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Abstract: To increase road safety and efficiency, connected vehicles rely on the exchange of information. On each
vehicle, a decision-making algorithm processes the received information and determines the actions that are to
be taken. State-of-the-art decision approaches focus on static information and ignore the temporal dynamics
of the environment, which is characterized by high change rates in a vehicular scenario. Hence, they keep
outdated information longer than necessary and miss optimization potential.
To address this problem, we propose a quality of information (QoI) weight based on a Hidden Markov Model
for each information type, e.g., a road congestion state. Using this weight in the decision process allows
us to combine detection accuracy of the sensor and the information lifetime in the decision-making, and,
consequently, adapt to environmental changes significantly faster. We evaluate our approach for the scenario
of traffic jam detection and avoidance, showing that it reduces the costs of false decisions by up to 25%
compared to existing approaches.

1 INTRODUCTION

In recent years, vehicles have become increasingly
connected. Consequently, an increasing number of
assistance functions relies on information that is pro-
vided by other vehicles, e.g., intelligent route plan-
ning. With ongoing research towards autonomous ve-
hicles, the amount of shared information and func-
tions relying on this information is expected to grow.

However, as the information is sensed by other ve-
hicles with their onboard sensors, its quality can vary
significantly. Furthermore, information received from
multiple vehicles can be contradicting or even wrong.
In a conventional vehicle with a human driver, the
driver validates and rates information intuitively and
makes a decision based on prior knowledge. In com-
parison to that, autonomous and partly autonomous
vehicles lack human intuition for information rat-
ing and decision-making. Hence, analytical methods
need to be developed to make decisions in light of
ambiguous or even contradictory information.

Assuming that the majority of information is cor-
rect, vehicles can use approaches that rely on major-
ity voting with simple static thresholds (Kakkasageri
and Manvi, 2014). Depending on the selected thresh-
old, these approaches adapt either slowly making
them unsuitable for dynamic conditions or fast, mak-
ing them vulnerable to false information. How-

ever, as information about road and traffic conditions
changes frequently—and measurements are not 100%
reliable—this threshold needs to be adapted for an op-
timal solution under dynamic conditions.

In this work, we propose a decision-making pro-
cess based on an information quality rating method
that can cope with ambiguous or contradictory infor-
mation. We focus on two information quality factors:
the false detection rate describing the percentage of
erroneous measurements and the expected event life-
time of the information type. We combine both fac-
tors using an exponential function to decide on the
quality of information. To this end, the event life-
time and the false detection rate are modeled using a
Hidden Markov Model (HMM). Based on the HMM,
we derive a weighting function that is then used in
a weighted majority voting. Consequently, informa-
tion of high quality has a higher impact on the deci-
sion than low-quality information. As a result, we can
drastically decrease the adaption time for information
with high detection rate by lowering the impact of old
information in the voting procedure.

We evaluate our approach for the scenario dis-
played in Figure 1. The vehicles in the Area of In-
terest (AOI) drive on the road and may still take the
exit, leading to a longer overall route. Consequently,
if there is a traffic jam at the Place of Action (POA),
the vehicles should take the exit to achieve optimal
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Figure 1: Blocked Road

routing. However, the information about the state of
the road (jammed or not jammed) needs to be dis-
tributed from vehicles in the POA to those in the AOI.
We evaluate the impact of false information and the
time it takes to adapt to changed road state relying on
an accurate model of vehicular mobility. Our evalu-
ation shows that our decision-making process outper-
forms state-of-the-art approaches significantly, reduc-
ing the amount of false decisions by up to 25%.

The remainder of the paper is structured as fol-
lows: We provide relevant background on HMMs
in Section 2, followed by a discussion of existing
caching systems and their handling of contradicting
information in Section 3. We present our contribu-
tion, the freshness-based majority voting approach for
decision-making under ambiguous or contradictory
information in Sections 4 and 5. Section 6 contains
an in-depth evaluation of our approach, comparing its
performance against state-of-the-art decision-making
processes and the optimal solution derived numeri-
cally. The paper is concluded in Section 7.

2 HIDDEN MARKOV MODEL

A Hidden Markov Model (HMM) is a statistical
model in which the system states cannot be observed
directly. The hidden states depend on the observable
ones. Thus, the value of the hidden states cannot be
assured.

We model the road conditions and the associated
detection as a HMM. Figure 2 displays a general sys-
tem model. There are two reasons for modeling the
detection of road conditions as a HMM:

2.0.1 Measurement Error

The connections between the Observable and the Hid-
den Layer symbolize the measurement process. The
real state (Hidden State (HS)) of the road (HS1...HSn)
is hidden from the vehicles. The vehicles cannot di-
rectly measure the hidden states due to the restrictions
of their onboard sensors. They can only measure the
Observable State (OS) (OS1...OSm) on the observable
layer, which maps to the associated hidden state with
a certain probability. The solid lines symbolize a high
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Figure 2: Hidden Markov Model for a general system

probability for the mapping. If a vehicle measures a
state OSi, there is a high probability that the real state
of the road is HSi. However, this cannot be assured. If
the measurement of the vehicle is erroneous, the real
state of the road differs from HSm. This error is sym-
bolized by the dotted line. The number of observable
states n and the number of hidden states m can differ.
We assume the measurement error to be equal for all
vehicles. Thus, the number of observable states and
hidden states are equal.

2.0.2 State Change

The hidden state of the road changes over time. Each
state has a probability to stay the same state and a
probability of a state change. The arrows between the
hidden states symbolize the transitions between the
hidden states. If the probability of a state change is
high, the event is highly dynamic. If this probability
is low, the event is considered static.

We will use this specific behavior for the optimiza-
tion of our decision algorithm.

3 RELATED WORK

In this section, we summarize the previous works in
the context of this paper. As our approach is based on
the quality of the information for decision making, we
first provide an overview of the respective literature.
After that, we provide an overview of previous works
towards decision making in distributed systems.

3.1 Quality of Information (QoI) in
Distributed Networks

In the literature, Quality of Information (QoI) assess-
ment is a repetitive topic. QoI consists of different di-
mensions, each dimension describing a specific prop-



erty of the information. The importance of each di-
mension depends on the application. Not every di-
mensions is applicable useful for all applications.

Wang and Strong (Wang and Strong, 1996) sur-
veyed data consumers on essential quality dimensions
for information management systems. Based on this
work, other researchers adapted the QoI dimensions
for their applications. Chae et al. (Chae et al., 2002)
adapted the concept of QoI for mobile internet ap-
plications. They took four dimensions into account,
which describe the connection, content, interaction
and contextual quality. They survey people to deter-
mine how the different quality dimensions combine to
an overall QoI metric.

In vehicular networks, QoI is pivotal for
correct decision making in vehicular applica-
tions (Kakkasageri and Manvi, 2014). Each vehicle
performs the information validation by itself. The
idea of Fawaz et al. (Fawaz and Artail, 2013) is
to choose the Time to Live (TTL) dynamically
dependent on the history of changes. With their work,
it is possible to estimate the TTL of an information
type. For vehicular networks, three dimensions are
most important: the content quality, the trust between
the vehicles and the spatiotemporal relevance of
information. The necessary meta-information are
available for every vehicle. Delot et al. (Delot
et al., 2008) estimated the geographical relevance of
information in vehicular networks. They calculated
the geographical relevance using the encounter
probability of the vehicle and the information. For
the temporal quality, Kuppusamy et al. (Kuppusamy
and Kalaavathi, 2012) published an approach called
Cluster Based Data Consistency (CBDC). They
concentrated on increasing the data consistency and
accessibility in clustered Mobile Ad-hoc Networks
(MANETs). They assured the freshness of infor-
mation using a TTL value. After the expiration of
the TTL, the information is considered invalid and
removed from the cache. These metrics are made for
their respective use cases. Though, to the best of our
knowledge, there is no metric for decision making
available, which can handle uncertainty. For this, the
temporal relevance, the content quality and the trust
between vehicles are pivotal. We extend the work of
Meuser et al. (Meuser et al., 2017) with an approach
to explicitly model the decrease of information value
based on the TTL of the information.

3.2 Decision Making under Uncertainty

In most vehicular applications, vehicles rely on a
threshold for the number of messages required to up-
date their decision (Kakkasageri and Manvi, 2014).

Molina et al. (Molina-Gil et al., 2010) researched
on the security consideration in vehicular networks.
They proposed a probabilistic signature validation
scheme to reduce computational overhead while pre-
venting incorrect messages. Hsiao et al. (Hsiao et al.,
2011) modeled the validation of message based on
their quality implicitly. Although their approach fo-
cuses on trust, it can be used for inaccurate infor-
mation likewise. They validated messages of other
vehicles using the already received messages. The
vehicles only perform an adaptation if the message
amount is sufficiently high.

In previous work, Meuser et al. (Meuser et al.,
2017) used a HMM to model information with dis-
crete event space. Using the spatiotemporal relation
between information, they were able to aggregate in-
formation of different time and location. In their
work, the impact of old information decreases expo-
nentially. Moreover, they took the content quality into
account and decreased the impact of inaccurate infor-
mation. In their work, they did not mention how to
derive the spatiotemporal dependency between infor-
mation.

To our best knowledge, there is still a gap in rating
QoI for dynamic information in vehicular networks.
Previous work focused either on static information
or provided non-optimal solutions for dynamic in-
formation. Thus, we will focus on a freshness- and
accuracy-aware validation scheme for information in
vehicular networks.

4 PRELIMINARIES

Vehicles can exchange information using multiple
communication technologies. Available communi-
cation technologies are the cellular network and the
wifi-based 802.11p standard. In general, 802.11p
is used for emergency communication, while non-
safety-related services need to be performed via mo-
bile communication, as 802.11p is not suitable for
high distances due to its multihop behavior. An ex-
ample for non-safety-related services is the distribu-
tion of jam information.

Non-safety-related information contains meta-
information to enhance the information. This meta-
information are the detection time, the detection place
and the expected lifetime. That information is essen-
tial for other vehicles to rate the information.

This information is distributed among the affected
vehicles using a Publish/Subscribe system. For this
system, we assume that every vehicle is equipped with
a cellular network connection. A Publish/Subscribe
server manages subscriptions and publications.



4.1 Publish/Subscribe System

The Publish/Subscribe system used is an attribute-
based Publish/Subscribe system. The attributes are
the ids of the road segments on which the informa-
tion is located. These ids can, e. g., be extracted from
OpenStreetMap1.

While driving on the streets, each vehicle per-
ceives its environment and shares the information
with interested vehicles. For that, the vehicle pub-
lishes the information with the id of the affected road
segment.

Interested vehicles subscribe to road segments to
receive this information. Those road segments are
parts of the planned route of the vehicle. Once a vehi-
cle receives information, this information is stored in
the cache until the information lifetime expires.

4.2 Scenario Description

In this work, we focus on an example scenario, which
is visualized in Figure 3. It can be divided into 4 dif-
ferent phases.
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Figure 3: Visualization of the different road Phases

In the first phase, there is no traffic jam, and the
traffic flows as usual.

In the second phase, an obstacle blocks the road,
e. g., a broken car. Due to the road blockage, the traf-
fic jams. Several hundred meters distant from this
point, there is an exit to bypass the accident. How-
ever, the drivers near this exit do not know about this
incident. Hence, they do not leave the road and drive
into the traffic jam. As the vehicles in the jam know
about the blockage, they publish this information. A
vehicle near the exit receives this information. After
it believes the other vehicles that there is a jam, the
system changes to the third phase.

In the third phase, the vehicles take the exit. We
assume that under normal traffic conditions the exit of
the road is a diversion. However, during the blockage
of the road, the detour is the fastest route.

1http://www.openstreetmap.org

In the fourth phase, once the road blockade is over,
the drivers still take the detour because they have no
information about the jam dissolution. Thus, the ve-
hicles at the former traffic jam publish the informa-
tion that the jam has resolved. After the vehicles near
the exit are confident in the received information, they
stay on the road and do not take the detour anymore.

4.3 Traffic Jam Modeling

The example scenario uses a traffic jam as an exam-
ple for road blockage. To make decisions based on
the information type, we need to model the informa-
tion. We use the model of a HMM as already used in
(Meuser et al., 2017). With the HMM, the transition
between states can be predicted easily. This model is
trained with historic data.

The HMM for a traffic jam is shown in Figure 4.
We assume there are two states for this information
type: either a road segment is jammed or not jammed.

Once a vehicle tries to measure the state of a road
segment, it has a certain probability to measure the
correct state, i. e., measuring the road is jammed, and
the road is jammed. With a low probability, the mea-
surement is wrong, i. e. the vehicles measure the road
is jammed, but the road is not jammed. The solid line
between the observable layer and the hidden layer is
of high probability, while the dotted line is of low
probability.

The change of a road naturally changes over time.
If a vehicle has measured the state of the road in the
past, this measurement cannot predict the future state
with certainty. We model this behavior with the state
transition in the hidden layer.

4.4 Decision Making

Every time a vehicle has the chance of a detour, it
checks the information in its cache. If there is a road-
related information for the road segments after the
current and the next exit, the vehicle evaluates the
available information. If the vehicle expects the in-
formation to be correct and valid, it takes the exit.

A traffic jam is a dynamic information in the ve-
hicular context. As vehicles can only observe their
close environment, the quality of a jam detection is
varying.

5 QUALITY OF INFORMATION
BASED DECISION-MAKING

Decision-making algorithms can benefit many vehic-
ular applications. In this paper, we investigate the ex-
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Figure 4: Hidden Markov Model for a traffic jam

ample of jam detection. Like most other information
required by vehicular applications, the jam state of the
road changes regularly.

Existing approaches from literature do not use the
full potential of the information, as they do not con-
sider these information-specific properties and thus,
adapt either too slow or too fast.

Slow adaptation leads to decisions based on false
knowledge. If the environment changes, the vehicle
still considers the old information as correct. This
misinformation produces costs for the vehicles, which
is, e. g., the unnecessary rerouting in case of a traffic
jam.

On the opposite, fast adaptation is very sensitive
to false information and creates costs through incor-
rect information. The costs of slow and fast adapta-
tion are obviously contrary. The costs through false
information rise if an approach adapts very fast to in-
coming information. On the other hand, the costs rise
with increasing change rate of the environment if an
approach adapts slowly.

In the following, we derive a formula for the costs
of both fast and slow adaptation. We solve the result-
ing optimization problem to achieve the lowest possi-
ble cost.

5.1 Problem Formulation

For convenience, Table 1 provides an overview of the
used variables.

We minimize the total costs ctotal(n) for wrong
decisions as shown in Equation 1. The variable n
is the number of messages after which the vehicle
adapts to incoming information and updates its deci-
sion. Changing the value of n influences the adapta-
tion speed of the algorithm.

minctotal(n) (1)

The total costs ctotal(n) for a wrong decision con-
sist of two costs, the costs of slow and fast adaptation.
They are shown in Equation 2.

Variable Description
ctotal Total costs of wrong decisions
cslow Costs of slow adaptation
c f ast Costs of fast adaptation
n Number of messages for adaptation
nopt Optimal number of messages for

adaptation
p f Rate of incorrectly sensed information
pc Change probability of the sensed en-

vironment per time interval
T Time to Live (TTL) for the informa-

tion type
C f ast Costs of an incorrect change of deci-

sion per time interval
Cslow Costs of an incorrect keep of decision

per time interval
ti Age of information i
si State of information i
f (ti) Impact function of information i
I(s) Impact of all information of state s

Table 1: Overview of used Variables

ctotal(n) = c f ast(n)+ cslow(n) (2)

The first summand is the costs c f ast(n) for a too
fast adaptation. Too fast adaptation leads to a high
impact for erroneous measurements. Thus, for low
accuracy measurements, the adaptation is required to
be slow. The second summand is the costs cslow(n)
for a too slow adaptation. If the real variable value
changes, but the vehicle does not adapt to this change,
the vehicle makes the wrong decision. For high accu-
racy information, the adaptation time can be low to
decrease this costs.

The costs c f ast(n) are calculated in Equation 3.
They consist of the probability for a vehicle receiv-
ing a sufficiently high number of wrong information
to adapt to the false information. The vehicle calcu-
lates this probability using the false detection rate p f
derived from the HMM. For this, the average false de-
tection rate is used. The variable C f ast represents the
costs that describe the negative impact of the deci-
sion. These costs depend on the additional costs that
emerge for the vehicle in case of a false adaptation.
They are the difference between the costs of the adap-
tation and the costs of the correct decision.

c f ast(n) = pn
f ∗C f ast (3)

The costs cslow(n) are shown in Equation 5. These
costs consist of the number of messages required for
the change n, the probability for a change pc and the



costs of the wrong decision Cslow. n states the num-
ber of messages that a vehicle requires to update its
decision. As long as the vehicle has not received the
required amount of messages, it will make the wrong
decision. We derive the probability for a change pc
from the rate r of incoming messages per second. Ve-
hicles individually measure this rate, but consider this
rate to be constant. We calculate pc under the assump-
tion that the message is invalid after the TTL T . A
message is invalid once the probability for any state
is equal to the probability for the current state. Equa-
tion 4 shows the value for pc with |S| being the num-
ber of possible states.

pc = 1− T
√

1/ |S| (4)

The costs Cslow are calculated similarly to the
costs C f ast , using the difference in cost of the best de-
cision and the decision that has been made.

cslow(n) = n∗ pc ∗Cslow (5)

5.2 Optimization Problem

As we want to minimize the costs of wrong decisions,
we minimize the costs ctotal . We search for this min-
imum by deriving the costs ctotal(n) for n and set it
equal to 0 as shown in Equation 6. We transform this
equation to Equation 7.

δ

δn
ctotal(n) = 0 (6)

pn
f ∗ ln(p f )∗C f ast + pc ∗Cslow = 0 (7)

Solving Equation 7 results in the optimal number
of messages nopt . If a vehicles adapts to incoming in-
formation after nopt messages, the total costs for this
value is minimal, which can be derived from the be-
havior of the cost function. Equation 8 shows the op-
timal value nopt . We require the number nopt to be
integral, thus round it.

nopt =

⌊ ln
(
− pc

ln(p f )
∗ Cslow

C f ast

)
ln(p f )

⌋
(8)

We need to develop an algorithm that adapts to
new information after nopt messages. An intuitive ap-
proach uses the approach from the literature, which
adapts after a certain amount of information. This ap-
proach is robust to false information. However, its
adaptation is still slower than possible.

This slow adaptation is justified by the algorithm
behavior, which requires nopt messages in a row to
perform the adaptation. Assuming a vehicle receives

nopt−1 messages with the new information and after-
ward one message with the old information, it cancels
the adaptation and needs to restart it. Thus, we de-
velop an algorithm that solves this problem.

5.3 Quality of Information-based
Majority Voting

We propose a freshness-based majority voting algo-
rithm which optimizes the costs. In the existing liter-
ature, two main approaches are proposed for decision
making:

A conventional approach is to decide after a cer-
tain amount of information. This approach considers
information to be correct if the vehicle has received a
certain amount of messages with that information in a
row. The issue with this approach is the determination
of the exact message amount. For low amounts, this
approach is very prone to false information.

The other standard approach decides using the
amount of available information. This approach con-
siders the information as correct, of which it has
stored the most messages in the cache. This ap-
proach is resilient to incorrect information but adapts
to changes slowly.

Our approach is based on majority voting and
combines the advantages of both these approaches.
In conventional majority voting, every vote has equal
weight. Majority voting by itself is very resilient to
incorrect information but adapts to changes slowly.
We solve this problem by changing the weights for
the information in the voting process. The weight the
information is chosen in a way that a vehicle adapts
after an optimal amount nopt of information.

Our approach considers the freshness and accu-
racy of the information and works as follows: Given
a set of messages M for a particular edge, the vehi-
cle can calculate the voting score using the age ti and
the state si of the messages i = 1..|M| as shown in
Equation 9. Ms is the subset of messages containing
messages of the state s. The function f (t) is an im-
pact function, which adapts to the information type.
The parameter t is the age of the information in the
cache.

I(s) =
∑i|s=si f (ti)

∑
|M|
i=1 f (ti)

(9)

The vehicle chooses the state with the highest im-
pact score I(s). The advantage of our approach is that
it adapts faster to environmental changes than con-
ventional majority-voting, as old information are as-
signed smaller weights. Compared to always adapt-
ing to the newest available information, our approach



is less prone to false information and can, thus, ensure
a higher percentage of correct decisions.

The impact function f (t) weights information in
the cache. This function describes the tradeoff be-
tween fast adaptability and resilience to false infor-
mation. In the next part, we will derive the function
f (t).

5.4 The Impact Function f (t)

The impact function f (t) depends on the expected rate
of false information p f and the change rate of the in-
formation pc. As described in section 4, we model the
road information using a Markov chain. Thus, f (t)
is a general exponential function as shown in Equa-
tion 10.

f (t) = a∗ ebt +d (10)

Based on f (t), any exponential function can be
created using the appropriate values for a, b and d.
In the following, we will derive the values for the pa-
rameters a, b and d using the three requirements of
this function.

5.4.1 Impact of new Information

The initial weight of detected information needs to be
equal to the expected accuracy of this information. As
t is the age of the information, Equation 11 must be
true.

f (0) = a+d = 1− p f (11)

5.4.2 Invalidation of Information after the TTL

A vehicle removes information from the cache after
the TTL has expired. The weighting function grad-
ually decreases the impact of the information. Thus,
the impact of the information at the expiration of the
TTL equals 0 and Equation 12 must hold true.

f (T ) = a∗ ebT +d = 0 (12)

Using these two requirements, we can derive the
family of parametric functions with the parameter b in
Equation 13. For this, Equation 11 and Equation 12
are inserted to replace the values of a and d. Thus,
this family of parametric functions ensures that the
two requirements of Equation 11 and Equation 12 are
satisfied regardless of the value of b.

fb(t) =
(1− p f )∗

(
ebt − ebT

)
1− ebT (13)
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Figure 5: Visualization of the family of functions for differ-
ent parameters b

Figure 5 displays the impact of the parameter b
on the behavior of the respective functions. For vari-
ables with a low detection accuracy, the impact func-
tion needs to stay at its start value for a long time to
compensate for the high amount of measurement er-
rors. For variables with high detection accuracy, the
impact function reduces the impact drastically after a
short time to utilize the high reliability of the detected
information.

To determine the exact value for the parameter b,
the third and final requirement to this function is used.
For this, we developed a trial-and-error based heuris-
tic to approximate b.

5.5 Approximation of b

We use the message amount nopt with the minimal
cost value to choose the appropriate value for b. We
choose b such that the vehicle updates its decision af-
ter nopt messages. However, the vehicle cache con-
tains only a certain amount of messages with cer-
tain timestamps. To map the amount nopt to the lo-
cal knowledge of the vehicle, we derive the rate of
messages r per second from the information already
stored in the cache. Using the rate r, we assume a
uniform distribution of information in the cache.

For the approximation of b, we look at a consistent
cache with uniformly distributed messages. This con-
sistent cache is a simplification, but in the evaluation,
we can show that it performs well in simulations. We
cannot use the actual distribution of the information
in the cache as we cannot evaluate the correctness of
the information in the cache and have no insights on
future messages.

Equation 14 shows the impact I(so) for the former
state so. This state has been active before a change.
The impact of the state sums the results of the impact
function for all information in the cache starting from
message nopt to the last message T/r. We use nopt as
the first message because the messages from 0 to nopt
are the messages with the new state.



I(so) =
bT/rc
∑

n=nopt+1
fb(n∗ r) (14)

In addition to the impact of the old state, Equa-
tion 15 shows the impact I(sc) of the current state sc.
The change happened at the time t = nopt ∗ r. As the
information with the new state comes in with same
rate r as before the change, we sum the impact of all
messages between 0 and nopt

I(sc) =
nopt

∑
n=0

fb(n∗ r) (15)

We want to have a decision update after nopt mes-
sages. For all n smaller than nopt , the vehicle does not
change its decision. After the vehicle has changed its
decision, the impact of the new decision raises con-
stantly and thus it sticks to that decision. To find the
optimal value of b, at which the adaptation is per-
formed after nopt , the impact of the old and the new
state need to be similar. Equation 16 shows this equal-
ity.

bT/rc
∑

n=nopt+1
[ fb(n∗ r)] =

nopt

∑
n=0

[ fb(n∗ r)] (16)

We solve this equation by trying out different val-
ues for b until we find a b for which this equality
holds. Once we find b, we have completed our im-
pact function, which a vehicle uses for its decision
making. We define the two extreme cases separately.
For nopt = 0, b is equal to ∞ and for nopt +1 > T/r, b
is equal to −∞. Using b, we can exactly calculate the
impact of old information and thus make good deci-
sions based on that information.

5.6 Uniform Distribution of Messages

For the described approach, the messages in the cache
need to be uniformly distributed. This distribution is
automatically achieved for information which the ve-
hicles detect bypassing, as vehicles are naturally driv-
ing over the road segment one after the other. How-
ever, if the vehicles get stuck at the information loca-
tion, each vehicle transmits the information on detec-
tion and retransmits it after the expiration of the TTL.
This approach leads to many messages at roughly the
same time.

We solve this problem by adding a random factor
to the first retransmission interval. Instead of retrans-
mitting after the expiration of the TTL, the vehicle
performs the first retransmission after a random time,
which is between 0 and the TTL T . This way, the
messages are distributed more uniformly.

Figure 6: Schematic overview of the road scenario

6 EVALUATION

For the evaluation of our developed decision ap-
proach, we simulate a traffic jam on a highway. In
front of the traffic jam, each vehicle has the possibility
to leave the road. Figure 6 displays the road scenario.

Initially, there is no information about traffic jams
in the network. At a certain point in time, the traf-
fic congests and the vehicles distribute the informa-
tion about the traffic jam using a Publish-Subscribe
system. As there were no messages in the network
before, the adaptation for the initial jamming of the
road is fast. After a certain amount of time, the traffic
jam resolves and thus, the vehicles at the jam loca-
tion publish the information that the traffic jam has
resolved. However, there are already information in
the vehicle’s cache indicating that there is a traffic
jam. Hence, the adaptation to the new requirements
is far more challenging as each vehicle needs to de-
cide on the correctness of the cached information. We
consider this scenario as an appropriate scenario for
decision-making, as each vehicle decides to leave or
stay on the road.

We implement this scenario in the event-based Si-
monstrator framework (Richerzhagen et al., 2015).
The Simonstrator is a network simulator, which sup-
ports different communication technologies (mobile
and ad-hoc communication) and, beyond others, the
Publish/Subscribe paradigm. As the movement mod-
els in the Simontrator are not suitable for our vehic-
ular usecase, we extend the Simonstrator with Simu-
lation of Urban Mobility (SUMO) (Behrisch et al.,
2011). The connection to SUMO is accomplished us-
ing the TraCI interface of SUMO.

In the evaluation, we used two metrics to compare
our approach to the state-of-the-art approaches: the
costs of wrong decisions and the ratio of correct deci-
sions. We put special focus on the reduction of costs
induced by wrong decisions. We assume that costs
occur every time a vehicle would have made a wrong



decision. Thus, we observe the cache and make a de-
cision every second. If this decision is wrong, we add
the appropriate costs to the total costs.

For comparison, we implemented both an optimal
strategy and a random strategy. The optimal strategy
chooses the correct information out of the cache using
global knowledge, but can still make the wrong deci-
sion if there is no correct information in the cache.
The random strategy chooses information out of the
cache randomly and considers this information as cor-
rect. We expect none of the described approaches to
perform better than the optimal or worse than a ran-
dom approach. Thus, these are suitable bounds. We
combine those two strategies to determine the used
optimization potential of every approach. We calcu-
late the used optimization potential as shown in Equa-
tion 17.

opt =
capproach− crandom

coptimal− crandom
(17)

Table 2 gives an overview of the considered pa-
rameters and their values. We varied the false detec-
tion rate, the jam duration and the costs of a wrong de-
tour. The bold values in the table are the default ones.
The costs are calculated based on the cost ratio. To en-
sure a comparability of costs, we set C f ast +Cslow = 2.
The evaluation source code is freely available2.

Evaluation parameter Value
False Detection Rate [0%, 1%, 5%, 20%]
Jam Duration [200s, 300s, 400s]
Cost Ratio between the
costs of a wrong stay
and a wrong exit

[0.1, 1, 10]

Table 2: Overview of used variables

We first have a look at the metrics for the differ-
ent false detection rates, as the false detection rate has
the highest impact on the results. For the other pa-
rameters, we only investigate on the costs of wrong
decisions.

6.1 Impact of the False Detection Rate
for the different Approaches

At first, we investigate on the costs and after that on
the percentage of correct decisions for different false
detection rates.
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Figure 7: Total costs for different false detection rates

6.1.1 Costs of False Decisions

Figure 7(a) shows the used optimization potential of
our approach compared to the approaches in the liter-
ature dependent on the false detection rate. For a false
detection rate of 0%, our approach and the newest-
information approach perform as well as the optimal
approach, while the majority-voting based approach
performs much worse due to its slow adaptation to en-
vironmental changes. The used optimization potential
of our approach and the newest-information approach
drops with increasing false detection rate. In con-
trast, the optimization potential of the majority-voting
based approach increases. Our approach converges
towards the majority-voting based approach for high
false detection rates. The reason for the increased
performance of the majority-voting based approach
is the decrease of time for adaptation to environmen-
tal changes, as the number of correct messages in the
cache is lower.

Figure 7(b) displays the total costs. Regarding to-
tal costs, our QoI-based approach has almost equal
total costs regardless of the false detection rate. Com-
pared to the approach selecting the newest informa-
tion, our approach has up to 56% reduced overall
costs dependent on the false detection rate and up
to 43% reduced costs compared to the conventional
majority-voting based approach. The total costs of
the optimal approach decrease with increasing false
detection rate, as false messages lower the adaptation
time after the traffic jam. We explain this behavior in
more detail in the next paragraph.

In Figure 8(a) the costs of slow adaptation are
shown. We can observe that the costs of our QoI-
based approach are almost equal to the costs of the
fastest approach, which immediately adapts to new
information. This is a great result, as our approach
is far more robust to false information. The majority-
voting approach has high costs of slow adaptation, as

2https://dev.kom.e-technik.tu-
darmstadt.de/simonstrator/
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Figure 8: Costs by cause for different false detection rates

expected, since many message are required for a de-
cision change. Interestingly, some of the approaches
have lower costs of slow adaptation with higher false
detection rate. Normally, it is expected that those
costs increase with increasing false detection rate.
However, this behavior happens if a vehicle performs
a false measurement during the traffic jam, i. e., a
message stating that the traffic jam has resolved. Al-
though that measurement was incorrect at this point, it
becomes true as the traffic jam resolves shortly after.
As this originally false message is also used in the de-
cision process, the adaptation time and thus the costs
can be lower with increasing false detection rate.

Figure 8(b) shows the costs of fast adaptation.
Those costs are 0 for all approaches for a false de-
tection rate of 0%, as there are no false measurements
in the system. With increasing false detection rate, the
costs of fast adaptation of the algorithm increase. This
is caused by the increasing number of false informa-
tion in the system, which challenges the robustness of
each approach. The newest-information approach is
not robust to false information, thus the costs of fast
adaptation increase drastically. Compared to that, the
costs of fast adaptation of our QoI-based approach in-
crease only slightly and are much lower than the costs
of the newest-information approach. In contrast, our
approach has higher costs of fast adaptation than the
majority-voting based approach, but this behavior is
intentional, as the higher costs of the fast adaptation
produce lower costs of slow adaptation. Interestingly,
even the optimal approach has costs of fast adaptation.
This is not intuitive, as the optimal approach never
makes a wrong decision. However, even the optimal
algorithm makes wrong decisions, if there are only
false information in the cache. This happens if the
last correct message is removed from the cache due to
its age.

6.1.2 Percentage of Correct Decisions

This metric investigates the effects that the decision
approach has on the vehicles. Every time, a vehicle
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Figure 9: Percentage of correct decisions for different false
detection rates

makes a decision, this decision is stored and influ-
ences the metric. Two phases are investigated. The
first phase is for the decision-making during the jam.
Meaning, this metric is the percentage of vehicles that
have successfully taken an exit. The second phase is
for the decision-making after the jam. This metric is
for the percentage of vehicles that have stayed on the
road after the traffic jam has resolved.

Figure 9(a) shows the correct decision ratio dur-
ing the traffic jam. At the beginning of the jam, there
is no information in the cache, as the vehicles do not
share any information prior to the jam. Thus, the ra-
tio is generally higher compared to the situation after
the jam. However, a high correct decision ratio dur-
ing jam means that only a few vehicles are in the jam
and able to measure the road state. Thus, the ratio of
correct decisions drops with increasing false detection
rate, as the impact of false information is higher with
fewer messages in the system. Moreover, we can see
that our QoI-based approach perform better than the
newest-information approach for every false detection
rate and only slightly worse than the majority-voting
based approach.

The ratio of correct decisions after the jam is
shown in Figure 9(b). Our QoI-based approach
is equally good as the newest-information approach
with a false detection rate of 0%, but while the
newest-information approach drops with increasing
false detection rate, our QoI-based approach is robust
to false information and thus stays almost at the same
level. The performance of the majority-voting based
approach also does not drop with increasing false de-
tection rate. However, its correct decision ratio is al-
ways lower than the one of our QoI-based approach.

6.2 Impact of the Jam Duration to the
different Approaches

Figure 10 shows the costs and the cost distribution for
the different jam durations. With decreasing jam du-
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Figure 10: Costs for different jam durations

ration, the used optimization potential decreases like-
wise as shown in Figure 10(a). However, the ratio
between the different approaches is not affected sig-
nificantly.

To explain the decrease of costs with decreasing
jam duration, we use the distribution of costs shown
in Figure 10(b). There are two reasons for this de-
crease. Firstly, the number of messages in the cache
is lower, as fewer vehicles published the information.
Thus, the number of messages required for adaptation
is also lower. This is true for our QoI-based approach
as well as for the majority-voting based approach.
Secondly, the possibilities for wrong decisions dur-
ing the jam is lower, as the jam duration is shorter.
The newest-information approach is one of the exam-
ples, where the costs of fast adaptation decrease due
to the shorter jam duration. However, the costs of fast
adaptation does not decrease strongly. This is due to
the lacking robustness of the newest-information ap-
proach. This leads to a very time until the system has
recovered after the jam, which increases the costs of
this approach.

Conclusively, we derive that our QoI-based ap-
proach outperforms the other approaches indepen-
dently of the jam length.

6.3 Impact of the Costs Ratio to the
different Approaches

Figure 11 shows the costs for different cost ratios. In
this example, a cost ratio of 10 means that a wrong
stay on the road is 10 times more expensive than a
wrong leave. Similarly, a cost ratio of 0.1 means that
it is 10 times more expensive to leave the road than
to stay. Figure 11(a) shows the used optimization po-
tential of the different approaches. Our QoI-based ap-
proach performs best for all of the considered cost ra-
tios. It is also the only approach that reaches the full
optimization potential in some cases. With increasing
cost ratio, the used optimization potential of all ap-
proaches increases. This behavior is analyzed using
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Figure 11: Costs for different cost ratios

Figure 11(b).
For the optimal approach, the costs of slow adap-

tation are almost 0. As this approach adapts fast to
the jam resolving, the main costs arise through the
road jamming. Thus, the costs of falsely staying on
the road are the most significant factor for the opti-
mal approach. As these costs increase with increas-
ing cost ratio, staying on the road is punished addi-
tionally. Thus, the overall costs of the optimized ap-
proach increase with increasing cost ratio. For all the
other approaches, the overall costs decrease as a part
of the costs are caused by leaving the road wrongly.
This is justified by the evaluation scenario, as the out-
dated information in the cache slows down the adap-
tation process. Thus, the costs of slow adaptation de-
crease if the costs of leaving the road wrongly are
small. We can observe that our QoI-based approach
outperforms the other two approaches for a cost ra-
tio of 0.1 and 1 significantly. For a cost ratio of 10,
in which slow adaptation after the jam is not costly,
our approach performs only slightly better than the
majority-voting based approach, as the slow adapt-
ability of the majority-voting based approach is bal-
anced by its robustness.

6.4 Evaluation Results

The evaluation shows that our approach reduces the
total costs compared to both of the existing ap-
proaches dependent on the scenario by up to 25%.
Additionally, our approach has never a higher total
cost value than the other approaches. It achieves
that improvement by balancing its robustness and fast
adaptability to environmental conditions to achieve
optimal results. For the extreme cases, our algorithm
converges to the newest-information and the majority-
voting based approach respectively. Moreover, we
observed that the jam duration has no impact on the
performance improvements of our approach, which
makes it usable for decisions based on arbitrary in-
formation.



7 CONCLUSION

In this paper, we proposed a Quality of Information
(QoI)-based decision making process. In this decision
making process, false decisions produces costs for the
deciding vehicle. False decisions have two reasons,
missing robustness to false measurements and slow
adaptation to environmental changes. Our novel de-
cision making process considers information-specific
properties, to make decisions inducing the lowest pos-
sible costs.

This decision making process is based on a
weighted majority-voting. The used weighting de-
termines the impact of an information and considers
information-specific properties. Those properties are
modeled using a Hidden Markov Model (HMM) con-
sidering the false detection rate and the information
lifetime. Those two properties most important for the
information impact function, as missing sensor ac-
curacy and outdated information are common chal-
lenges in distributed networks.

To chose the appropriate impact function f (t), we
construct an optimization problem to minimize the
costs of incorrect decisions. The resulting weighting
function is an exponential function and takes the age
of information as an input to calculate the weighting
of that specific information. The weighting function
itself depends on the information-specific properties
information lifetime and false detection rate.

In the decision-making process, we perform a
weighted majority-voting with the weights calculated
by our weighting function. In the evaluation, we show
that our approach significantly outperforms compara-
ble approaches by up to 25% and dynamically adapts
to the information-specific properties.

As future work, we aim to investigate the possibil-
ities to filter out wrong information and consider the
individual false detection rate of each sensor instead
of the average into account to increase the quality of
the decisions further.
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