
[MRS08-21 Andre Miede, Nicolas Repp, Ralf Steinmetz; Concepts of Self-Organization for Service- 
Oriented Architectures. no. TR-2008-01, January 2008. 

Concepts of 
Self-Organization for 
Service-Oriented 
Architectures 
Technische Universität Darmstadt 

Department of Electrical Engineering and Information Technology 

Department of Computer Science (Adjunct Professor) 

Multimedia Communications Lab 

Andre Miede, Nicolas Repp, and Ralf Steinmetz 

TECHNISCHE 
UNIVERSITAT 
DARMSTADT 

Technical Report 
TR-200801 



Contents 

1 lntroduction 1 

2 Enterprise Information Technology and Service-Oriented Architectures 1 

2.1 Enterprise Information Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2.2 Service-Oriented Architectures and Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

3 SeF-Organization 8 
3.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
3.2 Related Fields and Selected Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

4 Research Challenges 12 
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

4.2 Stateofthe Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

5 Conclusions and Outlook 15 

References 17 



List of Fiqures 

Ability-of-adaptation curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

Vertically-organized enterprise architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

Horizontally-organized enterprise architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Business- and IT-services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Enterprise IT architecture layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Tier architecture vs . SOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Relationship between web services' components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
IBM's Autonomic Computing reference architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
IBM's Autonornic Computing evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

SOApyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

List of Tables 



1. lntroduction 
- -  

This report presents a research agenda to address challenges of enterprise information technology, i. e. service- 
oriented architectures, by concepts of self-organization. 

First, an overview of the challenges modern enterprise information technology faces is given. It shows how these 
Problems can be addressed using the service-oriented architecture paradigm and one of its possible implementations, 

web Services. After that, the concept of self-organization, which has been studied extensively in a variety of fields 
and Covers many interesting and successful techniques, is introduced. The two preceding ideas are then combined. 

Self-organization is proposed as a way to address Open research challenges in the field of enterprise service-oriented 
architectures, mainly to manage their complexity. These chalienges are placed within current research activities in the 
field of service-oriented architectures and an overview of the state of the art both in industry and research is given. 
The report concludes with outlining milestones for achieving self-organization in service-oriented architectures. 

2. Enterprise lnformation Technology and Service-Oriented Architectures 

Enterprise information technology is subjected to the Same demands for high flexibility and adaptability as the 

business it Supports. This reflects the increasing interdependence of business and information technology, whereby 
one cannot be decoupled from the other but both areas have to be viewed and designed as a seamless and aligned 

unit. 
This section introduces the challenges of enterprise information technology and gives an overview of a powerful 

paradigm to address these challenges, namely, service-oriented architectures. 

2.1 Enterprise Information Technology 

The evolution of computing paradigms and technologies is closely related to business requirements and their solu- 
tions. One reason for this is the tight coupling between enterprise information technology (iT) and both the internal 
organization and processes of an enterprise. [31, pages 3,231 

The underlying iT architecture and infrastructure have to support the business' needs for constant changes and 
quick adaptations. This makes it necessary for an enterprise in a highly competitive economy such as ours to have a 

Software architecture that fulfills the following requirements [31, Page 671: 

.:. Simplicity: the architecture has to be understood and managed by the people working in and with it. 

::, Flexibility: changes to local details must not affect the overall System, i. e. break it. 

I 

Time 

Figure 1: Ability-of-adaptation curve (after [31, Page 21). 



.:.- Reusability: despite high initial costs, a repository of reusable software components should be built and main- 

tained. 

::- Decoupling: functional and technical logic should be strictly separated. 

However, many enterprise software solutions in use do not address these requirements as over time continuous 

changes seriously affect a System's ability to adapt [31, Page 21. Figure 1 shows an example for this scenario. 
In addition, enterprise IT has to be Seen as a very special field. Unlike many other domains of IT, enterprise 

software is developed and maintained in very close collaboration with the end customer, where usually multiple, 

very different departments are involved. Here, highly political scenarios and very diverse teams face a multitude of 
requirements, many of which are either conflicting, unclear, or both. Thus, as business software usually does not 
contain too many complicated algorithms, the challenge is less of a technical nature than an organizational one. 
[31, pages 2-81 

Many enterprise IT architectures were not planned or designed in advance, but grew into their current state over 

time. This usually results in a vertically organized architecture with a so-called pillar or silo structure, as shown in 
Figure 2. These are quite sophisticated and particularly suit the Support of operational sequences in their domain [34, 

pages 28-30]. Difficulties and even senous problems arise if this process has to be modified significantly. Common 
side effects include data redundancy and multiple implementations of the Same functionality in different places. 

GUI 

Process 

Functions 

Data 

Figure 2: Vertically-organized enterprise architecture (after [34, Page 291). 

A reason for these silos is the fact that many IT Systems used to serve only a single department or business 

unit-something true even until 1990. This raised the well-known issue of integration, which has challenged IT 
departments for decades [41, Page 1971. It is another good example of the need for tight coupling of an enterprise's 
business and it's underlying IT. Although it is more of a technical problem in the end, the main reasons behind 

integration can be found on the business side. Key business drivers include the following: 

::T mergers and acquisitions, 

:, internal reorganization, 

:::. System consolidation, 



i new business regulations, 

:. compliance with new govemment regulations, and 

::- streamling business processes. 

Within this context, the introduction of new software-maybe even across department borders-usually causes huge 

problems which can outweigh the actual advantages of integrated systems. [31, Page 241 

In the following, three major challenges for enterprise IT are discussed: heterogeneis: business processes, and 

complexity. 

Heterogeneity One of integration's biggest challenges is heterogeneity. It started out as application heterogeneity 
and was addressed by enterprise application integration (EAI) using technologies such as the enterprise service 
bus (ESB) [34, Page 191. 'ZLpical functionality provided by the ESB is message transformation, message routing, 

and application adapters using highly customized middleware. This resulted in yet another problem: middleware 

heterogeneity. [31, Page 211 
However, heterogeneity of these kinds must be considered as "a fundamental fact that cannot be fought but must 

be managed" instead. An approach for modern and successful IT architectures should therefore embrace heterogene- 
ity and be able to cope with it. [31, Page SO] 

Business Processes Due to the concept of business processes in the 1990s [21], businesses and thus their under- 
lying IT architectures have had to adapt to this powerful concept in order to stay competitive. A business process 
creates additional value for an enterprise by integrating already existing services [34, Page 2221 [44]. If a business 
process is automated and, therefore, viewed from a technical point of view, it is caiied a workflow [34, Page 2531 

[441. 
Designing a business on the process level can be Seen as a further development of the programming-in-the-large 

idea [34, Page 181 [12]. It considers how smail, individual components are combined and interact on a higher level. 
(As opposed to programming-in-the-small which is more on a lower, technical component level.) 

in contrast to the vertical approach described above, a focus on business processes also requires looking at IT 

systems horizontally-as a combination of the existing silos [34, pages 30, 311, as shown in Figure 3. It becarne 
clear that the sum of the locally very good and highly adapted systems was not sufficient for a globally optimum 
solution. Thus, a vertical architecture should evolve into a horizontal one in order to gain advantages such as 

increased flexibility and a more process-oriented enterprise IT. 

Complexity The flexibility required by an enterprise IT architecture Comes with the price of side-effects. In Par- 
ticular, the complexity of a system increases due to loose coupling, one of the key dnvers for flexible IT systems 
[31, Page 491. Complexity is not just a problem of huge systems with a multitude of components. As shown by 
extensive research, e. g. on Conway's "Game of Life", even very simple systems that are well-understood can still be 

both irreducible and unpredictable [3, 181. 
However, complexity needs to be considered as both a fundamental Part and a major problem of IT [41, Page 11 

[17]. As Brooks puts it: "complexity is the business we are in, complexity is what limits us" [6, 171. 
Thus, as with heterogeneity, complexity cannot be resolved completely, but must be managed in order to be 

reduced. From a business point of view, this helps to reduce labor costs, which is one of the largest costs associated 
with IT. [41, Page xxvii] [48] 

From the second law of thermodynamics, we learn that "any closed system cannot increase its internal order 

by itself". Therefore, outside information and actions are required to restore and maintain order, i. e. to reduce 

complexity. One way to achieve this is through critical review and refactoring of the existing system. [31, pages 4,5] 



Virtual 
GUI 

Process 
I 

Functions r- r- 
(Services) . - 

Data 
System A 

Figure 3: Horizontally-organized enterprise architecture (after [34, Page 311). 

2.2 Service-Oriented Architedures and Web Services 

To resolve the challenges discussed above, a paradigm called "service-oriented architectures" (SOA) aiiows enterprise 

IT to be aligned with business processes and to make the technical infrastructure flexible enough for quick and 

continuous changes [31, Page 241 [41, Page 511. This is achieved by SOA's focus on describing business problems 

and decoupling these descriptions from specific implementation technologies [41, pages 14-17]. As it is independent 

of any specific technology, it provides a high-level concept for designing iT architectures [31, Page 81. The main 
attributes of an SOA include the foiiowing [34, Page 91: 

> loose coupling, 

.> dynarnic binding, 

::. a service repository, and 

> using Open standards. 

These are necessary to achieve the ambitious goal of separating interfaces from their implementations [41, Page 61. 
Within standard literature, several different definitions for an SOA exist. Krafzig et al. define an SOA as foilows 

[31, Page 571: 

"An SOA is a software architecture which focuses on the key concepts of an application frontend, 
s e ~ c e s ,  seMce repository, and service bus. A service consists of a contract, one or more interfaces, and 
an implementation." 

Although it lists all relevant elements of an SOA, the definition by Melzer et al. is preferred in this report due to its 
completeness and conciseness [34, Page 111 (own translation from German): 

'An SOA is a System architecture that presents manifold, different, and possibly incompatible methods 
or applications as reusable and openly accessible services to enable a platform and language independent 
use and reuse." 

Although an SOA is rather business-driven, benefits of its application can be found both on the business and the 

technical side, as shown in Table 1 [41, pages 86,931. 



Business Benefits Technical Benefits 

increase of business agility 

reduced integration costs 

better business alignment 

efficient development 

simplified maintenance 

easier reuse 

graceful evolution 

incremental adaptation 

Table 1: SOA Benefits [41, pages 86, 931. 

Services Central to an SOA is the concept of a "service". In general, a service can be understood as "useful labor 

that does not produce a tangible cornmodity" [31, Page 131, whereby this labor provides advantages to the service 
User or consumer [31, Page 151. Nearly every business delivers some kind of service to its customers. These can be 
categorized according to the usual delivery methods [41, pages 51-54]: 

>- human-mediated, 

::. self-service, and 

3a system-to-system. 

An important goal for any business is to have proper alignment between these methods and the underlying IT 
infrastructure as depicted in Figure 4. 

Customer Clients Citizens Partners 

oCII1- 

Service 

Service V * - - ----- "- - w - L ~  - - m - - w v . "  -.*V 

Oriented Human-Mediated C I ~ C  System-toSystem 

Business Service 

t t T t t t 
t f T 

J ServiceOriented Architecture 
Service 
Oriented I " 

t e  
a 1 

Figure 4: Business- and IT-services (after [41, Page 551. 

In the case of an SOA, a service offers concrete benefits to the business itself by providing access to a high-level 
business concept in the form of business processes [31, pages 10, 591. The layer model shown in Figure 5 gives a 

good overview of how this can be achieved. 
For the service consumer it is not necessary to know how his requests are fulfilled and the service can be viewed as 

a black box. This aims at making it easy to modify or exchange a service while maintaining its expected or required 
output. [31, Page 601 

The problem with object-oriented technology is its fine granularity which only gives clients access to a limited 
abstraction level which can make reuse inefficient [31, page 181. Services instead usually offer a coarse-grained 



Business Process 
Layer 

SeMces 
Layer 

Application 
Layer 

Technology 
Layer 

Windows 

Figure 5: Enterprise IT architecture layer model (after [41, Page 2341. 

interface, are self-contained, and thus can be applied to different Scenarios. In addition, a Service can accept more 

data upon invocation and accesses more computing resources than an object. [31, Page 611 [41, Page 61 
The following classification is applied to make the possible usages of services within IT architecture clearer [31, 

Page 691 : 

:;:, Basic services: data- and logic centered. 

. lntermediary services: access to technology gateways through adapters, faqades etc. 

::, hocess-cenmc services: representation of the enterprise's business processes. 

=. Public enterprise services: integration interface between enterprises. 

It is important to note that these classes do not map exactly 1 : l  to the layers of a classic tier architecture (cf. Figure 6 )  
and that deployrnent does not depend on the order of the SOA layers [31, Page 831. To embed these SOA layers into 
the global layer model of an enterprise IT architecture, they can be Seen as sub-layers of the seMces layer shown in 
Figure 5. 

Browser Browser uu ... 

Application Server E# 
I 

Host 

Enterpi 

--. 

Proce 

Intermec 

Basic 

dse Layer 

ss Layer 

? - -?P 

iiary Layer 

.-- 

Figure 6 :  Tier architecture vs. SOA (after [31, Page 831). 

Despite the amount of attention given to SOA in recent years, the underlying concepts are not new. SO& were 
designed over 20 years ago and have been used ever since. For example, a big SOA-project at AXA dates back to 
1989 [41, Page 1491. Several technologies have been used in the past to implement SOAs. Among these are CORBA, 



IBM Websphere MQ, RMI, and COM/DCOM. The rise of )(ML as a general, middleware-independent data format 
along with other Open standards, have evolved XML-based web services into a good platform for service-oriented 
architectures. [31, pages 21, 221 

Web Services XML-based web services are a powerful tool to handle enterprise application integration [41, 

page 1971. Furthermore, web services are well suited for the implemention of the SOA concept, and offer the 

following advantages [34, Page 491 [41, Page 1031: 

: based on standards, 

:,- interoperability, and 

:::, intra-organizational integration. 

The W3C provides the following definition for the term 'web services", which we have adopted for this report [34, 

Page SO]': 

"A Web service is a software System designed to support interoperable machine-to-machine interaction 

over a network. It has an interface descnbed by a machine-processable format (specifically WSDL). 

Other Systems interact with the Web service in a manner prescribed by its description using SOAP- 

messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web- 

related standards." 

To differentiate web services from the general service concept as discussed above, it is important to note that web 

services are a technology for system-to-system or machine-to-machine communication. While an individual may 

invoke a service, he or she uses a web service only indirectly [34, Page 511 

As mentioned in the definition, the elementary components for web services include (Figure 7 shows how those 

components interact with each other): 

:::. cornmunication protocol (e. g., SOAP~) 

i. standardized service descriptions (e. g., Web Services Descnption ~anguage-WSDL~) 

::, repository service (e. g., Universal Description, Discovery and ~ntegration-UDDI~) 

Sen 
Repoa 

ice 
iitory 

-- -- - - 4. Request Description ----------- - --- 
Service . Service 
Provider . User 

5. Use 

Figure 7: Relationship between web services' components (after [34, Page 521). 



Another important capability of web services is the support for modeling business processes, e. g., with BPEMWS 

(Business Process Execution Language for Web services5). Standard literature offers two levels of absuaction for this 
modeling [34, Page 2261 : 

'-. Orchestration considers the view of the business process and considers the single, executable aspects of it. 

Choreography focuses on the interaction of multiple business processes, mainly their tasks and how they col- 
laborate. 

Regarding web service management, it is very important to know whether this refers to management through or 
management of web s e ~ c e s .  The management of web semices is possible on different levels (Casati2003): 

:r- Infiastructure (the different components of the web services platform) 

.> Application (the web services themselves) 

.;- Business-oriented (using and adapting to business metrics) 

As the complexity of an enterprise IT architecture has been identified as a challenge which is not necessanly 

reduced by the introduction of a web se~ces-based SOA, the management of web services-especially on the 
choreography level-is the focus of this report. 

2.3 Summary 

In this section, we have Seen that enterprise information technology is a complicated but irnportant topic due to its 

tight coupling with the actual business of an enterprise. 

Arnong the many challenges for enterprise IT, three special types were highlighted and discussed: 

.> heterogenei~ 

:+ business processes-orientation, and 

> complexity. 

Service-oriented architectures implemented through web services were presented and shown to address these chal- 

lenges, in particular the first two mentioned above. 
The remainder of this report introduces the concept of self-organization, which is a promising approach for man- 

aging complexity in the context of service-oriented architectures. 

As complexity increases, the formal descnption and modeling of systems becomes more difficult and time-consuming 
[43]. A living organism provides a good illustration of this, the sum of the organisms Organs is not alive, but they 
have to organize themselves in different ways in order to live [38]. Similarly, iT system design must take into account 
important requirements such as robustness and manageability, in addition to the well-known price and performance 
cnteria [17]. The key element for management in this case is to free system administrators from operation and 

maintenance details. One method is to introduce self-organizing capabilities into a system. 

This section defines the terrn "self-organization" for use in this report and service-oriented architectures in gen- 
eral. Furthermore, research in related fields on self-organization is discussed. Consequently, a selection of special 
techniques for achieving self-organization in different types of systems is presented. 



3.1 General ldea 

The term "self-organization" was coined by scientists Heinz von Foerster, George W. Zopf, and Gordon Pask in the 
biological sciences in the 1950s [20, 151. 

Self-organization is a concept that is known in a variety of fields. For example, Di Marzo et al. [13] named three 
types of systems featuring self-organization: 

::. Physical systems, where a system changes into another state due to certain conditions or upon reaching some 

critical value. 

1:. LiWig systems, whereby, e. g. an Organ features special functionality that is way beyond the functionality 

provided by each cell it is made of. 

:. Social systems, whereby insects, cornrnunicate for example indirectly via their environment (cf. Section 3.2) 
and are therefore capable of more sophisticated actions than any single insect. 

Due to its variea many definitions for the term "self-organization" exist. The most simple and straight-forward one 
is inspired by Bremermann [5]: "Self-organization is <*B without any system's administrator attending to details." 
Here, for "<*>" different attributes can be inserted to describe self-organization in more details. Exarnples are the 
classic four by IBM [27], which are known as CHOP: 

> self-configuring (adapt to changes in the system), 

:i:, self-healing (recover from detected errors), 

::. self-optimizing (improve the use of resources), and 

:;, self-protecting (anticipate and cure intrusions). 

Other attributes could be self-adapting, self-directing, self-goveming, self-destructing etc. Attributes always Start 
with "self-", when used separately, the Set of all attributes is denoted as ?elf-*" or "self-X", if no specific attribute 
is meant. However, "self-organization" is not an attribute but a unifying term and concept. In general, the terms 
"self-organization" and "self-management" can be used interchangeably. 

In order to consolidate the different definitions and to achieve a common understanding of the concept, the 
following list assembles key features and characteristics of self-organization: 

:. There are distributed, autonomous elements in the system which have localized decision-making capabili- 
ties. These elements establish and maintain relationships with other elements and are capable of managing 
their behaviour to meet obligations. Through these elements, the system gains knowledge about itself and its 
environment. [47, 32, 501 

> The actions of these elements lead to emergence, as they generate a structure of purposeful behaviour and 
higher order than the one pre-defined in the existing elements or the system. Thus, random noise is trans- 
formed into order despite the lack of an acting subject or an explicit plan being carried out. This organization 
cannot happen by itself, but needs implicit help from outside of the system, its environment6. [32,20, 52, 16, 

151 

The form and result of emergent behaviour can be Seen as the main goal of self-organization. This has to be 

achieved without having to bother about details, defining or executing every step explicitly. 

From this we can conclude that self-organization has two different scopes which are highly interwoven [8, 501: 

1. The large-scale, emergent global organization of a system. 

This is in accordance with the second law of thermodynamics but contrary to Di Marzo et al.'s [13] definition, which excludes outside control 
and constraints. 



2. The incremental, intemal local organization of the system's elements. 

In the field of information technology, the concept of self-organization can be identified under several different 

names. These do not describe exactly identical fields but they share similar roots. Examples include the following 

[32,26,23]: 

:::. self-managing Software 

::-. nature-inspired computing (NIC) 

; autonomy-oriented computing 

::. organic computing 

:.% adaptive computing 

::, autonomic computing 

Especially noteworthy is IBM's "Autonomic Computing" initiative which was introduced in 2001 [27, 26, 281. 
'Autonomic" here is inspired by human biology, namely the autonomous nervous system. 

Manager 

Figure 8: IBM's Autonomic Computing reference architecture 1261. 

Autonomic Computing can be Seen as a technological form of self-organization, as its goal is to enable a computing 
environment to manage itself, e. g., based on business objectives. Thus, complexity is reduced by using technology 
to manage technology. The key elements are: 

.::. adaptable policies (as opposed to hard-coded reactions) and 

. . .  control loops to coiiect information and act upon them. 

To describe this more in detail, Figure 8 shows the Autonomic Computing reference architecture. Its layers include 
the following (from bottom to top): 



1. managed resources (both hardware and software), 

2. interfaces to access resources, 

3. dedicated components called "autonomous managers" with control loops to monitor, analyze, plan, and exe- 

cute (MAPE), 

4. another layer of autonomous managers, because multiple specialized autonomous managers can be subject to 

management by superior ones, and 

5. a system management interface for human IT professionals. 

As an existing system cannot usually be changed successfully to a self-organizing one in big bang-style, IBM has 
proposed an evolutionary agenda. This makes it possible for a basic, manually administered system to evolve into 
an autonomic one in five steps, as shown in Figure 9.  

lntegrated IT 
omponants are 
:ollectivaly and 
dynamically 
rnanaged by 

businoss rules and .. . 

ual lT 
in18 and 
able to 
:orrelate 
yzo tho 

ents, 
y and C 

ablß to c 
~olatc, 
i inke 

Rely on systm Management lndivid 
roports, product software in place to compone 

documentation, and providc systcrns 
manual actions to uxisolidation, rnonltor, < 

configure, optimize, facililation and 
. - and anal 

hßal and protect 
i n ' "  "- 

IT compon 
individualb 

cdleetively. 
monitor, coi 
analyzß anr 

action with minimal 
human inten 

ras extensiv 
~killcd lT Mi 

--*- 

. . - . -. -- . -. 

=,m,, 

zes snd 
octions 

r-r 0 

against 
t 

p t v r ~ ~  
SLAs 

on onnbling 
msiness nee 

""*. "-P-.., 
r svstem 

......, - 
Balanci lusinass policy 

drives IT 
managemmt 

numatvsy 
intoracti ts awai 

butter 
making 

and Bui 
CY 

siness agility end 
rosiliency docision 

Man Autonomic 

Figure 9: IBM's Autonornic Computing evolution [28] .  

3.2 Related Fields and Selected Techniques 

There are some examples of real-life Systems, in which self-organization plays an important role and has shown 

some important aspects. [5] 

Immune Systems The immune system of a living organism is not pre-programmed in a fixed way. The genome 
cannot contain ail the information required for every immune response, as the number of possible antigenes 
is too large. 

Self-organization offers a way to resolve this problem by using dynamic defense techniques. However, danger 
arises: auto-immune diseases, whereby the immune system is no longer able to distinguish alien cells from the 
organism's own celis and attacks both of them. 

Modern Economics Modern markets are self-organized to a very high degree, relying on regulations and their 
agents' abilities. They present a very good example for the impact of extemal rules and policies on a complex 
system. However, for example as more tax laws and other regulations are put into place or adjusted; both the 



rules and the system become increasingly complex and consequently require more bureaucrats for administra- 

tion. This is called "autocatalytic" behaviour, as the more bureaucrats there are, the more new ones have to be 

introduced into the system. 

There are other fields which offer good examples for self-organizing Systems and their special aspects. In addition, 

the techniques and mechanisms which make self-organization work can be found everywhere, but mainly in the 

biological and medical fields. In the following, different techniques are presented: 

Local Monitoring "Heart-beat monitors" are used in living organisms to detect the regional death of cells and to 
trigger appropriate responses. To achieve this, cells send signals to show they are still alive in regular intervals. 

[48,401 

A variation of this is "pulse monitoring", whereby a signal is sent as a reflex to give urgent notice of an 

unwanted condition or event. 

Another similar, yet reversed technique is called "biological apoptosis", which means about "death-by-default". 
This is a security mechanism of cells, e. g. to avoid tumors: a single cell self-destructs unless it receives a special 

"stay-alive" signal on a regular basis. [48] 

Stigmergy Stigmergy is a foraging technique used by insects. For example, in ant food foraging, ants swarm out 

to search for sources of food. When an ant finds food, it transports some of it back to the nest. On its way 
back from the source it leaves a pheromone trail to mark the way. Other ants notice the pheromones; follow 

this trail back to the food source and repeat the process, thereby making the trail stronger, attracting more 
ants. This is "self-catalytic", meaning the more often it occurs, the more probable it is to occur again. The 

pheromone vanishes over time, so that a depleted source of food is no longer be marked. [13] 

Checkpoints and Consensus In cell division, it is important that division does not occur before all the chromosomes 

have been separated. To coordinate these parallel actions, all chromosomes that have not been separated send 
out a halting signal. As long as the halting signal is present, the next phase of the cell cycle cannot be initiated. 

C401 

Cell Differentiation and Context-Based Roles Embryo cells are a good example for demonstrating how the role 
of each cell is not pre-defined. These cells are sort of "general-purpose" cells, initially coarse structures of 

the organism are laid out and single cells then differentiate themselves into different parts of this structure, 
as determined by time and their location. This provides the organism with a certain degree of robustness, 

as detailed pre-planning on the cell-level is quite complicated and therefore can be highly faulty. Thus, pre- 
planning is replaced by the allocation of cells and organization of information when needed. [40] 

As stated by Hinchey and Sterritt [24], such techniques must not be copied precisely, as most organisms are highly 
adapted to their purposes and environments. Therefore, the techniques used by nature should serve as an inspiration 
for new techniques applicable in information technology and be must adapted to the specific needs there. 

4. Research Challenges 

Self-organization is a current research topic in information technology, which also concerns service-oriented archi- 
tectures. This section outlines the different research categories of self-organization in the SOA field and provides a 
Summary of several major projects. 



Modelling, . . 
Service Oriented Engineering 

Figure 10: SOA pyramid [42]. 

4.1 Overview 

In their 2006 SOA research roadrnap, Papazoglou et al. [42] identified three planes in which to structure further 
research activities, as Seen in Figure 10. Self-organization is a topic that can be addressed on each of these levels. 
Relevant challenges include the following: 

1. Foundation (basic services) : 

:> A dynarnically (re-)configurable architecture at run-time: this could be achieved by high-level policies 
that represent business objectives. 

::. Dynarnic connectivity capabilities. Web services should be able to connect dynamically without using, 
e. g. a static and separate application programrning interface (API). 

2. Cornposition (cornposed services): 

.;. There is a lack of tools to Support the adaptation and evolution of business processes. 

::* There is also a lack of opportunities to integrate business requirernents into the business process life cycle. 

For exarnple, languages are needed to rnodel the business requirernents of an enterprise and to link this 
inforrnation to business processes. 

:::. Services should be composed autonornously, e. g., based on quality-of-service-characteristics [4]. 

:.. Automated service cornposition should also be business-driven, for example, service compositions at the 
business level should be taken as leading guidelines for autonornic service cornposition at the System 

level. 



3. Management and monitoring (managed services) : 

::> The major challenges faced within this layer are based on the introduction of self-X capabilities into a 

system, thereby making it less complex and easier to manage. Important aspects include defining tasks 

to fit the different self-X categories something done manually before and to define business metrics used 

to evaluate workflows. Furthermore, it would be beneficial to evaluate the management applications 

concerning availability and performance management, capacity planning, asset protection, job control, 

and problem determination. 

The foiiowing section gives an overview of commercial and research projects that have been conducted to address 
the above mentioned issues. 

4.2 State of the Art 

The importance of self-organization is demonstrated by the involvement of many major IT companies in this field. Be- 

sides from the ground-breaking work by IBM described in Section 3.1, several commercial self-organization projects 
are outlined here briefly: 

:. Melcher and Mitchell [33] of Intel Corp. describe the requirements and an initial implementation of dynami- 

cally self-configuring network services for different networked environments. 

.:. Jann et al. [29] demonstrate self-organization capabilities in IBM hardware, namely the pSeries Servers. Logi- 
cal partitions are dynamically reconfigured to achieve self-adaptation and self-configuration features. 

::-. Furthermore, Hewlett Packard has an 'Adaptive Infrastructure" [25] in its portfolio, and since 2003, Microsoft 

Corp. is working on its "Dynamic Systems Initiative" [36,37], where existing standard software such as Win- 
dows Vista, Visual Studio, and Windows Server will be enhanced to Support a dynamic iT infrastnicture. 

Although these commercial activities make use of self-organization techniques, there are few or no examples for its 

use in service-oriented architectures or workflows. Such areas are still subject to intensive research and the following 
gives an overview of important achievements: 

In their 2005 vision Paper, Verma and Sheth [49] proposed elevating Autonomic Computing from the infras- 

tructure level (databases, nenvork, services) to the process level so as to have autonomic web processes with 
CHOP-characteristics as introduced by IBM (Section 3.1). 

::, Denaro et al. [ l l ,  91 addressed issues that arise with integrating third-party web services. They offered a 
self-adaptive solution that is able to detect differences between requested and provided services based on 
classic MAPE (see Section 3.1) control loops. To achieve this, test cases have to be designed for different 
fault categones and corresponding adaptation strategies need to be defined. Both tests and adaptations are 
hard-coded into software modules. 

-i. Furthermore, Denaro et al. [10] introduced the concept of an enhanced SOA (SOA+). It adds an "Interaction 
Protocol Service Extension" (IPSE) to web services which acts as a proxy for them. This approach allows service 

clients to use different, previously unknown web services. This is possible by providing a model of the protocol 
used by the web service which can be used for adaptation actions. 

i:. Diao et al. [14] have built on IBM's Autonomic Computing Architecture and apply control theory mechanisms 
to it, i. e., a feedback control system to achieve certain goals. Their work is directed at creating a deployable 
testbed for Autonomic Computing. 

;- Zeid and Gurguis [SI] have combined ~utonomic Computing with web services explicitly, introducing au- 
tonomic web services. They offered a first architectural approach which is, however, very similar to the one 
originally introduced by IBM. 



.:. Buhler et al.'s [7] vision paper covered workflow description languages which are used to specify a multi-agent- 
system. They See multi-agent-systems as a requirement for the flexible operation of enterprise workflows. 

i:, Heinis et al. [22] have enhanced the existing distributed workflow engine ~ 0 ~ e r a ~  to make it self-tuning 
and self-configuring. The tuning-part devises plans which the configuring-part executes. An important aspect 
considered is to minimize the impact of reconfiguring a running system. 

::.. Cheng et al. [8] discussed the problems that arise when more than one self-management module is used within 
an architecture. They identified two technical chailenges: 

::.. consistent system access and synchronisation and 

::, non-conflicting decisions and goal alignment. 

To resolve the latter, they proposed decision coordination via Special control Patterns such as "Single active" 

(only one module acts at a time), "balance of power" (any module may Veto an other's decision), "master-slave" 
(one module overrules the others), among others. 

> Kephart and Walsh [30] adapted Russe11 and Norvig's [45] classification of agents (reflex, model-based, goal- 
based, utility-based) to Autonomic Computing, thereby requiring many different kinds of policies and complex 

system models. 

.;. Georgiadis et al. [19] have an architectural approach for self-organizing systems. By giving a formal specifi- 
cation of the architecture as a boundary, systems adjust themselves within these boundary while remaining 

"well-formed" according to its specifications. 

i... Meyer et al. [35] have created the Adaptive Services Grid (ASG) platform [I] which provides automated 

adaptation mechanisms to select, compose, and bind services at run-time. These could be triggered by quality- 

of-service-requirements or service level agreement violations. 

::. Schuschel and Weske [46] used artificial planning techniques to compose services in an SOA. For a selection 
of components, manual planning which is usually done by human experts is replaced by automatization. 
Furthermore, they use different abstraction levels for descriptions: 

::. CompleteZy, describing functional and non-functional properties of Services. 

>. Functionally, describing only functional properties of services. 

:::T Categories, giving no concrete service desciptions but categorized sets. 

::- Baresi et al. [2] have described dynamic service-bindings and compositions at run-time. Different recovery 

strategies are introduced to achieve self-healing, they are based on formal characterizations of faulty behaviour 

in SOAs. 

::, Naccache and Gannod [39] have presented a self-healing framework for Ajax-based web applications, i. e., for 
underlying web services with common behaviour but variable quality-of-service characteristics. 

While this research addresses several important issues and Spans a breadth of the research roadmap presented 

above, many Open research questions remain. These will be outlined in the next section. 

5. Conclusions and Outlook 

As shown above, enterprise IT faces a variety of challenges. While the paradigm of service-oriented architectures 
helps to address major challenges, e. g. implemented by web services, managing the complexity of an architecture 
remains an expensive issue. 

The concept of self-organization was introduced as an important and promising approach to manage complexity in 
systems. Examples of systems in other fields besides IT and successful self-organization techniques were presented. 

' https://www.jopera.ethz.ch 



Self-organization can be used for SOA at all three levels of abstraction (basic, composition, and managementl 
monitoring) and both visions and first research results exist for each of them. Due to the close coupling of SOA and 

business workflows, the creation of self-organization concepts and implementations at the managementl monitoring 

layer (cf. Figure 10) will be an important step in order for SOAs to fulfill their potential of aligning businesses with 

their underlying IT architecture. 

This paper concludes by outlining several milestones for further research in this area:: 

1. Create a list of potential se'f-X tasks on the management level. Starting points for this would be laborious but 
simple tasks that are executed manually now. If possible, tasks should be grouped or categorized. 

2. Identih challenges for each self-X task, e. g., by investigating current management applications for these tasks. 

With the information above, overlap in challenges should be identified to distinguish between general and 
task-specific challenges. 

3. To address these chailenges, techniques have to be devised. Sources for successful techniques could be found 
in nature (see Section 3.2) or the field of artificial intelligence. As stated above, it is important to note that the 

sources should only be used as a source of inspiration, and not for direct copying. Furthermore, it is necessary 
that they guarantee predictable emergent behaviour [7]. 

4. With theoretical foundations in place, integration issues have to be considered. For example, SOAs imple- 

mented by web services are already in place, therefore, self-organization has to be integrated seamlessly, ideally 
as services. This means that self-organization must not disturb the original functionaiity of an architecture-as 

long as the original system is working fine, self-organization should not interfere. However, if the system can 
be optimized or as soon as things change, break, or fulfill other fault conditions, self-organization takes over 

and acts. Buhler et al. [7] suggest to put such information into the workflow descnption, e. g., extending a 
language such as BPELAWS (see Section 2.2). 

An important aspect of integration is the use of interfaces. Self-organization modules or agents must be able 
to gather information from services and also require some sort of command over services in order to adapt or 
configure etc. them. It is very likely that such an interface is not available for all services, especially not for 

legacy ones. 

5. An implementation of self-organization mechanisms for web service-based SOAs would incorporate the pre- 

ceeding ideas to seamlessly integrate with an existing architecure and to provide both general and specific 
solutions for management problems. 

In addition, extensibility would be another important characteristic of such an implementation. This would 
ensure that changing either the architecture and the seif-organization irnplementation would not compromise 
the other's functionality. However, the issue of emergence is rather difficult to control and maintain in such an 
arbitrarily changing environment. 

It is important to understand that the execution of these five points cannot be clearly separated from each other 

and therefore cannot be solved one after another. An iterative approach is much more likely to succeed for such a 
complex and challenging task. 



References 
p~ 

[I] The Adaptive Services Grid (ASG) Project. http://www.asg-platform.org. Website, 2007. URL http://www. 
asg-platform.org. http://www.asg-platform.org (Last visited May 20,2008.). (Cited on Page 15.) 

[2] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Towards self-healing service compositions. In First Conference 
on the PRInciples of Software Engineering (PiüSE'O4), 2005. (Cited on Page 15.) 

[3] Vincent Bauchau. Emergence and reductionism: From the game of life to science of life. In Bemard Feltz, Marc 

Crommelinck, and Philippe Goujon, editors, Self-organization und Emergence in Life Sciences (Synthese Library), 
pages 29-40. Springer, 1 edition, 1 2006. (Cited on Page 3.) 

[4] Rainer Berbner. Dienstgüteunterstützungfir Service-orientierte Workflows. PhD thesis, Technische Universität 
Darmstadt, Fachbereich Elektrotechnik und Informationstechnik, 7 2007. URL http://elib.tu-darmstadt.de/ 
diss/000838/. (Cited on Page 13.) 

[5] Hans J. Bremermann. Self-organization in evolution, immune systems, economics, neural nets, and brains. 
In R. K. Mishra, D. Maaß, and E. Zwierlein, editors, On SeZf-Organization: An Interdisciplinary Search for a 
Unifying Principle (Springer Series in Synergetics), pages 5-33. Springer, 5 1994. (Cited on pages 9 and 11.) 

[6] Frederick F? Brooks. The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary Edition. 
Addison-Wesley Professional, 1st edition, 8 1995. ISBN 0201835959. (Cited on Page 3.) 

[7] Paul Buhler, Jose M. Vidal, and Harko Verhagen. Adaptive wbrkflow = web services + agents. In Proceedings 
of the International Conference on Web Services, pages 131-137. CSREA Press, 2003. URL http://jmvidal.cse. 
sc.edu/papers/buhler03c.pdf. (Cited on pages 15 and 16.) 

[8] S.W. Cheng, A.C. Huang, D. Garlan, B. Schmerl, and F? Steenkiste. An architecture for coordinating multiple 
self-management systems. In SofhYare Architecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEEDFIP 
Conference On, pages 243-252,2004. (Cited on pages 9 and 15.) 

[9] G. Denaro, M. Pezze, and D. Tosi. Designing self-adaptive service-oriented applications. Technical report, 
Technical report, LTA: 2006: 02, University of Milano-Bicocca, 2006,2006. (Cited on Page 14.) 

[10] G. Denaro, M. Pezze, D. Tosi, and Daniela Schilling. Towards self-adaptive service-oriented architectures. 
In TAV-WEB '06: Proceedings of the 2006 workshop on Testing, analysis, und verification of web services und 
applications, pages 10-16, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-458-8. doi: http://doi.acm. 
org/10.1145/1145718.1145720. (Cited on Page 14.) 

[ll] Giovanni Denaro, Mauro Pezze, and Davide Tosi. Adaptive integration of third-party web services. In DEAS '05: 
Proceedings of the 2005 workshop on Design und evolution of autonomic application software, pages 1-6, New 

York, NY, USA, 2005. ACM Press. ISBN 1-59593-039-6. doi: http://doi.acm.org/l0.1145/1083063.1083088. 

(Cited on Page 14.) 

[12] Frank Deremer and Hans Kron. Programming-in-the large versus programming-in-the-small. In Proceedings of 
the international conference on Reliable software, pages 114-121, New York, NY, USA, 1975. ACM Press. doi: 

10.1145/800027.808431. URL http://portal.acm.org/citation.cfm?id=80843l. (Cited on Page 3.) 

[13] Giovanna Di Marzo, Noria Foukia, Salima Hassas, Anthony Karageorgos, Soraya K. Mostefaoui, Omer E Rana, 

Mihaela Ulieru, Paul Valckenaers, and Chris Van Aart. Self-organisation: Paradigms and applications. In Lecrure 
Notes in Computer Science : Engineering Self-Organising Systems, pages 1-19. Springer, 2004. URL http://www. 

springerlink.com/content/lu605t4u20db53yd. (Cited on pages 9 and 12.) 



[14] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. Self-managing systems: A control 

theory foundation. In 12th IEEE International Conference and Workshops on the Engineering of Computer-Based 

Systems (ECBS 'OS), pages 441448,2005. (Cited on Page 14.) 

[15] Bemard Feltz. Self-organization, selection, and emergence in the theories of evolution. In Bernard Feltz, Marc 

Crommelinck, and Philippe Goujon, editors, Seu-organization und Emergence in Life Sciences (Synthese Library), 

pages 341-360. Springer, 1 edition, 1 2006. (Cited on Page 9.) 

[16] Bernard Feltz, Marc Crommelinck, and Philippe Goujon, editors. Self-organization andEmergence in Life Sciences 
(Synthese Library). Springer, 1 edition, 1 2006. ISBN 1402039166. (Cited on page 9.) 

[17] A.G. Ganek and T A. Corbi. The dawning of the autonomic computing era. IBM Systems Journal (Autonomic 
Computing), 42(1):5-18,2003. URL http://www.research.ibm.com/journal/sj/42l/ganekaut.htm1. (Cited on 
pages 3 and 8.) 

[18] Martin Gardner. Mathematical games: The fantastic combinations of John Conway's new solitaire game "Life". 
Scientific Amencan, 223:120-123, October 1970. (Cited on page 3.) 

[19] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architectures for distributed systems. 

In WOSS '02: Proceedings of thefirst workshop on Se'f-healing systerns, pages 33-38, New York, NY, USA, 2002. 
ACM Press. ISBN 1-58113-609-9. doi: http://doi.acm.org/l0.1145/582128.582135. (Cited on page 15.) 

[20] Philippe Goujon. From logic to self-organization. In Bemard Feltz, Marc Crommelinck, and Philippe Goujon, 

editors, Self-organization und Emergence in Life Sciences (Synthese Library), pages 200-214. Springer, 1 edition, 
1 2006. (Cited on Page 9.) 

[21] Michael Hammer and James Champy Reengineering the Corporation: A Manifest0 for Business Revolution. 

Collins, 1 2004. ISBN 0060559535. (Cited on page 3.) 

[22] T Heinis, C. Pautasso, and G. Aionso. Design and evaluation of an autonomic workflow engine. In Autonomic 
Computing, 2005. ICAC 2005. Proceedings. Second International Conference On, pages 27-38, 2005. URL http: 

//ieeexplore.ieee.org/xpls/abs~all.jsp?amumber=l498050. (Cited on Page 15.) 

[23] Michael G. Hinchey and Roy Sterritt. Self-managing software. Computer, 39(2):107, 2006. ISSN 0018-9162. 

doi: http://dx.doi.org/l0.1109/MC.2006.69. (Cited on page 10.) 

[24] Michael G. Hinchey and Roy Sterritt. 99% (biological) inspiration ... In EASE '07: Proceedings of the Fourth IEEE 
Intemational Workshop on Engineering of Autonomic und Autonomous Systems, pages 187-195, Washington, 
DC, USA, 2007. IEEE Computer Society ISBN 0-7695-2809-0. doi: http://dx.doi.org/10.1109/EASE.2007.1. 
(Cited on Page 12.) 

[25] Hewlett-Packard Adaptive Infrastructure. Website, 2007. URL http://www.hp.com/go/ai. (Last visited May 
20, 2008.). (Cited on page 14.) 

[26] Intemational Business Machines Corp. (IBM). An architectural blueprint for autonomic computing, 6 2006. 
URL http://www-03.ibm.com/autonomic/pdfs/AC~Blueprint~~ite~~per~4th.pdf. (Last visited May 20, 

2008). (Cited on Page 10.) 

[27] International Business Machines Corp. (IBM). Autonomic Computing. Website, 2001. URL http://www.ibm. 
com/autonomic/. http://www.ibm.com/autonomic/ (Last visited May 20,2008). (Cited on pages 9 and 10.) 



[28] Bart Jacob, Richard Lanyon-Hogg, Devaprasad K Nadgir, and Amr F Yassin. A Practical Guide to the IBM 
Autonomic Computing Toolkit. IBM Redbooks, 4 2004. URL http://www.redbooks.ibm.com/redbooks/pdfs/ 
sg246635.pdf. http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf (Last visited May 20, 2008). 
(Cited on pages 10 and 11.) 

[29] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic reconfiguration: Basic building blocks for autonomic 
computing on ibm pseries Servers. IBM Systems Journal (Autonomic Computing), 42(1):29-37, 2003. URL 
http://www.research.ibm.com/journal/sj/42l/jannaut.hl. (Cited on Page 14.) 

[30] Jeffrey 0. Kephart and Williarn E. Walsh. An artificial intelligence perspective on autonomic computing policies. 
In F$th IEEE International Workshop on Policies for Disnibuted Systems and Networks (POLICY 2004), pages 3- 
12,2004. URL http://ieeexplore.ieee.org/xpls/abs~all.jsp?amumber=l309145. (Cited on Page 15.) 

[31] Dirk Krafzig, Kar1 Banke, and Dirk Slama. Enterprise SOA: Service-On'ented Architecture Best Ractices (The 
Coad Series). Prentice Hall PTR, 11 2004. ISBN 0131465759. URL http://www.enterprise-soa.com. (Cited on 

pages 1,2, 3,4, 5, 6, and 7.) 

[32] Jiming Liu and K. C. Tsui. Toward nature-inspired computing. Commun. ACM, 49(10):59-64, 2006. ISSN 
0001-0782. doi: http://doi.acm.org/l0.1145/1164394.1164395. (Cited on pages 9 and 10.) 

[33] Brian Melcher and Bradley Mitchell. Towards an autonomic framework: Self-configuring network services and 
developing autonomic applications. Intel Technology Journal, 8(4):279-290, 11 2004. URL http://www.intel. 
com/technology/itj/archive/2004.htm. (Cited on Page 14.) 

[34] Ingo Melzer. Service-orientierte Architekturen mit Web Services. Konzepte - Standards - Praxis. Spektrum 
Akademischer Verlag, 2nd edition, 4 2007. ISBN 3827418852. URL http://www.soa-buch.de. (Cited on 

pages 2, 3,4, 7, and 8.) 

[35] Harald Meyer, Dominik Kuropka, and Peter Tröger. ASG - techniques of adaptivity. In Jana Koehler, Marco 
Pistore, Amit F! Sheth, Paolo Traverso, and Martin Wirsing, editors, Autonomous and Adaptive Web Services, 

number 07061 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und 
Forschungszentrum fur Informatik (IBFI), Schloss Dagstuhl, Germany. URL http://drops.dagstuhl.de/opus/ 

volltexte/2007/1036. (Cited on Page 15.) 

[36] Microsoft Corp. Dynarnic Systems Initiative. Website, 2007. URL http://www.microsoft.com/business/dsi/. 
(Last visited May 20, 2008). (Cited on Page 14.) 

[37] Microsoft Corp. Dynamic Systems Initiative overview white Paper, 3 2007. URL http://download.microsoft. 
com/download/C/3/C/C3CE985F-7C01-4DB3-81EA-EE4AOOE06B49/DSI~Ovenriew.doc. (Cited on Page 14.) 

[38] R. K. Mishra. Living state for self-organization - a plea. In R. K. Mishra, D. Maaß, and E. Zwierlein, editors, 
On Self-Organization: An Interdisciplinary Search for a U n i b n g  Principle (Springer Series in Synergetics), pages 

109-132. Springer, 5 1994. (Cited on Page 8.) 

[39] Henri Naccache and Gerald C. Gannod. A self-healing framework for web services. In 2007 IEEE International 

Conference on Web Services (ICWS 2007), July 9-13, 2007, Salt Lake City, Utah, USA, pages 398-345. IEEE 
Computer S o c i e ~  2007. (Cited on Page 15.) 

[40] Radhika Nagpal. A catalog of biologically-inspired primitives for engineering self-organization. In Engineering 

Self-Organising Systems, pages 53-62,2003. (Cited on Page 12.) 



[41] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services (Independent Technology Guides). 

Addison-Wesley Professional, 12 2004. ISBN 0321180860. (Cited on pages 2, 3,4, 5, 6, and 7.) 

[42] Michael F? Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann, and Bemd J. Kämer. Service- 

oriented computing research roadmap. In Dagstuhl Seminar Proceedings on Service Oriented Computing (SOC), 

2006. URL http://drops.dagstuhl.de/opus/volltexte/2006/524/pdf/05462.SWM.Paper.524.pdf. (Cited on 

Page 13.) 

[43] Michael M. Richter. Self-organization, artificial intelligence, and connectivism. In R. K. Mishra, D. Maaß, and 

E. Zwierlein, editors, On SeFOrganization: An Interdisciplinary Search for a Unifying Principle (Springer Series 
in Synergetics), pages 80-91. Springer, 5 1994. (Cited on Page 8.) 

[44] Frank Roller and Dieter Leymann. Production Workflow: Concepts and Techniques. Prentice Hall Press, 2000. 
(Cited on Page 3.) 

[45] Stuart J. Russe11 and Peter Norvig. Artificial Intelligence: A Modem Approach (2nd Edition). Prentice Hall, 2nd 
edition, 12 2002. ISBN 0137903952. URL http://aima.cs.berkeleyedu/. (Cited on Page 15.) 

[46] Hilmar Schuschel and Mathias Weske. Automated planning in a service-oriented architecture. In WETiCE '04: 

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrash-ucture for Collaborative 

Enterprises (WETICE'O4), pages 75-80, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695- 
2183-5. doi: http://dx.doi.org/l0.1109/ENABL.2004.16. (Cited on Page 15.) 

[47] Roy Sterritt and Michael G. Hinchey Autonomicity - an antidote for complexity? In CSBW '05: Proceedings 

of the 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05), pages 283-291, 

Washington, DC, USA, 2005. IEEE Computer Society ISBN 0-7695-2442-7. doi: http://dx.doi.org/10.1109/ 
CSBW.2005.28. (Cited on Page 9.) 

[48] Roy Sterritt and Michael G. Hinchey. Biologically-inspired concepts for self-management of complexity In 
ICECCS '06: Proceedings of the I1 th IEEE International Conference on Engineering of Complex Computer Systems, 
pages 163-168, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2530-X. (Cited on pages 3 

and 12.) 

[49] Kunal Verma and Amit F? Sheth. Autonomic web processes. In Boualem Benatallah, Fabio Casati, and Paolo 

Traverso, editors, Service-Oriented Computing - ICSOC 2005, Third International Conference, Amsterdam, The 
Netherlands, December 12-15, 2005, Proceedings, volume 3826 of Lecture Notes in Computer Science, pages 

1-11. Springer, 2005. (Cited on Page 14.) 

[50] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. 0. Kephart. An architectural approach to autonomic 
computing. In International Conference on Autonomic Computing, pages 2-9, 2004. URL http://ieeexplore. 
ieee.org/xpls/abs~all.jsp?amumber=1301340. (Cited on Page 9.) 

[51] A. Zeid and S. Gurguis. Towards autonomic web Services. In The 3rd ACSBEEE International Conference 

on Computer Systems und Applications, pages 69-73, 2005. URL http://ieeexplore.ieee.org/xpls/abs~all.jsp? 
amumber=1387063. (Cited on Page 14.) 

[52] Eduard Zwierlein. The paradigm of self-organization and its philosophical foundation. In R. K. Mishra, 
D. Maaß, and E. Zwierlein, editors, On SeZf-Organization: An Interdisciplinary Search for a Unifying Principle 

(Springer Series in Synergetics), pages 288-298. Springer, 5 1994. (Cited on Page 9.) 



KOM - Multimedia Communications Lab: Publications (Details) 

News 

A k t  Us 

people 

Teaching 

Research 

P~ibl~cabms 

Dovvnloads 

Tachnology Transfer 

Jobs 

Ewnh 

Slurkmt Info 

Press 

Contacl 

KOM i n t e r ~ l  

Enter search kw 

M - Multimedia Communications Lab 

\ *  I:.' 
C Horne ConIacl $ Lwal rote Sitemap Search Pnnl pwe Login 

Currerd locaöon :- TC EJrnsrJcl! . IL- I . &::V r i'iibl~cthons 

Publications (Details) 

Concepts of Self-Organization for Service-Oriented Architectures 

Key: MRS08-2 

Author: Andre bliede. Nicolas Repp, Ralf Sle~nmctlz 

Date: January 2008 

Kind: Technical report 

Institution: Technische Universität Dannstadt 

Address: TU Darmstadt, F8 18. KOM. Merckstr. 25, D44283 Darmstadt. Germany 

Number: TR-2008-0 1 

ISBN: TR-2008-01 

Language: English 

Keywords: SO4 Seif-Organisation 

Number of  characters: 55954 

Research Area(s): TT Architedures 

K the paper is not available from this page. you might contacl the aulhor(s) directly via the "People" sedion 

on our KOM Homepage. 

BS3%W 
[Export Ihis entry to RibTeX] 

lmportant Copyright Notica: 
Thii matwial is pesented 10 ensure örnek disseminakm of scholarw and IechWaIwoh and all nghh therain are retained 
by auihws W other cwngM hoklws. M perrons cop,ing tMs inlwmaüon are expecled 10 adhere la Ihe terms and constrainh 
invoked by each author's copmghl. In most cases. lhese warb may not be reposted wfihoui lhe explcit pemission ol Ihe cWgh l  
hMer.  

[back] 

I von 1 




