
Traceability Link Evolution with Version Control

Patrick Mukherjee1, Karsten Saller2, Aleksandra Kovacevic1, Kalman Graffi1,
Andy Schürr2, Ralf Steinmetz1

1Multimedia Communications Lab, Technische Universität Darmstadt
Rundeturmstr. 10, 64289 Darmstadt, Germany

{patmuk, sandra, graffi, ralf.steinmetz}@KOM.tu-darmstadt.de

2Real-Time Systems Lab, Technische Universität Darmstadt
Merckstr. 25, 64289 Darmstadt, Germany
{saller, schuerr}@ES.tu-darmstadt.de

Abstract: Traceability links enable the possibility to trace the evolution of a project
from the earliest requirements engineering phase over the design and implementation
to the test phases of a project. Having a link between the artifacts resulting from these
phases, a requirement can be traced to, e.g., the test report, which tested the code im-
plementing the requirement. However, as the artifacts evolve into new versions the
traceability links between these artifacts evolve as well. Concurrent work on the arti-
facts might result in conflicts which reflects in conflicting versions of the traceability
links. Often the artifacts created in different phases of a development process are
stored in different repositories. In this paper we present a version control system capa-
ble of controlling the evolutionary changes of traceability links which connect artifacts
residing in different repositories and resolve the conflicts caused by concurrent work
on artifacts.

1 Introduction

Traditionally (in requirements management) traceability links have been used to connect
requirements gathered in the first phase of a project to more detailed requirements resulting
from the initial requirements [RSPE97, WN94]. DOORS [IBM] is the most frequently
used tool to support this task.

However, traceability links can be created between any items, be it an artifact, folder or
module, in any version. Traceability links can be used for various additional features in
a project’s development. For example, let us observe artifacts from different development
phases, such as requirement, design, implementation and testing. By using traceability
links, we can trace back a test case from the last phase of the development to related arti-
facts from earlier phases, such as source code or requirement specifications. This feature
could be helpful in deciding which tests are to be executed to prove the implementation of
a specific requirement, if budget or time constraints limit the executable tests. Traceability
links between modules can be used to store dependency relations among projects, which

rst
Textfeld
Patrick Mukherjee, Karsten Saller, Aleksandra Kovacevic, Kalman Graffi, Andy Schürr, Ralf Steinmetz:Traceability Link Evolution with Version Control. In: Evolutionäre Software- und Systementwicklung - Methoden und Erfahrungen (ESoSyM-2011), Workshop im Rahmen der Konferenz SE2011, February 2011.http://www.theoinf.tu-ilmenau.de/~riebisch/oose/ESoSym2011-Mukherjee.pdf.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

enables configuration management to choose specific versions. For example, a project
could link to another project, indicating the minimal needed version it depends on.

When using traceability links in a dynamic environment like software development, main-
taining traceability links faces many challenges. This paper will focus on three main chal-
lenges:

• Traceability links between artifacts should evolve along with the connected artifacts.
Like with artifacts this evolution should be tracked, to be able to retrieve the correct
state of a traceability link which connects specific versions of artifacts. We present
how to overcome this limitation in Section 3.1.

• When storing traceability links in one central place, like most supporting tools do,
this place becomes a bottleneck for users which want to access any traceability link,
even if the accessed links connect different artifacts. We discuss our approach to
overcome this challenge in Section 3.2.

• Often the artifacts created in different phases or by teams in different locations of a
development process are stored in different repositories. Our solution to this prob-
lem is presented in Section 3.3.

• Concurrent work on connected artifacts might result in conflicts on connecting trace-
ability links. We focus on our solution to this challenge in Section 3.4.

Our approach to maintaining traceability links is integrated in our fully decentralized ver-
sion control system PlatinVC [Muk10], which is presented in Section 2. Section 3 details
how the evolutionary changes of traceability links are handled. We discuss related ap-
proaches in Section 4 and close with a conclusion in Section 5.

2 Background: Version Control System PlatinVC

With evolving artifacts in software development a user expects traceability links to be
versioned too, to enable all advantages of version control: retrieving an old state of the
work to correct mistakes or managing possible conflicts occurred by concurrent work.
Version control systems provide the ability to store all changes on artifacts and allow
access any instance in the timeline of an artifact later. In this Section we present PlatinVC,
a version control system that tracks the evolutionary changes of both, artifacts and the
corresponding traceability links between them. In order to understand our approach, we
summarize necessary background information about PlatinVC [Muk10].

PlatinVC represents, as a fully decentralized version control system, an opposite approach
to the most commonly used client-server based version control systems that rely on a cen-
tralized machine to store and manage all artifacts of a project. The obvious drawbacks
involved by utilizing an intermediary central server to exchanges and store created ver-
sions is having a single point of failure, a central ownership and vulnerability, scalability
issues, and increased synchronization as well as communication delays. These drawbacks

virtual
global

Repository

share

(a) retrieve changes

virtual
global

Repository

retrieve

(b) share local changes

Figure 1: Sharing and retrieving versions using PlatinVC

are even more emphasized when projects are developed in a globally distributed manner
[MKBS08]. Many popular global software projects switched to the emerging distributed
version control systems, demonstrating the urgent need for a more suitable version control
system. However, distributed version control systems, like, for example, Git [HT] or Mer-
curial [Mac] lack the global view of centralized systems, where developers do not have to
care with whom they exchange their modified artifacts.

The basic features for version control are provided by Mercurial [Mac], the automatic
exchange of new versions is carried out by the peer-to-peer middleware implementation
FreePastry [FP]. PlatinVCs algorithms care about whom to send and from where to re-
trieve updates, like presented in Figure 1. Each participating computer, presented as yel-
low cycle on the circle and called peer, stores the whole repository in form of a mercurial
repository. Using the key based routing mechanism [DZD+03] a peer is responsible for
any folder, whose hash value calculated using the folders name is similar to the peers
identifier (see also [Muk10, MLTS08]. A responsible peer stores the latest versions of all
artifacts residing in the folders it is responsible for. If any of these artifacts get updated the
resulting snapshot is stored by the responsible peer. When peer retrieves the latest snap-
shot of all artifacts in a project, PlatinVC delivers them involving the minimum number
of responsible peers needed. As the share and retrieve operations work transparent a user
experiences the exchange of new versions as if he where communicating with a central
repository, called virtual global repository in Figure 1. In this repository several modules
can be stored, which consist of artifacts that are versioned using a snapshot. All files are
in fact stored by each peer, most likely outdated. The latest snapshots of the artifacts in a
folder are stored by its responsible peer, replicated to its direct neighboring peers. Only
the peers, whose users retrieved the latest snapshot while no new snapshot was shared,
have the latest version of all files.

Despite of its decentralized, peer-to-peer nature, PlatinVC still achieves the complete sys-
tem view of centralized systems, while overcoming their drawbacks [GKM+07]. All
workflows of existing version control systems, centralized or distributed, are supported.
PlatinVC even supports a hybrid setup, where other version control systems can interop-
erate, using PlatinVC as a mediator. Moreover, it introduces an automatic isolation of
concurrent work, which separates relevant and required updates from possibly unneeded
ones. In this way, branches are only created when necessary. The evolutionary changes
of links between files, which can be enhanced by any attributes, are also tracked. That
extends snapshot-based version control to other purposes, e.g. traceability of software ar-
tifacts. PlatinVC is an alternative to current version control systems, as industry proven
components for the most critical parts of the system were reused, and own developed parts
where evaluated following [KKM+07].

3 Versioning and Maintaining Traceability Links

Enabling evolution of traceability links rise many questions, which we answer in this Sec-
tion:

1. How to store them? (Section 3.1)

2. Where to store them? (Section 3.2)

3. What to do when artifacts created in different phases of a development process are
stored in different repositories? (Section 3.3)

4. What to do when the linked artifacts change, how to version traceability links and
how to resolve concurrent updates on linked artifacts? (Section 3.4)

Answering these questions, we present our approach to the evolution of traceability links
in the fully decentralized version control system PlatinVC.

3.1 Structure and Form of Traceability Links

A traceability link can be created between any artifacts, folders or modules. A traceability
link in PlatinVC can connect any number of items. For each connected item a companion
file is created. It has a generic name formed by the “.” prefix (to hide the file in unix-like
operating systems), the linked item’s name and the suffix “<-linkfile”. This companion
file is stored along with the corresponding artifact, or, in the case the item is a folder,
in the folder and in the case it is a linked module, in the module’s topmost folder. The
companion file contains the names of links, which includes the actual information stored
by a traceability link. These entries express that a link exists and serve as an index to
find the link documents. No further information is stored here. Thus we avoid updating
multiple files if a traceability link is changed.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<l i n k T y p e>DesignToCode< / l i n k T y p e>
< s t a t u s>a c t i v e< / s t a t u s>
< l i n k s>
(. . .)

< l i n k p a r t n e r =”A”>
<va l idF rom>3 . 4< / va l i dF rom>
<d i r e c t i o n>from< / d i r e c t i o n>
< r e l a t i o n>d e r i v e d< / r e l a t i o n>
(. . .)
<o t h e r A t t r i b u t e>some th ing< / o t h e r A t t r i b u t e>

< / l i n k>
< l i n k p a r t n e r =”B”>

<va l idF rom>1 . 8< / va l i dF rom>
<d i r e c t i o n>t o< / d i r e c t i o n>
< r e l a t i o n>d e r i v e d< / r e l a t i o n>
(. . .)
<o t h e r A t t r i b u t e>some th ing< / o t h e r A t t r i b u t e>

< / l i n k>
(. . .)
< / l i n k s>

Listing 1: Exemplary traceability link file A<-link->B

For each traceability link a link document is created, named with a arbitrary name.

If, for example, an artifact named A is connected with a traceability link to an artifact
named B, there exist the following files: In the same folder where A is stored a companion
file named .A<-linkfile is created. it contains the sole entry ”A<-link->B”. Next to the
artifact B a file .B<-linkfile is created with the same sole entry. All information of the
traceability link are stored in the file A<-link->B. Please note that the name can be any
name, randomly created, created after a fixed scheme or assigned by a user.

The link document (A<-link->B in the previous example) is stored in a folder with the
identical name (e.g. A<-link->B / A<-link->B), which is stored in a folder named “.linkdoc-
uments”. This extra folder (with the identical name) is necessary to distribute the link
documents among different responsible peers, as they are responsible for files in different
folders, like explained above. If the link document connects items, which resides in the
same module, this folder resides in the topmost folder of that module. If items of different
modules are linked the folder is stored in the topmost folder of a third module, which is
named after the modules names in which the linked items are stored in. The name is con-
structed by the modules names with “<-links->” in between. In the latter case the entry
in the item’s companion file is prefixed with this name.

An exemplary traceability link (link document A<-link->B from the previous example)
stored in PlatinVC is presented in Listing 1. A link document has two main parts. The

first xml-tags can specify information about the link, like its type. Here anything related
to the traceability link itself, but not specific to any artifact, can be stored. The child xml-
tags under <links> represent each the end of a link. Here the linked items are specified,
by their name, version identifier and branch, if the latter is not the default branch. Any
additional attributes belonging to the traceability link and specific to the linked item can
be stored here as well.

A traceability link is valid for a specific version of the linked artifacts only. However,
for the most projects it can be assumed that it is valid for later versions as well, until
the link document is updated to a later version, which states new version identifiers for
the connected artifacts. A link document can store any metadata about the connection of
the linked items, such as integrity constraints, which can be evaluated to prove whether
a connection is justified. This validation, however, is not handled by PlatinVC. The sys-
tem PlatinVC does not control how links are interpreted, it merely tracks their concurrent
evolution.

3.2 Distributed storage of traceability links

In opposite to solutions where the whole traceability link information for all files in a
project are stored in a central place, the files containing this information (the link doc-
uments) are kept in a distributed storage implemented by PlatinVC. Following the key
based routing mechanism [DZD+03], the link documents are distributed among different
maintaining peers (see also [Muk10]). If two different developers access traceability links,
which connect a disjunct set of artifacts, they communicate (most likely) with two differ-
ent peers. In the rare case, where one peer is responsible for both traceability links and is
overloaded by requests, the responsible peer’s replicating peers take over.

3.3 Traceability links between different repositories

Often the artifacts created in different phases of a development process are stored in differ-
ent repositories. This happens, when the staff working in one phase is different from the
staff working in another phase, most often because they are employed by different com-
panies. The challenge of maintaining traceability links along with the artifact evolution is
even bigger when the repositories belong to different version control systems (e.g. sub-
version [Pil04], CVS [CVS], Mercurial [Mac]). Thus the requirements might be compiled
by a traveling worker, in direct exchange with the customer, managed by a local version
control system such as mercurial. The designers of company A create the software archi-
tecture, version controlled by CVS, while the developers of company B prefer Subversion
for their source code. Lastly, the testers of a different company use their own CVS server
to maintain the test reports.

As already explained in Section 2, PlatinVC is based on Mercurial which can use adap-
tors to many version control systems [O’S09]. Therefore, PlatinVC is capeable to handle

1a

Versions
of file "A"

1

2

3

4
5

Versions
of file "B"

a

b

c
d

Versions of
"A<-link->B"

2a
3a

2d

5d

(a) Files and versions

History of
"A<-link->B"

1a

2a

3a

2d

5d

(b) Created history
of the link document

Figure 2: Concurrent updates on a linkdocument

several CVS and Subversion repositories at the same time.

3.4 Concurrent updates on linked artifacts

Changing the information stored in a traceability link updates its link document to a new
version. Pointing to a different version of a linked artifact changes the link document
as well. As a convention a link should only point to more recent versions of the linked
artifacts in an update. However, when two different developers first update a linked artifact
and update the link document subsequently, without having the latest version created by
the other developer, the link’s versions cross each other, like depicted in Figure 2(a).

Figure 2(a) illustrates an exemplary situation. The left column represents five versions
of artifact “A”, the right column four versions of a linked artifact “B”, and the arrows in
between represents the versions of the linking document (representing a binary traceability
link). The version of both artifacts are created by different users. Alice works on “A” and
Bob on “B”. First Alice creates the artifact “A” and links it to version a of artifact “B”.
She updates “A” to version 2, updates the link to version 2a, and repeats the same process
later to create version 3 of artifact “A” and version 3a of the link document. The versions
1a, 2a, and 3a of the link document are represented with the solid arrow lines. Meanwhile
Bob updates artifact “B” to the versions b, c, and d. He updates the link to connect version
d of artifact “B” and version 2 of artifact “A”, which is the latest version he fetched.

Alice created the version 3 of artifact “A” and updated the link from version 2a to version
3a at the same time when Bob created the versions b, c and d of the artifact “B” and updated
the link form version 2a to 2d. Hereby a conflict in the traceability link’s version history
arose. This conflicting history is stored by PlatinVC in an unnamed branch (as illustrated
in Figure 2(b)). Version 3a and 2d are both based on version 2a. This branch can be merged

by pointing to a more recent version of the connected artifacts. Thereby link version 5d can
be based on 3a and 2d to merge the diverging history lines. To avoid unnamed branches,
updated links should always point to the latest version of the linked artifacts. When the
network is seperated into partitions this is not always possible immediately. We integrated
the version control aware instant messenger ASKME [MKS08] in order to notify users of
a detected conflict.

4 Related Work

Much effort has been spent in the research of traceability links. Most of the research han-
dles the problem of recovering traceability links to identify semantic connections between
source-code and documentation [MM03] [ACC+02] [NG06]. None of these approaches
can handle the evolution of software projects over time. The links which are identified
during the recovery process are valid only for a certain version of the software project.
During the development, the software artifacts are changing constantly which is why sim-
ple methods for link recovery are not efficiently applicable.

An approach that is leveraging traceability link recovery methods to provide consistent and
correct traceability links in an evolving environment is described in [JNC+08] by Hsin-
yi et. al. He describes TLEM, a automatic traceability link evolution management tool,
that uses an incremental version of the Latent Semantic Indexing algorithm [yJNCD07] to
re-evaluate traceability links after each change in an incremental fashion. The presented
method re-uses all available information before a change is being triggered and only eval-
uates the impact of a change on the traceability. Therefore the costs of a full traceability
link recovery is being avoided for every new version.

Another interesting approach to handle traceability links in evolving software projects is
ArchTrace [MHW06]. Murta describes how a policy based system of rules can automat-
ically manage traceability links between documentation and the corresponding source-
code. Instead of reconstructing the traceability links after a certain amount of changes or
time, ArchTrace updates these links after every commit operation from a user. ArchTrace
is only capeable of maintaining existing traceability links, which means that they have to
be created manually by the developers or by a traceability recovery method. The described
approach uses a policy-based infrastructure to determine the according actions during an
update of a software artifact. The policy rule-set has to be configured by the developer
to be more accurate in the managing of traceability links. A conflict arises if more than
one policy or no policy is triggered by an update. This has to be resolved manually by
the developer. However, it may happen, depending on the configuration of the policies,
that the wrong actions are triggered after an update (e.g. adding a new traceability link
to another artifact) without any knowledge of the developer. The current implementation
of ArchTrace only supports Subversion as version control system and has problems if the
software architecture is branched.

A considerably different approach to handle evolving traceability links is described in
[CHCC03] by Cleland-Huang et. al. This approach uses a scalable publish-subscribe

paradigm to handle the traceability links by event-notification. Source-code and docu-
mentation are linked by publish-subscribe relationships where updated artifacts take the
role of publishers and the depending artifacts take the role of subscribers. When e.g. a
requirement changes all depending artifacts are notified by specific notification messages
which contain detailed information about each update event to support the update process
of depending artifacts. Thus, this approach tries to support the overall project manage-
ment with a distributed project-wide process guidance system. The owners of an artifact
which has been notified by a change event are being supplied with the necessary informa-
tion to update the corresponding traceability links. Hence, the traceability links have to be
maintained manually.

Existing approaches to maintain traceability links lack the possibility to operate in dis-
tributed environments and are therefore limited in their usability in globally distributed
software development environments, in contrast to PlatinVC which was specifically devel-
oped for such environments. Operating in distributed environments also enables PlatinVC
to maintain traceability links over several repositories. For example, the requirement doc-
umentation may be stored in a CVS repository and the source-code in SVN repository. In
this case, the traceability links may be stored in a third, independent repository. By utiliz-
ing mercurial, PlatinVC is compatible to all version control systems which are compatible
to Mercurial (e.g. Subversion or CVS). Another advantage of PlatinVC compared to the
presented approaches, is its simplicity: Manual interaction is only needed, if two traceabil-
ity links are created in parallel with conflict to each other. Both links are kept separately
in two separated versions until the developer resolves this conflict.

5 Conclusion

Traceability links bring many advantages to the software development process and their
evolution is important and a challenging task. In this paper we presented an approach to
version and maintain traceability links in an even more challenging environment where all
communication is fully decentralized.

PlatinVC enables the tracking for the evolutionary changes of traceability links between
artifacts in different modules, even when stored by different version control systems. It
handles and maintains updates of traceability links and their version history. Concur-
rent updates are handled automatically and a version history for each traceability link is
maintained. However, there is currently no support for creating links automatically or
assisted. Links can currently only be created automatically via Piki [MLS08], our peer-to-
peer based wiki engine.

In future our solution for tracking the changes of traceability links could be combined
with a solution to create and change these links automatically. An approach as described
in [Kön08] could be used to create or update links between artifacts (semi-)automatically,
which could be stored in a decentralized fashion using PlatinVC. However, as a short term
goal we strive to implement a distributed access control similar to the concept presented
in [GMM+09] for the peer-to-peer social network LifeSocial [GGM+10].

References

[ACC+02] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. Recovering Traceability Links between Code and Documentation. IEEE Trans.
Softw. Eng., 28:970–983, October 2002.

[CHCC03] Jane Cleland-Huang, Carl K. Chang, and Mark Christensen. Event-Based Traceability
for Managing Evolutionary Change. IEEE Trans. Softw. Eng., 29:796–810, September
2003.

[CVS] CVS - Concurrent Versions System. http://www.nongnu.org/cvs/.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards
a Common API for Structured Peer-to-Peer Overlays. In Proceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS03), pages 33–44, February 2003.

[FP] FreePastry. http://www.freepastry.org/FreePastry/.

[GGM+10] Kalman Graffi, Christian Groß, Patrick Mukherjee, Aleksandra Kovacevic, and Ralf
Steinmetz. LifeSocial.KOM: A P2P-based Platform for Secure Online Social Net-
works. In Proceedings of the 10th IEEE International Conference on Peer-to-Peer
Computing (P2P), pages 161–162, August 2010.

[GKM+07] Kalman Graffi, Aleksandra Kovacevic, Patrick Mukherjee, Michael Benz, Christof
Leng, Dirk Bradler, Julian Schroeder-Bernhardi, and Nicolas Liebau. Peer-to-Peer
Forschung - Überblick und Herausforderungen. it - Information Technology (Methods
and Applications of Informatics and Information Technology), 49(5):272–279, Septem-
ber 2007.

[GMM+09] Kalman Graffi, Patrick Mukherjee, Burkhard Menges, Daniel Hartung, Aleksandra
Kovacevic, and Ralf Steinmetz. Practical Security in P2P-based Social Networks. In
Proceedings of the 34th Annual IEEE Conference on Local Computer Networks (LCN),
pages 269–272, October 2009.

[HT] Junio Hamano and Linus Torvalds. Git - Fast Version Control System. http://
git-scm.com/.

[IBM] IBM. Rational DOORS - Requirements Management. http://www-01.ibm.
com/software/awdtools/doors/.

[JNC+08] Hsin-Yi Jiang, T. N. Nguyen, Ing-Xiang Chen, H. Jaygarl, and C. K. Chang. Incremen-
tal Latent Semantic Indexing for Automatic Traceability Link Evolution Management.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, pages 59–68, Washington, DC, USA, 2008. IEEE
Computer Society.

[KKM+07] Aleksandra Kovacevic, Sebastian Kaune, Patrick Mukherjee, Nicolas Liebau, and
Ralf Steinmetz. Benchmarking Platform for Peer-to-Peer Systems. it - Information
Technology (Methods and Applications of Informatics and Information Technology),
49(5):312–319, September 2007.

[Kön08] Alexander Königs. Model Integration and Transformation – A Triple Graph Grammar-
based QVT Implementation. PhD thesis, Real-Time Systems Lab (ES), Technische
Universität Darmstadt, Germany, 2008. Supervisor: Andy Schürr.

[Mac] Matt Mackall. Mercurial, a Distributed SCM. http://selenic.com/
mercurial/.

[MHW06] Leonardo G. P. Murta, Andr Hoek, and ClÂudia M. L. Werner. ArchTrace: Poli-
cyBased Support for Managing Evolving Architecture-to-Implementation Traceability
Links. In In ASE, pages 135–144. IEEE, 2006.

[MKBS08] Patrick Mukherjee, Aleksandra Kovacevic, Michael Benz, and Andy Schürr. Towards
a Peer-to-Peer Based Global Software Development Environment. In Proceedings of
the Software Engineering Conference SE2008, pages 204–216, February 2008.

[MKS08] Patrick Mukherjee, Aleksandra Kovacevic, and Andy Schürr. Analysis of the Benefits
the Peer-to-Peer Paradigm brings to Distributed Agile Software Development. In Pro-
ceedings of the Software Engineering Conference (SE), pages 72—77, Februar 2008.

[MLS08] Patrick Mukherjee, Christof Leng, and Andy Schürr. Piki - A Peer-to-Peer based Wiki
Engine. In Proceedings of the International Conference on Peer-to-Peer Computing
(P2P), pages 185–186, September 2008.

[MLTS08] Patrick Mukherjee, Christof Leng, Wesley W. Terpstra, and Andy Schürr. Peer-to-Peer
based Version Control. In Proceedings of the 14th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), pages 829–834, December 2008.

[MM03] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the 25th Interna-
tional Conference on Software Engineering, ICSE ’03, pages 125–135, Washington,
DC, USA, 2003. IEEE Computer Society.

[Muk10] Patrick Mukherjee. A Fully Decentralized, Peer-to-Peer based Version Control Sys-
tem. PhD thesis, Real-Time Systems Lab (ES), Technische Universität Darmstadt,
Germany, December 2010. Supervisor: Andy Schürr.

[NG06] Christian Neumuller and Paul Grunbacher. Automating Software Traceability in Very
Small Companies: A Case Study and Lessons Learne. In Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineering, pages 145–
156, Washington, DC, USA, 2006. IEEE Computer Society.

[O’S09] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly & Associates Inc, 2009.

[Pil04] Michael Pilato. Version Control With Subversion. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2004.

[RSPE97] Balasubramaniam Ramesh, Curtis Stubbs, Timothy Powers, and Michael Edwards.
Requirements traceability: Theory and practice. Ann. Softw. Eng., 3:397–415, 1997.

[WN94] Robert Watkins and Mark Neal. Why and How of Requirements Tracing. IEEE Soft-
ware, 11(4):104–106, 1994.

[yJNCD07] Hsin yi Jiang, Tien N. Nguyen, Carl K. Chang, and Fei Dong. Traceability Link Evo-
lution Management with Incremental Latent Semantic Indexing. In Proceedings of the
31st Annual International Computer Software and Applications Conference - Volume
01, COMPSAC ’07, pages 309–316, Washington, DC, USA, 2007. IEEE Computer
Society.

