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Abstract—In distributed sensing systems information is mea-
sured by various types of sensors. Due to measuring inaccuracy,
each measurement only provides a noisy view on the measured
variable. This inaccuracy can further increase if other vari-
ables are derived from those measurements. Nodes make wrong
decisions based on the inaccurate information which they are
provided with. Consequently, the correctness of measurements
and derived information is crucial.

In this paper, we focus on the accuracy of information
w. r. t. the correctness of provided information. We introduce an
accuracy metric based on application requirements. This metric
can be used to determine if the provided information satisfies the
requirements of an application. It requires a data representation
that assumes each sensor measurement can be depicted with a
distribution vector. This representation contains all information
available and can be used to track accuracy while aggregating
and fusing information. We propose an approach to model the
spatiotemporal changes of the measured probability vector. As a
result past and geographically distant information can be used
to enhance the accuracy of information. The evaluation results
confirm that using the past and present data can increase the
accuracy by up to 200% than when these data are absent.

I. INTRODUCTION

In distributed sensing systems various information is provided
by various types of sensors. Measured information, however,
is generally a noisy observation of the measured variable. This
noise is dependent on the quality of the available sensors.

For some applications, the accuracy of the provided in-
formation might not be sufficient. Common examples like
Advanced Driver Assistance Systems (ADAS) in vehicular
networks require information of high accuracy.

The accuracy of a measurement can be increased by aggre-
gating multiple independent sensor measurements. Information
aggregation and fusion have been heavily investigated in
the field of Wireless Sensor Networks (WSN). According to
Durrant-Whyte [1], information fusion can be divided into three
categories: complementary, redundant and cooperative fusion.
In this work, we focus on redundant aggregation. The idea of
redundant aggregation is to aggregate similar or almost similar
messages to reduce network load while increasing accuracy
and reliability [2]. The processing and aggregation of messages
can be performed by intermediate nodes as in [3].

Although our developed approach can be used in most
distributed sensing systems, we utilize the vehicular scenario to
elaborate our concept. Accuracy and reliability are important
in vehicular networks, as wrong or inaccurate information may
reduce driver safety and comfort.
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Figure 1: In-Network aggregation process

In a vehicular network, for example, each vehicle senses the
temperature. In most cases calculating the average of the sensed
values leads to more reliable results. However, as vehicles are
equipped with sensors of different quality, the sensor accuracy
is not the same for all retrieved values. Taking the sensor
accuracy into account, this result can be enhanced further.
Therefore each sensor does not only measure the exact value
but provides a distribution vector based on the sensor properties.
This distribution vector can be produced by performing multiple
measurements in a certain time interval or by using knowledge
of the sensor accuracy. In the case of temperature sensors, the
distribution vector will be based on a Gaussian distribution.
Therefore a probability vector can be created using a Gaussian
distribution with the measured value and the sensor deviation.
The resulting vector can be aggregate with other measurements
to increase accuracy.

An exemplary scenario is shown in figure 1. In this example,
the observed variable has five possible states. In our example,
vehicle 1 is deployed with a sensor of moderate accuracy.
To allow the succeeding vehicles to enhance their view on
the variable, the measured probability vector is shared. The
probability vector is dependent on several factors, one of which
is sensor quality. Using only its own measurements, vehicle 2
would not be able to decide in which state the observed variable
is, as the probabilities for state 2 and 3 are equal. However,
using the information provided by vehicle 1, vehicle 2 is able to
decide about the state of the observed variable in a cooperative
manner. Simultaneously, it increases the accuracy compared to



the measurement of vehicle 1. The resulting probability vector
is shared with vehicle 3. Vehicle 3 by itself would even have
made the wrong decision, as the probability for state 1 is higher
than the probability for state 2, but state 1 has been barred
from vehicle 1 and 2. As vehicle 3 receives the information
from vehicle 2, it can correct its inaccurate measurement.

Our contribution is the modeling of the measurement process
including the spatiotemporal influences on measurements.
Consequently past and geographically distant measurements
can be used to increase the measurement quality.

II. RELATED WORK

Data aggregation is a pivotal technique in distributed sensing
systems. Simple aggregation algorithms are among others
maximum and mean. Aggregating information using these algo-
rithms can decrease the accuracy of information. For redundant
aggregation, different approaches have been developed.

The Kalman filter proposed by Kalman in 1960 was one
of the first approaches to increase accuracy by combining
redundant information [4]. Since its proposal, different algo-
rithms have been developed on this basis. The idea of Kalman
filter is to reduce Gaussian noise on low-level sensor data.
Some extensions like the Extended Kalman Filter [5] and the
Unscented Kalman Filter [6] have been proposed to increase
its performance in different scenarios. Moreover, Kalman filter
has been extended for the usage in distributed scenarios [7].

To handle information that does not necessarily match the
requirements for the usage of Kalman filter, other approaches
have been presented. Xiao et al. [8] introduced an aggregation
scheme for constant variables. The proposed distributed ag-
gregation scheme is based on maximum-likelihood parameter
estimation. Each node in the network holds a local estimate of
the global state. By communicating with neighbor nodes, the
global estimate is synchronized between the nodes.

Boulis et al. introduced an aggregation algorithm based on
a probability distribution, which provided a tradeoff between
energy efficiency and accuracy [9]. The idea is to keep meta-
information of the aggregation to improve future aggregations.
That information is shared with neighbor nodes. Using that
information they were able to merge information without a
central node. The aggregation itself is dependent on the used
aggregation function.

The authors only investigate the issues of "snapshot aggre-
gation". Compared to that, we utilize past and geographically
distant measurements to further increase the performance of
the aggregation algorithm. We moreover do not focus on one
specific aggregation function. The used data format contains all
necessary information to extract information using an arbitrary
aggregation function.

III. DATA MODELING

We assume a variable has a set of possible states S. Without
loss of generality, the number of possible states S is finite.
At a given time and location, the measured variable is in a
certain state s ∈ S. The state of the measured variable cannot
be determined with certainty from a single measurement.
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Figure 2: Modeling of the measurement process in the vehicular
scenario

Data in information systems is often modeled as a tuple
[10] [11]. This tuple contains besides the measured value the
location and time of the measurement. However, an important
characteristic of the data is missing in this definition, i. e. the
accuracy of the measurements. While the actual data value is
sufficient for most use cases, data fusion and other operations
could utilize the distribution of the measured information.

We model this system as displayed in figure 2. The measured
variable is a partially observable variable, whose state can be
approximated only with measurements. Each measurement
is only a noisy view on the measured variable. Due to
sensor inaccuracy, after a certain amount of measurements,
a probability vector can be determined for the current variable
state. Each probability vector is the output of one measurement
process. Using this vector, the state of the variable can be
estimated.

To provide additional information about the distribution to
other nodes, we do not store the measured value, but the
probability vector ~p. This data representation was initially
proposed by Boulis et al. [9]. As the number of possible states
in S is finite, the vector dimension is likewise. The vector is
shown in equation 1.

~p =

 p1
...
pn

 (1)

For each probability vector the following requirements must
hold:

pi ≥ 0

n∑
i=1

(pi) = 1

The probability vector for each measurement is dependent
on the sensor performing the measurement. Before sharing,



additional meta-information is added to the vector. The final
packet consists of the following five entities:

1) Data ID: The data ID of the information. This is
important for later processing based on this information.

2) Vector-based Representation: The measured or processed
information value

3) Location & Time: The location and time for which the
information has been created. Using this information the
freshness of the information and the vehicle’s distance
to it can be determined.

4) Contributing Vehicles: The id of each vehicle that has
contributed to this information. This meta-information is
important for the aggregation process, as the aggregation
only works correctly if all measurements are independent.
Storing the vehicle ids is a simplification to prevent the
same measurement being aggregated.

In the following, the influence of the sensor and spatiotem-
poral dependencies are elaborated on.

A. Sensor Accuracy

In this section, we focus on the probability vector. The
accuracy of the measuring sensor has a high impact on the
resulting probability vector. Sensors with low accuracy will
produce vectors without high peaks. Therefore the standard
deviation is high. On the contrary sensors with high accuracy
will produce a vector with few high peaks.

This representation of data requires more information
compared to transmitting only the value determined by the
sensor. However, the applications on the vehicle are enabled to
perform operations while having the insight of how accurate
the provided information is.

B. Temporal Dependency

Due to the changes of the measured variable, the probability
vector changes over time. The more time has elapsed since
a measurement, the less accurate it becomes as the measured
variable has its specific behavior. This behavior is modeled
to utilize previous measurements in the aggregation process.
Thus those can be used to increase the accuracy of current
measurements. In most cases only information of one past
period is available. Therefore a Markov chain is used to model
the fluctuation of the measured variable. It does not describe the
fluctuation of the actual sensor measurements, but the changes
of the variable itself.

The transition matrix Tt of the measured variable over time
has the same dimension as the probability vector. It is shown
in equation 2.

Tt =

 t11 . . . tn1
...

. . .
...

tn1 . . . tnn

 (2)

In order to predict the state of the measured variable in
a future period, the transition matrix is multiplied with the
measured probability vector. Assuming a probability vector is

available in period t0, the state of the variable in the future
state t can be predicted as shown in equation 3.

~pt = T t−t0
t ∗ ~pt0 (3)

With increasing amount of predicted periods, the prediction
becomes less accurate. However, this inaccurate value can
still be used to enhance the accuracy of currently measured
information.

C. Geographical Dependency

The geographical dependency can be modeled similarly
to the temporal dependency. Instead of using the temporal
transition matrix Tt, the transition matrix Td is used to model
the geographical relation.

The geographical relation is dependent on the distance, which
itself is dependent on the event type though.

For events that are not bound to streets like temperature, the
geographical relation is only dependent on the linear distance.
However, for events that are map-based, this relation is not
valid.

In this case, the length of the shortest path between the
current location and the information’s location should be used.
Moreover most information entities are direction dependent.
In this case, the shortest path for a vehicle turn can be used to
approximate the changes.

As the transition matrix is information type dependent, it can
be created using the specific distance function of an information
type. The resulting transition matrix has similar requirements
as the temporal relation matrix and is shown in equation 4.

Td =

 d11 . . . dn1
...

. . .
...

dn1 . . . dnn

 (4)

Using this matrix the current probability vector can be
estimated using the information type dependent distance
function d(loc, loc0). The result of the distance function is
integral. This is achieved by defining the transition matrix for
adequately small distances. Equation 5 shows the geographical
adjustment performed on an information entity.

~pt = T
d(loc,loc0)
d ∗ ~pt0 (5)

D. Spatio-Temporal Dependency

The temporal and the geographical dependency are com-
bined to a spatiotemporal dependency utilizing both transition
matrices. This is possible as the temporal and the geograph-
ical dimension are independent of each other. The resulting
probability vector calculation is shown in equation 6.

~pt = T t−t0
t ∗ T d(loc,loc0)

g ∗ ~pt0 (6)



IV. ACCURACY

There is no uniform definition of accuracy in the literature.
It is a term that is hard to describe. Wang et al. [12] define
accuracy as the degree of which the data is error-free, accurate
and reliable. Batini et al. [13] define accuracy as the "closeness
between a value v and a value v′" and differentiate between the
syntactic accuracy and the semantic accuracy. While syntactic
accuracy only checks if a value is a valid entry in terms of
possible values, semantic accuracy compares the measured
value with the real value. Dependent on the used comparison
function, different values might be accurate.

In this work, we want to introduce the concept of the appli-
cation dependent accuracy. Some applications like navigation
can handle imprecise information very well. Besides accurate
information safety applications require the degree of accuracy
of the provided information.

Assuming each application knows the degree of inaccuracy
it can handle, information can be validated easily. In the case of
insufficient accuracy, the application might request additional
measurements to increase the accuracy.

Therefore the accuracy metric is defined as the probability
that the state of the observed variable is within a certain range of
states. This range might be either static or dynamic dependent
on the current state. The accuracy is dependent on the expected
state of the observed variable se. The expected state se ∈ S
maximizes the accuracy for the specific application.

Equation 7 displays the accuracy metric a for applications
with static maximum error f . The function index(s ∈ S)
returns the index of the state s in the probability vector ~p.

a = max
s∈S

 index(s)+f∑
i=index(s)−f

(pi)

 (7)

For an application with state-dependent error, the static
variable f is replaced by a state dependent error-function f(s).
Therefore equation 7 is adjusted to equation 8.

a = max
s∈S

 index(s)+f(s)∑
i=index(s)−f(s)

(pi)

 (8)

Equation 8 can be used to represent both static and state-
dependent error-tolerance of applications. As described above,
the expected state is the state se ∈ S for which the accuracy
is maximized.

V. DATA AGGREGATION

The main advantage of the data representation presented in
chapter III is the possibility to aggregate values in order to
increase accuracy. Different to other approaches, this model
is naturally able to include past values and values of different
positions into the estimation.

Given a past probability vector ~pt0 for the state of the
observed variable at t0 and a measured probability vector ~qt
at t while both being at the same location, the aggregation
process works as follows:

First, a probability vector ~pt for the period t is calculated
by multiplying the transition matrix of the observed variable
with the probability vector ~pt0 as shown in equation 9.

~pt = T t−t0
t ∗ ~pt0 (9)

As both probability vectors now describe the state of the
variable in the same period, those can be aggregated. The
aggregation process is based on the fact that both probability
vectors describe the state of the same variable. The probability
for each state in the aggregation is calculated using the
conditional probability that both vehicles measure the state
s given both measurements measure the same state. This
calculation is shown in equation 10.

P (X = s) = P (Xp = s ∩Xq = s |Xp = Xq ) (10)

Therefore, the new probability vector ~r can be calculated
with equation 11.

~r =

 r0
...
rn

 =

 p0 ∗ q0
...

pn ∗ qn


~pt · ~qt

(11)

To complete the aggregation process, the meta-data needs
to be adjusted. For timestamp and location of the aggregated
information, the latest timestamp and location is used.

The aggregated vector has a higher accuracy than the original
one. Dependent on the dimension of the vector, it might be
necessary to compress it for sharing with other vehicles. This
can be done by compression algorithms, as most elements are
expected to be 0. Moreover, it might be possible to represent the
vector using well-known functions like the Gaussian function,
as mentioned in [9]. In this case, standard deviation and average
are calculated.

VI. EVALUATION

In the following, we evaluate the performance of the proposed
mechanism for different scenarios. Figure 3 shows the max-
imum achievable accuracy for different scenarios. A rate of
change of 20% states that the probability of the measured
variable to keep its state is 80%, while the probability of a
state change is 20%. A rate of change of 80% corresponds to
a system without the usage of past information. There are no
outliers in that scenario.

It is depicted that maximum accuracy is dependent on the
rate of change and the rate of incoming measurements. The
higher the rate of change is, the more measurements per
time interval (TI) are required to achieve a certain accuracy.
For static information, it is possible to achieve an accuracy
of roughly 100% in all cases. However, in the vehicular
scenario, static information is not common. For non-static
information, the maximum achievable accuracy is lower due
to the mechanism described in chapter III. With increasing
amount of measurements per TI, the accuracy increases for
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Figure 3: Maximum achievable accuracy dependent on the
measurements per time interval (TI).

all graphs. From this, it can be deduced that huge amounts of
measurements per TI are required to achieve a high accuracy
for a rapidly changing variable.

Figure 4 shows the accuracy distribution for a Gaussian
distributed measurement. In the simulation, the average for
each measurement has been chosen randomly based on the
Gaussian distribution. Afterwards, the measurement vector
itself is calculated based on the randomly chosen average and
the standard deviation. The accuracy has been investigated for
different rates of change and standard deviations. As in figure
3, a rate of change of 80% equals a system without usage of
past information. The advantages of the proposed model can
then be observed for the rates of change of less than 80%.
With decreasing amount of changes per TI, the median of the
accuracy increases. Moreover, the accuracy of a measurement
with standard deviation of σ = 1 is higher than for σ = 2 and
σ = 3, but simultaneously the confidence interval is bigger.
This is caused by the influence that outliers have on the data.
With increasing accuracy the influence increases.

VII. CONCLUSION

In this paper, we modeled the measurement process in the
vehicular scenario. Instead of sharing only a single value, a
probability vector is shared, which provides information about
the sensor accuracy. Accuracy is important for various vehicular
applications. Dependent on the application requirements, the
amount of aggregated information can be adjusted. This leads to
a smaller number of requested messages, as the information is
only enhanced until it satisfies the accuracy constraints defined
by the application.

The measured variables change over time and with increasing
distance. To model this behavior, a Markov chain was used. By
modeling the behavior of the measured variable, it is possible to
enhance current and local measurements with past and distant
data. The impact of temporal and geographical changes on the
measured value is variable-dependent.

The evaluation shows that past information can be used
to increase the accuracy of measurements by up to 200%
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Figure 4: Behavior of the accuracy using a Guassian distributed
variable.

dependent on the rate of change. In future work, we will
enhance the proposed model with error handling to actively
filter faulty information.
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