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Abstract—Advanced Driver Assistance Systems require a
tremendous amount of sensor information to support the driver’s
comfort and safety. In particular, systems that provide (good)
route options to a vehicle rely on information, such as traffic jams
and road blockages, which is sensed by other (possibly distant)
vehicles and distributed by a central server. This information
is clearly dynamic and may be invalid by the time the vehicle
arrives at the affected location. In this work, we develop an
innovative approach to determine optimal routes (minimizing
the costs like travel-time to their destination) for vehicles whose
original route is adversely impacted by a (severe) road event.
A set of recursive equations is developed that yields the optimal
decision for each vehicle at each decision-point. Simulations show
that our approach adapts to the considered event and finds routes
of similar quality as a full-knowledge approach with limited
communication overhead.

Index Terms—demand-driven, vehicular networks

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) rely on sensor
data to improve the driver’s comfort and safety [10]. In today’s
vehicles, this data is mainly obtained from onboard sensors,
and provides limited awareness, due to their limited range and
physical constraints (like obstacles and weather conditions).
Extended awareness beyond the local perception can support
dynamic mechanisms to establish the current best paths and is
today possible through the exchange of (local) vehicle’s data
over a wide area network such as the cellular network.

In this paper, we develop an innovative approach to determine
optimal paths (minimizing the costs to their destination) for
vehicles whose original path is adversely impacted by a (severe)
road event. The path is in principle reassessed at the end of
each road segment just before each upcoming road intersection
(decision-point), taking into account updated information about
the road event and an estimate of the remaining lifetime of
the road event (if still active). We model the road network
as a graph whose vertices correspond to the end of a road
segment just before entering the intersection (referred to as the
associate intersection). An edge exists between two vertices
for each road segment that exists between two associated
intersections; no edge exists between vertices associated with
the same intersection. For a given vehicle type, destination,
and road segment, a set of recursive equations are developed

yielding the cost of the best path from the specific decision-
point to the destination, given: (i) the real state of the road event
reported by other vehicles in the network, (ii) a probabilistic
knowledge about the remaining lifetime of the event, and (iii)
the expected remaining travel-time of the vehicle to the affected
road segment. At a decision-point (at the end of the current
segment), the vehicle will select the adjacent road segment
inducing the minimum cost from that to the destination.

The remainder of this paper is structured as follows: In
Section II, we provide an overview of the advances made in
the vehicular routing problem. In Section III, we describe the
considered scenario. In Section IV, we describe our modeling of
the timeliness of information in the network and the derivation
of optimal paths considering this timeliness. We evaluate our
approach in Section V, which focuses on the improvement
of our approach compared to traditional routing techniques.
Finally, we provide some conclusions in Section VI.

II. RELATED WORK

Vehicular path-planning is significantly influenced by road
events like jams and accidents. To alleviate the impact of
these road events, vehicles exchange information via wide-
range area networks to improve their planning. According to
Gonzalez et al. [4], there are three categories of planning for
vehicles, Global Planning, Behavioral Planning, and Local
Planning. While Local Planning and Behavioral Planning
are related to the specific behavior of the vehicle on the
road, Global Planning deals with the process of path-planning
towards the destination of the vehicle.

In this work, we focus on the Global Planning of the
routes of the vehicles. In the literature for Global Planning,
road events (influencing the goodness of a route) are either
considered by the cost function [12] or indirectly by mea-
suring the influence on the route like higher travel-times. In
general, previous research proposes path-planning approaches
for individual vehicles [2], [6], [7] or the whole network [11].
In [1], the authors propose a path-planning approach to find
optimal paths. This work is then extended by Guo et al. [5]
to consider the appearance of events in the road network.
However, to our knowledge, the impact of event timeliness
on path-planning approaches has not been analyzed, i. e., the



sudden disappearance of events. The lifetime of road events
itself is investigated by [3], but the authors do not use the
gathered knowledge for path-planning purposes. In our work,
we want to focus on this gap by developing an approach to
use the expected event lifetime to improve path-planning.

III. SCENARIO OVERVIEW

In this section, we provide an overview of our system and our
assumptions. We consider a road scenario in which vehicles
travel along their planned optimal paths ~φ = (sv, . . . , sd),
defined as a sequence of road segments from origin sv to
destination sd. To find the optimal path, we use a directed
graph whose vertices correspond to the end of a road segment
just before entering the intersection (referred to as the associate
intersection). An edge exists between two vertices for each
road segment that exists between two associated intersections;
no edge exists between vertices associated with the same
intersection. Notice that one intersection may be present in
multiple edges in the graph. The cost of each edge in the graph
is determined by the cost of crossing the intersection and
traversing the associated segment (with the edge) completely.
We consider the costs of crossing intersections to account for
possibly different times when traversing an intersection. For
instance, a vehicle might be crossing the intersection rapidly
if it goes straight, but may take more time if it turns left. We
assume that every vehicle is aware of this graph representation
of the road network, including all edge costs and average
travel-times for an event-free road network.

In our road network, we assume that there can be an event
blocking the normal traffic flow. Let ets denote an event of
type t (where t may refer to a traffic jam, an accident, etc)
that occurs in segment s; let se denote the segment containing
an event e. Additional event-specific meta-information (like
the average lifetime lt) is assumed to be available. In our
model developed in Section IV, we assume the appearance
and disappearance of events to be instantaneous. Due to the
occurrence of the event, the originally optimal paths are likely
not to be optimal anymore. To adjust its path, each vehicle
requires additional information like either road state or path
suggestions, which it receives via its cellular network interface
from a central server. Generally, providing this information late
leads to reduced communication costs, but also an decrease
in system performance. Thus, we aim at notifying vehicles as
late as possible without reducing the system performance.

IV. VEHICULAR DECISION-MAKING

In this section, we develop our innovative approach to determine
optimal paths (minimizing the costs to their destination) for
vehicles whose original path is adversely impacted by a (severe)
road event. The path is in principle reassessed at the end of
each road segment just before each upcoming road intersection
(decision-point), taking into account updated information about
the road event and an estimate of the remaining lifetime of
the road event (if still active). Figure 1 shows an example a
road network, in which the vehicle wants to travel to G and
can make decisions at the decision-points (A, B, C, D). Each

(a) Active event. (b) Inactive event.

Fig. 1: Decision-making graph for a vehicle.

edge is annotated with the costs required to traverse the edge.
Additionally, every decision-point shows the current minimal
costs to get to G. It is evident, that the road event significantly
influences the decisions of the vehicle. If the road event is
likely to disappear, the vehicle might stick to the shortest route
under the assumption that the event is inactive. If the road
event is likely to remain active, the vehicle might detour as
the originally shortest route is blocked. Thus, the lifetime of
an event has a significant impact to the path-planning.

In the following, we will describe the calculation of the costs
to reach the destination starting from a certain decision-point
and given an active event. For a given vehicle type, destination,
and road segment, a set of recursive equations are developed
yielding the cost of the best path from the specific decision-
point (vertex in the graph) to the destination. This cost is
denoted as c+(ets, si, v, sd), where ets is the event triggering
the decision, si is the road segment terminated by the respective
decision-point, v are the vehicle/driver properties influencing
the decision, and sd is the current destination of the vehicle.
The cost may, for example, be measured in travel time, fuel
consumption, or traveled distance. Additionally, there might be
other cost functions which consider other driver-related aspects.

The calculation of the cost c+(ets, si, v, sd) depends on the
state (active/inactive) of the event in the future. As the event
lifetime lt is a random variable, the cost c+(ets, si, v, sd) is also
a random variable; let c+(ets, si, v, sd) denote the expectation.

A vehicle finds an optimal path by reevaluating its decision
at every possible decision-point and selecting the decision with
the lowest expected costs c+(ets, si, v, sd). The decision taken
at each such decision-points balances the relation between the
lower costs (if the event stays active) and the costs for an
unnecessary detour (if the event goes inactive) optimally for
the given event-specific lifetime. As events may turn inactive
at any decision point, the cost of reaching the destination from
any such point given that the event turned inactive will also
be needed; this is denoted c−(si, v, sd) at the decision-point
si (when clear from context, we will omit ets and v). Both
c−(si, v, sd) and c+(ets, si, v, sd) capture the costs to get from
the current decision-point si to the vehicles destination sd.

While traveling to its destination at sd, the vehicle will pos-
sibly traverse several decision-points. The two costs c−(si, sd)
and c+(si, sd) describe the costs that the vehicle encounters
when traversing segment si and taking the optimal path from
there. In this case, the optimal path is defined as the path with
the lowest expected costs c+(si, sd) (if the event is active) or
c−(si, sd) (if the event is inactive). As the cost at a decision-



point si depends on the future decisions of the vehicle, the two
cost functions are recursive functions based on the accessible
roads from si. We need two assumptions for the cost of an
edge: First, we define that both costs for the vehicle are 0
if it has reached its destination at sd. Thus, c−(sd, sd) = 0
and c+(sd, sd) = 0. Without loss of generality, we assume
that destination-leading segment sd is not associated with the
event under consideration. Second, we need to account for
the higher costs of a segment with an active event. The cost
of this edge (if the event is active) is increased by the event-
type-specific cost value Ct. This cost value corresponds to
the expected costs for a vehicle encountering the event. Thus,
c+(se, sd) = c−(se, sd) + Ct (notice that se is the segment
affected by the event ets). When investigating our graph of the
road network, in which the segments refer to the vertices, this
increases the costs by Ct (which is assumed to be large) every
time the affected vertex (segment) is traversed.

We start with the definition of c−(si, sd) for the general
segment si, as c+(si, sd) depends on it. That is, as the event
might turn inactive in the future if its lifetime is exceeded.
However, as we cannot be sure about the exact lifetime of the
event, we consider the probability of the event to disappear
while we are traveling towards the event’s location. Additionally,
we assume that an inactive event cannot become active again.
Equation 1 shows the calculation of c−(si, sd). The costs are
the sum of the costs R(si, sj) > 0 to get to the next edge sj
and the costs c−(sj , sd). The function "neighbors(si)" returns
the set of accessible segments from the decision-point si.

c−(si, sd) = min
sj∈neighbors(si)

[R(si, sj) + c−(sj , sd)] (1)

As mentioned, the calculation of c+(si, sd) is more complex
than the calculation of c−(si, sd), as an event might turn
inactive while the vehicle is traveling. Thus, the calculation
of c+(si, sd) contains costs of traversing subsequent segments
in both cases with their respective probability, i. e., the event
is still active or event turns inactive. We employ the indicator
function I{lt<T (si,sj)} and I{lt≥T (si,sj)} associated with the
lifetime of the event to capture the two possibilities. If the event
turns inactive before reaching the subsequent decision-point sj
and the vehicle is notified, the costs c−(sj , v, sd) need to be
applied, c+(ets, sj , v, sd) otherwise. Equation 2 describes the
costs at a decision-point si given that the event is active.

c+(si, sd) = min
sj∈neighbors(si)

[R(si, sj)+

c−(sj , sd) · I{lt<T (si,sj)}+

c+(sj , sd) · I{lt≥T (si,sj)}]

(2)

Equation 2 describes the costs as a function of the random
variable remaining lifetime lt and is thus also a random variable.
By taking expectations, we obtain the average values of the
costs involved in the expression while replacing the indicator
functions with the probabilities of the indicated events. Notice
that c−(si, v, sd) is not influenced by the lifetime of the event,

as there is no event to be considered. Additionally, we assume
an exponential lifetime distribution.

For better readability, we will use P+
ij for P (lt ≥ T (si, sj))

and P−ij for P (lt < T (si, sj)). Due to the memorylessness
property of the exponential distribution, we can calculate the
probability of the event to disappear for a path from si to sj
individually. Thus, Equation 2 leads to Equation 3.

c+(si, sd) = min
sj∈edges(si)

[R(si, sj)+

c−(sj , sd) · P−ij + c+(sj , sd) · P+
ij ]

(3)

When calculating c+(si, sd), the vehicle can find the optimal
next segment given its current knowledge. This decision can
be estimated by the server, such that a message is only
provided if the vehicle deviates from its planned path. Based
on the calculated benefit, efficient distribution mechanisms as
presented in [8] can be utilized.

V. EVALUATION

We evaluate our approach using the event-based Simonstra-
tor framework in combination with our vehicular extension
presented in [9]. This evaluation aims to analyze the perfor-
mance in comparison with state-of-the-art approaches under
varying environmental conditions, i. e., to obtain an insight
into the influence factors of the performance. We performed
each parameter setup with 20 seeds to ensure the statistical
significance of our results.

For comparison, we additionally implement three baseline
approaches, a latest-possible decision approach, a static-
information approach, and a full-information approach which
will be explained in the following.

a) Latest-Possible: We refer to this approach with LP.
The vehicles are notified by a central server about events, but
always choose the last possible option to detour (which might
be rather inefficient). The shortest path is determined using
Dijkstra’s shortest-path algorithm.

b) Static: We refer to this approach with SI in the
following. The vehicle receives all events in the road network
from a central server but assumes that the events will always
be active. However, the vehicle will receive an update if the
event becomes inactive. The shortest path is determined using
Dijkstra’s shortest-path algorithm.

c) Full-Information: We refer to this approach with FI
in the following. The vehicle receives all events in the road
network from a central server including the exact times at which
the events will disappear. This approach is unfeasible to be
used in practice, but we use it for reference. The shortest path is
determined using a modified version of Dijkstra’s shortest-path
algorithm considering changing edge costs.

d) Dynamic: We refer to this approach with DI in
the following. The vehicle receives all events in the road
network including their expected lifetime lt. That is, the vehicle
communicates its planned path to the central server which uses
this knowledge to estimate the vehicle’s best decision. This
approach is performed periodically to account for changes in
the road network.
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Fig. 2: Performance depending on the event lifetime.

A. Evaluation Results

In the following, we provide detailed insights into the
performance of our approach under varying environmental
settings. That is, we investigate the quality of the decision-
making as proposed in Section IV using cost-based metrics.

Figure 2a displays the total costs for rerouted vehicles
depending on the event lifetime. This includes both vehicles
which were required to reroute and vehicles that did not need
to reroute. The LP-approach performs well for a small event
duration, as vehicles farther away do not need to be rerouted
due to the small lifetime. However, the performance drops
drastically for large event lifetimes, as the inefficient detour
reduces the performance. It can clearly be observed that the
costs of the SI-approach are comparably high for short event
lifetimes. That is, as the SI-approach immediately tries to
reroute all vehicles in the network, which leads to a lot of
unnecessary detours for small event lifetimes. Interestingly, the
costs for the static approach at 3m are slightly higher than
at 1m, that is justified by the higher number of vehicles that
can decide during the time the event is active. Our dynamic
approach adapts to the event lifetime and reacts accordingly.

Figure 2b displays the necessary communication demands,
that is required by the different approaches. We can clearly see
that our DI-approach utilizes much less bandwidth compared
to the SI-approach. That is, as vehicles in the DI-approach
generally reroute later if the event lifetime is small and thus
do not need to be notified. This effect is reduced for events
with a long lifetime, in which the SI- and the DI-approach
perform almost similarly. It consumes only slightly more
bandwidth than the FI-approach, which is justified by the
unpredictability of event disappearance. As already shown in
Figure 1b, some vehicles detour unnecessarily and, thus, require
the message. Compared to the LP-approach, our DI-approach
generally consumes slightly more bandwidth. However, for
very long event lifetimes, the LP-approach consumes slightly
more messages in certain cases. This effect can be explained by
the longer detours of the vehicles in case of the LP-approach.
As these vehicles stay longer in the system than if they chose
an efficient detour, more vehicles receive the notification that
the event has disappeared compared to the DI-approach.

VI. CONCLUSION

In this work, we propose an innovative approach to determine
optimal routes of a vehicle to its planned destination. For
this purpose, consider the impact of road events on the costs
associated with a certain road segment. As these events might
turn inactive in the future, the route finding is reassessed at
every intersection. Compared to state-of-the-art approaches, we
consider the expected lifetime of events in our route-finding
approach. That is, if an event will most likely turn inactive by
the time the vehicle arrives at the event location, the vehicle
does not necessarily need to consider it. To decide if a vehicle
should detour, we use a set of recursive functions to determine
the expected costs of every possible route for the vehicle. This
information is then used in the information dissemination to
notify only concerned vehicles.

In the evaluation, we show that our innovative approach
adapts to the lifetime of the events well and significantly
reduces the additional costs induced by route events. Addition-
ally, our approach reduces the load on the cellular network
significantly, as only relevant information are shared with the
vehicles. In our future work, we aim to extend the assessment
of road events to other properties like measuring accuracy and
evaluate our work in a large-scale scenario.
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