
[MKS08] Patrick Mukherjee, Aleksandra Kovacevic, Andy Schiirr; Analysis of the Benefits the Peer-
to-Peer Paradigm brings to Distributed Agile Software Development. In Proceedings ~f
the AKNOWLEDGE2G06, April 2008 Seite

Analysis of the Benefits the Peer-to-Peer Paradigm brings to
Distributed Agile Software Development

Patrick ~ u k h e r j e e l , Aleksandra ICovacevic2, Andy Schürrl

'Real-~ime Systems Lab, Technische Universität Darmstadt
Merckstr. 25,64289 Darmstadt, Germany
mukherjee, schuerr0ES.t~-darmstadt.de

2~u l t imed ia Communications Lab, Technische Universität Darmstadt
Merckstr. 25,64289 Darmstadt, Germany

sandra@KOM.tu-darmstadt.de

Abstract: In this work, we analyze the potential benefits of taking a peer-to-peer
approach to supporting tools for distributed agile software development. Current
tools that Support software development are clientlsewer based and designed for on-
site development. We discuss their drawbacks and show how a peer-to-peer based
approach can overcome them. Additionally, we present a peer-to-peer based tool,
ASKME, that Supports distributed agile software development and focuses on its cni-
cial needs, namely communication and awareness among distributed developer teams.

1 Introduction

The success of agile methods in software engineering made them attractive to a wide range
of developers, all focused on getting fast results from the reduced overhead of the classical
software development process. Most software projects are developed by distributed teams,
and taking into account that agile methods like pair programming and frequent scrum
meetings are meant for collocated developer teams, the following question arises: can agile
methods be applied in distributed software development? An online survey [ISHGH07]
showed that 33% of the observed distributed development projects consisted of teams
with less than ten members. Having small-sized teams, like having direct communication
between team members, plays a crucial role in the application of agile methods. There is
an obvious need to compensate for the inability to meet face-to-face; coming from the field
of software engineering, we try to confront this challenge with a tool-oriented approach.

Distributed software development is currently supported by traditional tools, which are
created for on-site development. Such tools are based on the client-server cornmunication
paradigm. However, the centralized architecture of client/server Systems is orthogonal to
the natural structure of distributed software development. Developer teams in the same
location normally communicate with one another and manipulate the same artifacts. This
communication (including message exchange and file transfer) obviously does not need a
remote Server and should be processed duectly between developers.

In this paper we discuss the benefits of using a peer-to-peer communication paradigm for
agile software development methods. Therefore, we first identify some key concepts of
agile development methods in Section 2 and then, in Section 3, we discuss the problems
that the clientlserver approach brings. In Section 4, we show why peer-to-peer based
tools would overcome the previously discussed limitations and in Section 5, we present a
peer-to-peer based tool called ASKME that Supports agile software development. This tool
focuses on the need for developer awareness in distributed teams and for communication
that does not use a central server. Finally, we conclude our work in section 6.

2 Properties and Needs of Distributed Agile Software Development

Agile development methods aim to get fast results. To achieve this, the actual imple-
mentation phase is emphasized and all other phases (e.g. requirements analysis, de-
sign, documentation) are reduced to a minimum time consumption. In contrast to clas-
sical development methods like the Rational Unified Process [RUP], agile methods are
people-centric rather than process oriented. In fact, the design of the software develops
not only during the actual coding, but also during the requirements analysis with the cus-
tomer. Existing tools that support agile development focus on reducing the duration of non-
coding phases. Automatic documentation generators (e.g. JavaDoc) or automatic regres-
sion tests (e.g. JUnit) reduce documentation and testing phases, respectively. However,
the actual need for documentation is weaker than the need for communication because
teams in agile development consist of a few highly competent developers who share their
project knowledge directly, i.e., face-to-face [eaOl]. Most modern software development
is distributed, often even over continents. As such makes the typical agile principle of
face-to-face knowledge exchange impossible, a tool to support direct communication is
needed. Besides basic comrnunication, enabling awareness is crucial - because the partic-
ipants are not able to physically See each other, it is important that their presence in the
development environment is visible. As soon as a participant appears online, similar to
hallway conversations, other participants are reminded about a deferred conversation, etc.

3 Drawbacks of Client/Server Based Solutions

In the clientkerver communication paradigm, all data exchanges occur between one dedi-
cated machine (the server) and the machines of the team members (the clients). The server
must always be available to offer services while the clients only consume the sewices.
Clientfserver based support for distributed agile development has numerous drawbacks.
First of all, it obviously creates a communication bottleneck due to the fact that all data
exchanges have to be transmitted through a server, often making communication slow,
with poor scalability. If two clients, which might be geographically close to each other,
Want to exchange information, they cope with additional latency introduced by a distant
server. Furthermore, suboptimal resource consumption resources result from exploiting a

server for all services where client machine resources (such as computation power, mem-
ory, bandwidth, and Storage space) typically remain unused. If the server fails, the whole
system stops working and data could be lost, making the server a single point of failure.
Finally, the cliendserver approach has high set-up und maintenance cost, which is a par-
ticular issue for non-profit projects (e.g. Open source projects) as they are normally funded
by umeiiabie donations.

4 Motivation for a Peer-to-Peer Approach

In a peer-to-peer paradigm, each communication participant (peer) offers and consumes
services. All communication and data exchange is done directly between intended parties.
The significantly lower costs of peer-to-peer solutions are the result of selj-organization
and optimal resource usage from all participants. Because all Users maintain their own
machines, there are no additional maintenance costs. If a peer fails, it will be replaced
automatically; thus good maintenance is not needed. When a Peer Comes online he has to
be able, in a short time, to overtake services offered by his neighbors; thus the applications
rnust be designed to have a short start-up time. Because each Peer is only responsible for
a Part of a service, the start-up time is a part of the time the combined service would take
to Start on a single server. [SE051

In contrast to the cliendserver approach, messages in peer-to-peer communication have
decreased delay. Two peers can communicate directly with each other. In the case of
cliendserver communication, if two geographically close clients (e.g. in the Same room)
Want to exchange data, they have to send the data to a distant server (e.g. in another city)
and experience unnecessary delay. Only the initialization of the communication requires
peer-to-peer routing, which is likely to introduce some delay due to the stretch factor
[RS07]. But subsequent messages can be exchanged directly, which is shorter than any
three-folded way using the clientlserver approach'.

One of the key characteristics of peer-to-peer Systems is robustness, meaning that a peer
failure is considered normal and does not cause a system break. The system would only
be harmed if a peer and all its replicating peers (usually five peers altogether) crashed
simultaneously, before one were able to replicate its state to a new peer. However, even in
this unlikely scenario, only a part of the system would be harmed; the system as a whole
would remain functional.

'Only in the case that the server were on the routing path would the delay be the Same.

5 A Peer-to-Peer based Support Tool for Agile Development: ASKME

As an example how peer-to-peer based applications can improve agile distributed software
development, we implemented a tool that aims to improve awareness and cornrnunica-
tion among distributed developer teams; we call this tool ASKME, 'Awareness Support
Keeping Messages Environment'.

5.1 Functionality

The implemented application is designed as a plug-in for the widely used development
environment Eclipse. In a side-panel, a User can add his team mates as contacts by entering
their nicknames. The tool allows users to track the Status of their colleagues, e.g. wether
one is absent or free to respond.

The best source of information while having problems with collaborative coding is to ex-
change information directly, according to the agile principles. That means contacting the
developer who modified the code most recently. Exactly that developer gets automatically
highlighted once a document is opened, which is stored by an integrated version control
system2. The User will be made aware of the contact and reminded that he can ask him
questions. If the contact is offline a users can still send messages, which will be auto-
matically delivered by other peers as soon as the destination appears online. In existing
instant messengers, such a message would arrive oniy when both communicating parties
are online, meaning that the message could be delayed as long as the sender is offline.

5.2 Architecture

To gather context information about parti&pants' presence, our instant messenger applica-
tion is built as a plug-in for Eclipse. Using methods to access the version control repository
from Eclipse, version information can be accessed (e.g. the last author of a document). It
is also possible to access other kind of information in the development environment like
contextual (e.g. chatting with bob, working on document X) or user-specified (e.g. busy).

For message exchange, ASKME uses the structured, DHT-based peer-to-peer overlay net-
work pastry [RDOI], namely its implementation freePastry [FP]. When a message is sent
it gets routed to the contact nearest the destination the sending peer knows, as described
in [RDOI]. This peer will automatically fonvard the message until the destination peer is
reached. If the destination peer is offline, our algorithm handles the delivery as follows:
due to pastry's routing, the last receiver is nearest to the destination; this receiver will
replicate the message to his neighbors, which are the next nearest peers to the intended
destination. If peers are changing, the message will be replicated via the standard meth-
ods in structured peer-to-peer Systems, thus ensuring that it will be stored by the peers
surrounding the offline destination. If the destination peer finally Comes online, the mes-
sage gets replicated to it. Upon recognizing that the message was addressed to him, the
destination peer will remove it from all replicating peers. We have chosen to replicate

2 ~ e are currently working on a peer-to-peer based version control solution.

offline messages on five neighbors. The message could only get lost if all five were to fail
at the Same time, which is very unlikely ([RDOI]). Fail rneans that a peer leaves without
being able to clean up its connections, that is, to handover stored offline messages to its
neighbors and to announce to all contacts that it is going offline. In the case that both com-
munication Partners are online, the first message will reach its destination and establish a
direct connection by informing both peers about the others IP address. Thus all following
messages in a conversation can be exchanged without peer-to-peer-layer routing.

The implemented application could have been built using cliendsewer based cornrnuni-
cation, but that would have introduced the drawbacks described in section 3, namely the
dependency on a single machine, which would make the System less robust, and which
would represent a bottleneck, which would reduce the overall communication bandwidth
and increase the delay.

6 Conclusion

When applying agile methods to distributed software development using a cliendserver
based approach, numerous issues arise, the main being bottlenecked comrnunication chan-
nels, time consuming setup, and maintenance work. In this paper we discussed how
peer-to-peer based tools address nearly all of these problems and how they meet the main
needs of agile software development - communication and awareness. As an example, we
implemented a peer-to-peer based instant rnessenger as an Eclipse plug-in, with additional
features that Support agile teams in their communication and aid in building awareness.

References

[eaOl] Beck et al. Manifesto for Agile Software Developrnent. http: / /
agilemanifesto.org/, 2001.

[Fpl FreePastry. http: //www . f reepastry . org/FreePastry/.
[ISHGH07] T. Illes-Seifert, A. Henmann, M. Geisser, and T. Hildenbrand. The Challenges of

Distributed Software Engineering and Requirernents Engineering: Results of an Online
Survey. In Proc. of CREW, pages 5546.2007.

[RDOI] A. Rowstron and P. Dmschel. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In Lechrre Notes in Comprrrer Science,
pages 329-350,200 1 .

[RS07] A. Richa and C. Scheideler. Overlay Networks for Peer-to-Peer Networks. In Hand-
hook of Approximation Algorithms und Metaheuristics, chapter 72. May 2007.

[RUP] Rational Unified Process. http://www-306.ibm.com/software/
awdtools/rup/.

[SE051 Ralf Steinmetz and Klaus Wehrte (Eds.). Peer-to-Peer Systems and Applicnrions.
Springer, Sep 2005.

