the GraphRandomWaypointInfo as explained before.

A call of the next () method starts the movement of the node along the path.
For each edge a new random speed is chosen with a mean which is equal to
the speed stored in the Waypoint object. When the final destination is reached,
the node pauses for a random time. Afterwards the movement can be restarted,
which is again done by calling the init() method.

ot
[
niatace
woliimmen ocibenort ahnny
rativloy ¢
«aurosy
ool 1w
S| RaeCromtuta FadoGuriretace)
— —_— Rackoiaop
*Starmsbety v
[*108otaen oid
e]

(a) UML class-diagram for Field (b} UML class-diagram for GroupingField
Figure 1: UML class-diagramms
Grouped Mobility The GroupingField class adds the possibility of grouped

nodes to the Field class. This means that the nodes can move in a parent-
cliild-relationship, where the movement of the parent affects the movement of

the children. Fig. la shows a class-diagram of the existing Field class as it was
already present in JiST/SWANS. Fig. 1b shows the extended structure of the new
GroupingField class. The RadioGroupData class is an extension of the ElementData
class and holds an additional reference to an object of the RadioGroup class.
This class holds the set of ElementData objects that belong to this group. The
movement of the elements is now performed as follows:

1. A Mobility object calls the moveElement(id, locaticn) method of the
GroupingField.

2. Using the id, the corresponding ElementData object is retrieved from Field.

3. The Location of this object is set to the new Location.

4. 1f the element is an instance of RadioGroupData, the move(. ..) method of the

RadioGroup is called.

. Knowing its old Location as well as the new Location, the RadioGroup now

calculates its relative movement.

6. The RadioGroup then moves its members by the calculated relative movement
by calling the setElementLocationRelative(. ..) method of the GroupingField
for each group member.

7. If the member is a group itself, the process is recursively restarted from 3.

<

4 Experimental Evaluation

We evaluated our models preseuted in Section 3 in different scenarios. Goal of
our analysis is to address the following issues:

— Node distribution: does our GWD model exhibit a clustering cffect similar
to the one observed in the SWP model [13]?

— Speed decay: do our models exhibit a decay of the mean speed over simulation
time as observed in the standard models [12] and how does the mean pause
time of the nodes affect the average speed observed?

We evaluated the mobility models on two different road scenarios. Scenario T,
which is shown in Fig. 2a represents a part of a city (2400m*2400m) with a
dense street network where all the streets are of equal type, meaning that they
all have the same speed limit of 40km/h. Scenario 11, shown in Fig. 2b, has a
greater variety of streets (1900m*1900m, including highways with a speed limit
of 70km/h) and is not as dense as Scenario I. The road data was taken from the
public Tiger/Line-Database [16]. Each of the results presented in this section
is the average of 20 simulations with 100 nodes cach. For the GRW model, the
travel distance was Gaussian distributed with mean pq = 5km and a variance
of 04 = 1.5km.

4.1 Node Distribution

Fig. 3 shows the utilization of the streets of our scenarios after a simulated time
of 48 hours, where utilization is measured as the total time the street is used.

The travel speed was Gaussian distributed, with the mean g, ; of street i set to
the speed limit of street i. The variance was set to 0,4 = 0.1 ;. For the SWP
model, a mean speed of i, = 40km/h was used, which is the same as the speed
limit of the streets in Scenario 1. A variance of #, = 0.1 - 1, was used for the
SWP simulation, too. The pause time of the nodes was set to zero for all models.

In the GRW mobility simulation, the utilization is uniformly distributed on
all strects in Scenario 1 (see Fig. 3, left), as it is for a standard random walk
(SRW)} model [5]. In Scenario 11 (sce Fig. 4, left), one obscrves that the utilization
of the highways is lower than the one of the normal streets. This is due to the
fact that a node chooses its next strects independently of the street speed limits.
Since the speed on the highways is higher than the speed on the normal streets,
the mean time a node travels on a part of a highway is lower than the mean time
spent on a part of a normal street of the same length. In the GWP scenario, a
clustering of the nodes is clearly visible (see Fig. 3 and Fig. 4, right). While in
the SWP model the node density is higher at the center, in the GWP model,
clustering does not necessarily occur in the center. In GWP the nodes check for
the fastest path from one location to another. The utilization of a street depends
on its mean speed and on the shape of the street grid itself. Due to the nearly
uniform distribution of streets in Scenario 1 (see Fig. 3, right), the streets are
used with similar probability. But as in the SWP model, most nodes want to
travel through the center. This is why there is a higher utilization of the streets
in the center of the simulation area. In Scenario II (see Fig. 4, right) most fastest
paths from one end to the other end of the simulation area use the highways.
These strects are more heavily loaded than the streets in the center.

b G .
o :
{(a) Scenario 1 (b) Scenario 11

Figure 2: Street scenarios used for evaluation.

Figure 3: Node distribution in Scenario 1 using greph random walk (GRW, left) vs.
graph random waypoint (GWP, right) mobility model.

Figure4: Node distribution in Scenario Il using graph random walk (GRW, left) vs.
graph random waypoint (GWP, right) mobility model.

Q

-;\
\

B e a s SRS S F SRR !

414 ®
£l

1A wfmin
(a) Mean speed over time (b} Mean speed vs. pausetime

Figure5: (a)Mean speed # over time ¢ and (b) mean speed # vs. pausetime s,

4.2 Speed Decay

For the random waypoint model it has been shown that the mean speed of the
nodes decays over time, since more and more nodes get stuck on long paths with
low speeds {12). Fig. 5 (a) shows the instantaneous mean speed ¥ of the nodes
over a simulated time of 48 hours using the same speed settings as in Section
4.1. The instantancous mean speed is defined as

X;\ L i)

e

with N being the total number of nodes and v;(t) the speed of node i at time ¢.
Since there are streets with a speed limit of more than 40km/h in Scenario II,
the overall mean speeds for Scenario II are higher then the corresponding speeds
for Scenario 1. Since the highways in Scenario I are used more often for GWP
than for GRW, the mean speed in Scenario 11 for GWP is higher than the mean
speed for GRW. Using our settings, no specd decay can be observed within the
simulated time. This is due to the fact that the speeds of the nodes are not chosen
from a uniform distribution but from a Gaussian distribution with a rather small
variance. Fig. 5 (b) shows the influence of the mean pause timne yi, on the overall
mcan speed 5. The pause time being Gaussian distributed with a mean of up
varying from 0 to 70 minutes and a variance of o, = 0.3 - 1. As expected, the
mean speed drops with increasing pause time. In our simulation, the speeds for
GWP dropped faster than the speeds of GRW. This is because the distribution
of the travel distances used in GRW is not equal to the path length distribution
for GWP: in GWP the nodes pause more often, thus leading to a lower mean
speed.

B(t) =

5 Conclusion

In our work, we introduced two novel graph-based schemes for simple and cffi-
cient modeling of node mobility for use in simulation environments: graph ran-
dom walk and greph random waypoint. In combination with the possibility to
group nodes, this presents a powerful tool for realistic simulation of real-world
movement, while keeping the instantiation process of the model rather simple
and intuitive. Our models are based on the existing standard random walk and
random waypoint models. In particular, we increase the realism of these stan-
dard models by limiting node movement to predefined streets. At the same time,
we address well-known problems of the standard models such as non-uniform
node-distribution or speed decay over time. As a proof-of-concept, we imple-
mented the developed models using the JiST/SWANS simulation environment.
We performed a performance evaluation in which our models have shown to be
adaptable to various kinds of city topologies and produced meaningful results.
Apart from being apt for different topologies, our model as well as our imple-
mentation approach was desigued to allow for flexibility, e.g., by incorporating
different randomn distributions. The current work opens up several promising av-
enues for further research. Care should be taken that the quest for realism does

not lead to too complicated models, which on the onc hand are highly complex
(also in terms of computational complexity), and on the other hand do not aid
the better understanding of ad hoc protocol behaviour in real networks.

References

1. “JiST/ SWANS user guides,” http://jist.ece.cornell.edu/.

2. J. Scourias and T. Kunz, “Activity-based Mobility Modeling: Realistic Evaluation
of Location Management Schemes for Cellular Networks,” in Proceedings of WCNC
1999, September 1999, pp. 296 -300.

. D. Lam, D. C. Cox, and J. Wilson, “Teletraffic Modeling for Personal Commnu-
nication Services,” IEEE Communications Magazine, vol. 35, no. 2, pp. 79-87,
February 1997.

4. M. Hollick, T. Krop, J. Schmitt, H.-P. Huth, and R. Steinmetz, “Modeling Mobility
and Workload for Wireless Metropolitan Area Networks,” Computer Communica-
tions, vol. 27, pp. 751761, Mai 2004.

. T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Net-
work Research,” Wireless Communications Mobile Computing (WCMC): Special
Issue on Mobile Ad Hoc Networking: Research, Trends and Applications, vol. 2,
no. 5, pp. 483-502, 2002.

. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Huy, and J. Jetcheva, “A Performance
Comparision of Multi-hop Wireless Ad hoc Routing Protocols,” in Proceedings of
MobiCom 1998, 1998, pp. 85-97.

7. J. L. Boudec and M. Vojnovic, “Perfect Simulation and Stationarity of a Class of
Mobility Models,” in Proceedings of INFOCOM 2005, July 2005, pp. 2743-2754.

8. A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri, “Towards Realistic
Mobility Models for Mobile Ad hoc Networks,” in Proceedings of MobiCom 2003,
2003, pp. 217 228.

9. G. Lu, G. Manson, and D. Belis, “Enhancing Routing Performance for Inter-Vehicle
Communication in City Environment,” in Proceedings of PM2HW 2 N'06, October
2006, pp. 82-89.

10. J. Tian, J. Hahner, C. Becker, 1. Stepanov, and K. Rothermel, “Graph-Based
Mobility Mode] for Mobile Ad Hoc Network Simulation,” in Annual Simulation
Symposium (55°02). 1EEE Computer Society, 2002.

11. D. R. Choffnes and F. E. Bustamante, “An Integrated Mobility and Traffic Model
for Vehicular Wireless Networks,” in Proceedings of VANET05. ACM Press,
September 2005, pp. 69-78.

12. J. Yoon, M. Liu, and B. D. Noble, “Random Waypoint Considered Harmful,” in
Proceedings of INFOCOM 2003, vol. 2, April 2003, pp. 1312-1321.

13. C. Bettstetter, H. Hartenstein, and X. Perez-Costa, “Stochastic Properties of the
Random Waypoint Mobility Model,” ACM/Kluwer Wireless Networks, Special Is-
sue on Modeling and Analysts of Mobile Networks, vol. 10, no. 5, September 2004.

14. “Commons-Math APL” http://jakarta.apache.org/commons/math.

15. J. O’'Madadhain, D. Fisher, S. White, and Y.-B. Boey, “The JUNG (Java Uni-
versal Network Graph) Framework,” TR UCI-ICS 03-17, University of Cali-
fornia, Irvine, Tech. Rep., October 2003, http://www.datalab.uci.edu/papers/
JUNG_tech_report.html.

16. “TIGER Topologically Integrated Geographic Encoding and Referencing system,
U.S. Census Bureau,” http://www.census.gov/geo/www/tiger.

w

e«

=3

