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Abstract—The TEEE 802.16 standard specifies a MeSH' mode
which permits the deployment of Wireless Mesh Networks
(WMNs) supporting carrier-grade QoS. The network operator
for such planned WMN:s is interested in maximizing the traffic
admitted in the WMN and simultaneously supporting QoS.
Recently network coding has emerged as a promising technique
for increasing the throughput in WMNs. This paper proposes
CORE, which addresses the problem of jointly optimizing the
routing, scheduling, and bandwidth savings via network coding.
Prior solutions are either not applicable in the 802.16 MeSH or
computationally too costly to be of practical use in the WMN
under realistic scenarios. CORE’s heuristics, in contrast, are able
to compute solutions for the above problem within a operator
definable maximum computational cost, thereby enabling the
computation and near real-time deployment of the computed
solutions. We analyze the performance of CORE’s heuristics via
a thorough simulation study covering the typical usage scenarios
for WMNs. The results presented demonstrate that CORE is
able to increase the number of flows admitted considerably and
with minimal computational costs. Further, the results provide
insights into limiting factors for the gains which can be obtained
in different usage scenarios.

I. INTRODUCTION

WMNs are increasingly attractive for providing ubiquitous
wireless network coverage from the network provider’s point
of view. The application scenarios for WMNs vary from ex-
tension of range for existing cellular networks to development
of an independent network infrastructure for remote rural
areas as well as formation of community mesh networks in
urban regions (see [2] for a survey on WMNs). Recently, the
attention in the research and standardization communities is
turning towards supporting demanding multimedia traffic in
the WMNs. The IEEE 802.16 standard’s [10] MeSH mode
and the ongoing TEEE 802.11s standardization incorporate
sophisticated means to deploy WMNs supporting QoS for
multimedia applications. In the current paper we focus on
the TEEE 802.16 MeSH mode. The MeSH mode represents
a paradigm shift in wireless medium access when compared
to the contemporary IEEE 802.11 [9] standard. Sophisticated
mechanisms are outlined in the MeSH mode to enable explicit
reservation of bandwidth for transmission on individual links
in the WMN permitting provision of QoS on a packet-by-
packet basis. Provision of end-to-end QoS is not within the
scope of the MeSH mode specifications. The network operator
is interested not only in providing QoS but also increasing
thc amount of flows/traffic admitted in the WMN. Network

'We use the notation MeSH to refer to IEEE 802.16's mesh mode.

coding [1] is a promising technique to achieve the latter goal
in WMNs (e.g. [11]).

The optimal deployment of network coding in the MeSH
mode requires the joint optimization of the routing, as well as
the transmission schedule on individual links in the network,
precisely reserving the amount of bandwidth required on
each link. Prior work demonstrates the need for such a joint
optimization (e.g. [15], [16]). However, the prior approaches
found in the literature are not applicable to the MeSH mode
or are computationally too expensive to be of practical use in
realistic traflfic scenarios (see Sec. TI-B for a discussion of the
related work). In the MeSH mode we want to route packets
on routes satisfying the QoS requirements of the flows, and
also route the packets on a single path to avoid jitter and
reordering problems arising when multipath routing is used.
Here, sufficient bandwidth (an integer number of minislots—
the smallest unit of bandwidth allocation in the MeSH mode)
needs to be reserved for the transmission (Sec. II-A provides
an overview of the MeSH mode). The MeSH mode in con-
trast to the traditional IEEE 802.11 WMNs requires that the
transmissions are scheduled in a contention free manner. The
above constraints make the problem extremely hard, especially
if we want to compute the optimal solutions and deploy the
computed solutions in near-real time in a network with chang-
ing traffic demands. In this paper we present CORE (Centrally
Optimized Routing Extensions) which is a framework intended
to jointly optimize the routing, transmission schedule and
bandwidth savings via network coding and be able to operate
in dynamic WMNSs. We presented a proof of concept for the
CORE framework in [13]. There we demonstrated the ability
of CORE’s control messages to reconfigure the routing in the
network in near real-time and its ability to adapt to changing
traffic demands. In this paper we present the details of CORE’s
heuristics and thoroughly investigate the performance gains
obtained using CORE and at the same time identify restricting
factors for the gains obtained in typical usage scenarios for
WMNs. To the best of our knowledge, this is the first work
which looks at the problem of jointly optimizing the routing,
scheduling and network coding in the IEEE 802.16 mesh.

In particular, our contributions are as follows:

« We present CORE (in Sec. III), which is able to work with
standard routing protocols. CORE enables the adaptation
of the routing tables at individual nodes in the WMN
to achieve CORE’s goal. Namely, jointly optimize the
QoS aware routing, transmission schedule, and bandwidth



savings via network coding.

CORE uses heuristics (see Sec. 1V) to approach its opti-
mization goal. CORE is designed such that the network
operator can parameterize CORE’s heuristics to limit the
computational costs to a given maximum threshold. This
enables the computation of solutions for the optimization
problem and the deployment of the computed solutions in
near real-time, even in WMNSs with dynamically changing
traffic demands.

« CORE is designed such that distributed components
(routing, distributed scheduling) are used to deploy the
solutions optimized centrally. This implies that the WMN
is able to continue with normal operation even when the
central server running CORE’s heuristics fails. This also
means that the central optimization server used by core
does not need to maintain complete global information
(e.g. about the transmission schedule at individual nodes)
and hence does not involve considerable overhead.

o We evaluate the quality of the solutions computed by
CORE (see Sec. V) using a thorough simulation study
covering typical usage scenarios for WMNs. The pre-
sented results demonstrate that CORE is able to achieve
a considerable increase in the number of flows admitted
in the WMN and with minimal computational costs. The
results also highlight limiting factors for gains which can
be obtained via jointly optimizing the routing, scheduling,
and network coding in the most typical usage scenarios.

II. BACKGROUND AND RELATED WORK

In this section we present a brief introduction to the MeSH
mode. This is followed by an overview of relevant related
literature.

A. MeSH Mode Background

The IEEE 802.16 MeSH mode [10] specifies the Medium
Access Control (MAC) and the Physical (PHY) layers to
enable the deployment of WMNs. The MeSH mode uses
TDMA/TDD to arbitrate access to the wireless medium. The
time axis is divided into frames. Each frame is composed of
a control subframe and a data subframe. The data subframe
is further divided into minislots (or simply slots). MAC layer
messages meant for network setup and bandwidth reservation
are mostly transmitted in the control subframe. Contention free
access to the wireless medium in the control subframe can be
both centrally regulated by a Mesh Base Station (MBS—a
node usually providing access to external networks) or can be
managed by the individual nodes (Subscriber Stations, (SS))
using the distributed mesh election algorithm specified by the
standard (see [4], [10], [14]). Reservation of bandwidth for
transmission of data messages in the data subframe can be both
centrally managed by the MBS (called centralized scheduling)
or a contention free transmission schedule can be negotiated
by the nodes individually (termed distributed scheduling)
without involving the MBS. Centralized scheduling is limited
to scheduling transmissions on a scheduling tree specified by
the MBS and rooted at the MBS. Distributed scheduling is

more (lexible and can be used to schedule transmissions on
all the links (also those in the scheduling tree) in the WMN.
Using distributed scheduling a SS negotiates its transmission
schedule via a three-way handshake with the neighbouring
node to receive the transmission (see Fig. 1). Given the
limitations of centralized scheduling, we will, without loss of
generality, assume that only distributed scheduling is used for
the rest of this paper.
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Fig. 1. Distributed scheduling concept

Using the three-way handshake nodes can request and
reserve a contiguous range of minislots for a contiguous range
of frames (e.g. reservation Resv(L;,1 — 10,100 — 101) is
used to denote that minislots numbered 1 to 10 are reserved
for transmission on link with identifier L; for the frames
numbered 100 and 101). The number of minislots reserved
is termed as the demand level (denoted as A(AMS)) and
the number of frames for which the reservation is valid
is termed as demand persistence denoted here as Pera g,
where A F is the number of frames for which the reservation
is valid. Where as per the standard’s specification A F €
{1,2,4,8,32,128,00}. We may thus have reservations with
demand levels 1... Max. Num. of Slots; and with demand
persistences Pery, Perg, Pery,... , Pery. Only slots re-
served with persistence Per,, can be freed when no longer
required via a cancel three-way handshake. For computing
conflict free schedules, every node maintains the state for each
minislot in each frame. Depending on the activities which
may be additionally scheduled in a slot, the slot has one of
the following states: available (av:transmission or reception
of data may be scheduled), transmit available (tav:only trans-
mission of data may be scheduled), receive available (rav:only
reception of data may be scheduled), unavailable (uav:neither
transmission or reception of data may be scheduled). Consider
edge e=(N1,N3) € E in Fig. 1 (b), where E represents the set
of edges in the WMN. Fig. 1 (b) shows how nodes in the
network will update their slot states when a transmission is
scheduled on edge e, provided all the nodes had the slots
in state av at the beginning of the handshake. Neighbours
of the receiver (IV2) overhear the grant and update the state
for the granted slots to reflect that thcy may not transmit in
the granted slots. Neighbours of the transmitter (V1) overhear
the grant confirm message and update their local slot states
to reflect that they cannot receive any other transmission
without interference in the confirmed slots. This process may
be compared to the RTS/CTS mechanism used by 802.11



based nodes. A transmission may be scheduled on an edge
e=(N1,N2) in a given slot m and frame f iff sf (N;) €
{av,tav} and sf,(N2) € {av,rav}. Where sf,(N) denotes the
state of slot m in frame f at node N. We now define I(e) as the
set of edges on which a transmission may not be scheduled
(as per the states of the slots) considering that the slots which
are reserved for transmission on edge e had status av prior to
the three-way handshake for reserving the slots for edge . We
then define the blocking-cost of transmission on an edge e as
<(e) = |I(e)|. Similarly, the blocking-cost for a path (route)
T+q between source s and destination d is defined as ¢*% (144)
and is computed as shown in Eqn. (1).
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Readers unfamiliar with the MeSH mode may find a detailed
overview in Ref. [14].

B. Related Work

Our work is inspired by the seminal work of Katti et al.
[11]. They demonstrate the substantial benefits which can
be achieved by using a simple form of network coding [1]
in WMNs, Ref. [16] builds on [11] by considering network
coding and routing as a joint problem. The authors in [16]
use a linear programming based approach to find an optimal
solution in an 802.11 based MAC. However, the solution
presented allows multipath routing and fractional bandwidth
allocation on links. Further, the authors do not present any
protocol to implement the presented solution in real WMNSs, In
particular, for reasons of avoiding jitter and out of order packet
delivery issues we do not want to split packets belonging
o a single flow along multiple paths. Additionally, it is not
possible for us to reserve, e.g., 0.333 of the link capacity for
a particular link in the WMN. Only an integer number of
minislots may be reserved for transmissions on a link. The
above constraints put our problem in the class of Integer Linear
Programming (ILP) problems, which are generally considered
to be NP-hard. We modeled our problem (see [7] for the
details) as an ILP using the GNU Linear Programming Toolkit
[8]. This open-source toolkit is able to solve ILP problems
cfficiently using a branch-and-bound approach. For small
nciworks (7—10 nodes, 10-15 links, 2-5 flows) and very few
(1-10) minislots, the ILP was solved within a few tens of
seconds with reasonable results: correct routes where found
and no collisions occurred. For larger networks (e.g. 16 nodes
in a 4x4 grid layout, also more flows and/or links had similar
effect), the solver was not able to find a solution in reasonable
time (24 hours). Almost all of the work in the field of network
coding assumes a 802.11 or similar MAC. No study is made
for a sophisticated reservation based MAC like the MeSH
mode. An important issue when using network coding is that
it should not add a high delay penalty for the packets when
coding is used (see [11] for arguments). Prior literature on
wireless network coding makes coding decisions mainly on
a packet by packet basis, which is not feasible without high
delay in the MeSH mode. Reserving multicast bandwidth on

a packet by packet basis via the three-way handshake in the
MeSH mode is not only dilficult (the receiving nodes have
to agree to grant the same set of slots) but also involves the
three-way handshake delay which can be considerable (see
[4]), especially for multicast reservations. In the poster [13]
we presented the concept for CORE and demonstrated the
ability of its framework to operate in near real-time, jointly
optimizing the routing and scheduling and network coding
in the WMN. This paper builds up on [13] and studies the
performance of CORE’s heuristics in detail. Most of the other
literature on scheduling and network coding is either restricted
to multicast traffic (e.g. [15]), or does not permit spatial reuse
for scheduling as specified for the MeSH mode (e.g. [5]).
CORE is probably one of the first works jointly optimizing
routing, scheduling and network coding in near real-time, and
for realistic WMN sizes and traffic scenarios, esp. for the
MeSH mode. Besides, the solution we present is deployed
in a distributed fashion allowing the network to be resilient to
failures of the centralized optimization entity.

III. CORE: FUNCTIONAL OVERVIEW

CORE has been designed to help the nodes in the WMN
optimize the routes globally (and not from the individual
node’s point of view as done by contemporary shortest path
algorithms). Here, CORE considers the QoS requirements of
flows when adapting routes, and also strives to minimize
the blocked bandwidth for a given traffic demand via use
of network coding. CORE uses a central server to run its
optimization heuristics (see Sec. IV) . Without loss of gen-
erality, for this paper we will assume that the central CORE
server is also the MBS and hence will use MBS and CORE
server with equal meaning. CORE’s two fundamental design
principles are: Principle 1: CORE should be able to work in
realistic WMNSs and be able to adapt the routes in response
to dynamically changing conditions in the WMN in near real-
time. Hence, CORE’s heuristics are designed such that the
network operator can limit the maximum computational effort
spent on searching for an optimal solution. Principle 2: The
usage of CORE’s central server should be optional, i.e. nodes
in the WMN should be able to deliver data to destinations even
in the absence of the central server. Hence, CORE assumes
the usage of distributed routing protocols and uses distributed
scheduling to reserve bandwidth for transmissions on links in
the WMN. We now explain CORE’s working in a nutshell
with the help of an example.

A. CORE Operation Explained

Fig. 2. Toy scenario to explain CORE’s operation

Consider the toy-topology in Fig. 2 and two flows between
the source destination pairs Fiow 1:(S,R) and Flow 2:(R,P).
Assume that initially only Flow 1 exists. Also assume that



Flow 1 uses route S—-T-R. Now, when Flow 2 enters the
network, the source (R) estimates the mean data rate for the
flow and notifies the MBS (say node Q) of the new traffic
demand while routing the data arriving from the new flow
on the path computed by the distributed routing protocol.
Assume that this route is R—-Q-P. As the MeSH mode uses per-
link encryption at the MAC layer no opportunistic listening
and coding similar to that used in COPE [11] is possible.
The MBS then uses the algorithms mentioned in Sec. IV
to compute an optimal route combination for the flows. Tt
may, for cxample, find out that routing the flows as Flow 1
along: S-T-R and Flow 2 along: R-T-S-P is a better solution
which does not violate the QoS requirements and at the same
time minimizes interference in the network and also generates
opportunities for deploying network coding (e.g. at node T) in
the network further reducing needed transmissions. The MBS
now sends control messages to the affected nodes notifying
them of the required routing table updates and the schedule
changes. In this example, the MBS informs nodes R, T, S,
about the new routes computed, the nodes then change their
individual routing tables accordingly. The MBS also notifics
node T about the possibility for deploying network coding.
However, just changing the routing tables is not sufficient
in the MeSH mode as the IEEE 802.16 MeSH mode uses
explicit bandwidth reservation for data transmission. As there
may not be sufficient bandwidth already reserved on the new
route, new packets arriving will have to wait in the queue until
enough bandwidth has been allocated on the new route. At the
same time, the bandwidth on the old route might be unused.
Consequently we also need an interface from the routing layer
to the MAC layer, to allow the routing to directly initiate
the request or cancellation of bandwidth. The MBS using the
CORE mechanism thus notifies the individual SSs of both the
routing changes as well as changes needed to the reservations
on the links affected by the routing changes. To ensure a
smooth transition to the new constellation the MBS specifies
a frame number after which these changes take effect.

To further reduce overhead of CORE’s centralized control
and centralized algorithms, we distinguish between long-term
(with persistence Perq) and short-term reservations (reserva-
tions with persistences < Pery,). The MBS is periodically
(or when a new flow arrives, or the mean demand level
changes drastically) notified of the mean demand level of the
traffic demands by the sources using the periodic network
configuration messages transmitted in the control-subframe.
The computations at the MBS use this as the traffic demand.
The MBS then computes the routes and instructs the individual
SSs to reserve bandwidth (an amount corresponding to the
demand on the link) on the concerned links using Per, (good
until cancelled or reduced) reservations. The traffic demand in
a real network is by no means constant at the mean level
and may show fluctuations and bursts of data. The SSs, when
using CORE, reserve bandwidth for such traffic bursts using
short-term reservations without needing to contact the MBS.
This enables a quick response to bursts of traffic with low
overhead. To ensure that minislots are available for such short-

term reservation CORE specifies a maximum {raction ol the
data-subframe (i.e. number of minislots) which may be used
by the centralized optimization mechanism of CORE for long-
term reservation. The remaining minislots are available for
short-term reservation. Thus, the centralized optimization part
of CORE, when computing the maximal schedule and its
feasibility considers that it has only the number of minislots
per data-subframe as are permitted by the network operator.

From the overview we see that CORE optimizes the network
centrally, however, uses distributed means to deploy the op-
timized solution. Additionally, it has been designed such that
failure of CORE’s centralized server does not lead to complete
breakdown of the WMN. Ref. [7] provides details about the
control protocols designed for CORE and the extensions we
made to the TEEE 802.16 MeSH mode.

IV. CORE: DETAILS OF THE HEURISTICS

To make the optimization problem tractable, and to enable
the design of heuristics for finding a solution in real-time,
we split the problem into several subproblems. These are:
Route Preselection, Optimal Route Combination (OptRC) and
Maximal Scheduling (MaxSch). We now describe the above
subproblems and our solutions to each.

A. Route Preselection

The goal of this heuristic is to limit the number of routes
per flow that arc considered by the OptRC heuristic o an
operator-defined value (x). This routine gets all the routes for
a flow which are feasible w.r.t. the QoS constraints. From this
set of routes per flow, the best (w.r.t. the route blocking-cost
as specified in Eqn. (1)) s routes are retained. This gives a
set of at most « routes per flow which are feasible w.r.t. QoS
and, at the same time, potentially block a minimum number
of links due to data transmissions on the path. The selected
routes are then the input for the OptRC heuristic.

B. Heuristic for the OptRC Subproblem

The solution to the OptRC problem uses the solution to
the MaxSch problem as a subroutine (within the procedure
combine() shown in the pseudocode for Algorithm 1). The
OptRC problem can be formulated as follows. “Given a set
of flows, their traffic demands, and a set of routes per flow,
what is the optimal combination of routes (by choosing one
route per flow) such that: the maximum traffic demand can
be supported in the network, the overall interference in the
network is minimized when using the schedule produced by
the MaxSch subroutine, and bandwidth savings via network
coding are maximized?”

A subset of the flows from the given set of flows may be
dropped if they cannot be scheduled using the MaxSch routine
for lack of sufficient capacity (minislots). In particular, the
solution to the OptRC problem is a set of routes which contains
a single route for each source-destination pair. Algorithm
1 shows our proposed algorithm as pseudocode, Instead of
finding an optimum route set for all flows at once, the
algorithm operates stepwise. We next define how Algorithm



Algorithm 1 OptRC Algorithm

Definitions:
S List of flows to be processed, ordered according to the flow’s importance.
fo: most important. unprocessed flow (i.c. first element of f).
a: Set of flows for which a routc has already been found.
p: A partition, i.c. a scIf sorting list of flows; ordered according to the flow’s
imporiance.
P: Self sorting list of partitions (i.e. list of lists of flows) with elements P ordered
by the importance of the first flow of the elements.
Pg: First element of P, i.e. the partition containing the most important, unprocessed
flow.

repeat
p—20
P—0
comb — 1
while comb - kg < A do
comb «— comb - kg
p—pU{fo}
f— f\{fa}
10: end while

> Add Aows to p until comb > A

VP ANN RN T

12: P—PuUp

13: repeat > Binary search
14: best «— combine( Py U a) & Search best set of routes
15: if best = @ then > No valid combination found
16: if |[Pp| = 1 then > Py contains only one element
17: P — P\ {P} t Flow in Py not routeable
18: else > Split current partition in two partitions
19: np— Pz ix > |—P,_—,°—|

20: Po — Po\ {t: t € np}

21: P — PuU{np} > np has second position in P
22: end if

23: else

24: a—alUPy

25: P — P\ {P}

26: end if

27: until P> =@
28: fixRoutes(best)

> Fix the flows 10 the routes currenily found
29: until f =0

1 divides the OptRC problem into smaller optimization steps.
From the list of yet to be routed (non-processed) flows f, ¢
flows are chosen, such that

I]gga )

s=1

where A is a constant set by the network operator and k; is
the number of possible routes of the ith non-processed flow
(Lines 3—11). These ¢t flows form one partition p as shown in
Algorithm 1. In our algorithm we add flows to a partition till
the bound given by Eqn. (2) is reached. We always select the
first flow (fp) in the list of flows f as the next flow to be added
to a partition of flows to be optimized in parallcl. Hence, the
order of flows in f plays a crucial role in the performance of
Algorithm 1.

For the results in this paper, we sorted the flows based on
their traffic demand and they are listed in f such that a flow
which has a higher traffic demand occurs before flows with
lower traffic demands. Optimizing a larger number of flows
in parallel is beneficial, because it enables the computation of
a schedule, which allows maximal concurrent transmissions
for the considered (lows, by adapting the routes for all these
flows. Thus, the main goal of Algorithm 1 is to efficiently
search for a combination of routes which allows the maximum
traffic demand to be supported. Algorithm 1 uses binary search
within a given partition to quickly find the subpartition (Py) of

flows which can be jointly scheduled when the given partition
of ¢ flows cannot be jointly scheduled (see lines 13-27).

The procedure combine() passes all possible route com-
binations for the given flows as argument to the MaxSch
algorithm and returns the best schedulable set of routes. The
binary search enables us at the same time to find out flows
which cannot be scheduled by the MaxSch routine together
with the flows which have been already scheduled and for
which the routes have already been fixed. Flows for which no
schedulable solution could be found are excluded from any
further calculations. All other flows regarded in this step are
fixed to the routc that has just been found. This procedurc
repeats until all lows have been considered. In the case that
each of the ¢ flows has x routing possibilities, the maximum
number of route combinations C'(, £) that have to be checked
(implemented using the combine{) procedure which calls the
computational expensive MaxSch algorithm for each possible
route combination) until all { flows have been processed can
be calculated iteratively by

C(x,0) =0
C(k,1) =k
C(k,2) =K%+ 2K

Clr,t) =kt +C(x,[t/2]) + C(x, |t/2)). 3)

One can see from Eqn. (3) that the number of possible route
combinations and, thus, the number of schedules that have to
be calculated, increases exponentially. The operator can choose
between processing either more flows in parallel or allowing
more routing alternatives for each flow.

C. Heuristic for the MaxSch Subproblem

The MaxSch heuristic is given a set of flows and one route
per flow. It first computes the bandwidth required (demand)
per link in the network for the given set of flows and routes.
The MaxSch next attempts to find a maximal schedule for the
demand, returning the amount of (minislot,link) tuples blocked
by the computed schedule. The returned value can, in general,
be any metric which allows the calling function to evaluate
the quality of the computed schedule. In case the given set
of flows cannot be scheduled due to bandwidth limitations,
an error value is returned. The MaxSch subroutine is called
repeatedly by the combine() procedure shown in Algorithm
1, to find the best (minimum blocking) route combination.

For our subproblem, a maximal schedule is a set of sched-
uled data transmissions (for the given traffic demand) per
minislot such that no further non-conflicting data transmissions
can be scheduled. The above definition is similar to the
definition for the maximal slot assignment presented in [6].
To find a maximal schedule we use an adapted version of
the greedy maximal scheduling algorithm presented in [12]
(similar scheduling algorithms may also be found in [6], [17]).
The MaxSch heuristic assigns the first minislot to the link with
the highest demand. Thereby, a certain set of links cannot be
activated in the same minislot. Of the remaining links, again



the link with highest demand is chosen and assigned to the
current minislot. The procedure repeats until no more links
can be activated in this minislot. The demand of all active
links is then reduced by one and the heuristic restarts with the
updated demands per link for the next minislot.

We slightly adapted the MaxSch heuristic described above
so that it can also be used for scheduling network coding
transmissions (which are multicast transmissions in contrast to
the normal unicast transmissions in a WMN). In the presence
of per-link encryption in the WMN (as assumed), network
coding via opportunistic listening as outlined in [11] is not
possible. Hence, network coding in our scenario is only
possible when we have a traffic setup similar to the “Alice-
Relay-Bob” scenario outlined in Ref. [11]. We use the flow and
routing information to determine all possible network coding
opportunities and create a virtual network coding link for each
of them. The demand on these virtual network coding links is
equal to the minimum of the demands of the corresponding
two unicast transmissions, which are now replaced by trans-
missions on the virtual network coding link. Since some of
the demand is now served by the network coding links, the
demand on the corresponding unicast is reduced by the same
amount. However, as a single network coding transmission can
transport the double amount of data compared to a normal
transmission, network coding links should be preferred by
the MaxSch heuristic. Consequently, when choosing a link to
schedule next, we consider the effective demand for network
coding links to be twice the real demand (in minislots).

V. EVALUATION

We next evaluate CORE'’s heuristics via monte-carlo simula-
tions (CORE’s functionality was implemented into an extended
version of the JiST/SWANs simulator [3]). Due to space
limitations, we restrict the discussion to the study of the
network performance for the mesh topology shown in Fig.
3 for two distinct simulation setups. Additional experiments
(different topologies, different sorting for the flows for OptRC)
can be found in [7] and show similar performance gains using
CORE. In Setup I we compare the quality of the solution
obtained using CORE vs. the optimal solution (considering
all possible route combinations in the working set of the
heuristic). In Setup Il we analyze the performance of CORE
for different usage scenarios of the WMN. In particular, we
investigate different traffic distributions to model an access
network, an enterprise/community network and a mixture of
both. As a baseline for our joint routing and scheduling
heuristic, we use standard shortest-path routing using either
hop-count or the blocking-cost of a path as defined in Eqn.
(1) as routing metric.

A. Simulation Results: Setup [

To find the globally optimal solution we implemented a
brute-force algorithm which explores all feasible route com-
binations. Due to the prohibitive computational costs involved
for the brute-force search we limited the study in Setup I
to only 6 flows in the network with a limit of 20 minislots

f N

Fig. 3. Simulated 20 node WMN topology with Mesh Base Station (MBS)
in the data-subframe. The traffic demands for the individual
flows were uniformly distributed between 2-7 minislots per
frame per flow. The source destination pairs were randomly
selected such that trivial flows were not generated (i.e. the
minimum hop-path is of at least two hops). We performed
400 replications of the experiment. The following algorithms
have been studied:

« Minimum-hop routing (MiH)

« Minimum-blocking path routing (MiI, see Eqn. (1))

« CORE’s routing heuristic (He)

« Optimal routing using brute-force (BF)

We analyzed setups with and without network coding (NC/No
NC). In the NC case, network coding opportunities are rec-
ognized by the scheduler and the corresponding slots for the
(multicast) transmission are reserved.

Fig. 4(a) shows the average number of flows which could
be scheduled (we show the 95% confidence intervals if not
noted otherwise). Using the optimal BF algorithm on an
average less than 4 of the 6 flows offered could be sched-
uled, i.e. we operate the network in saturation. Fig. 4(a)
shows that the shortest-path routing MiH performs worst.
MiI, the second best scheme, outperforms MiH because the
selection of minimum-blocking paths frees network resources,
thus enabling the scheduling of additional flows. This result
acknowledges the importance of choosing interference-aware
routes in the WMN. The developed heuristic He performs
even better. Infact, the increase in performance compared to
MiI indicates the performance gain that can be realized by
optimizing the routes for all flows in parallel. Moreover, the
performance of He is close to 90% of the optimal performance
of BF, if we consider thc number of admitted flows.

The obtained results with network coding are inline with our
earlier findings for the relative performance differences ol the
analyzed schemes. In absolute terms, despite the fact that we
only offer 6 flows, the creation of network coding opportuni-
ties helps reduce the number of transmissions, thereby leading
to fewer blocked links per minislot and, thus supporting more
flows. We see that the performance of He is even closer to the
optimum compared to the non-network coding case.

Fig. 4(b) shows the average served total traffic demand (in
minislots required per frame) for the scheduled flows. It can
be seen that He supports a larger traffic demand compared
to MiH and MiI. Again, BF gives the optimum performance
that can be achieved. Fig. 4(c) shows the number of (link,
minislot) tuples blocked per scheduled demand, which de-
scribes the bandwidth efficiency of the scheme. A lower value
for this metric indicates a higher efficiency of the scheme.
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Fig. 4. Simulation

This translates into a higher probability that available (link,
minislot) tuples still exist in the network for a fixed demand;
these available resource can in turn be used for scheduling
additional data. Only BF is able to outperform He.

Table 1 shows the number of route combinations tried
(searched) by the individual algorithms to achieve the results
shown in Fig. 4. The value reroutes represents the number
of times a low was rouled on the non-default path (which is
assumed to be the MiTI path). Given, the small number of (lows
in Setup I we do not have a large number of reroutes. It can be
seen that the He and BF algorithms reroute more flows in order
to establish network coding opportunities, thereby conserving
bandwidth in the network. The value NC sessions counts
the mean number of network coding sessions established (a
network coding session is defined as a tuple (a, X, b) where
a, X, and b are nodes and X acts as a network coding relay
for packets from a to b and vice versa). Even for the small
setup, our algorithm He is ablc to cstablish significantly morc
NC sessions than the baseline algorithms.

B. Simulation Results: Setup Il

In Setup II we analyze the performance of our heuristic
for different traffic patterns, representing the following typical
usage scenarios for WMNs:

« Operation of the WMN as a wireless access network is
denoted as AccNet.

o Operation of the WMN with internal traffic only is
denoted as Intern.

o Operation of the network in a hybrid/mixed setup is
denoted as Mixed.

To model these scenarios, we introduce three different classes
of traffic: Internet traffic (Inet), symmetric traffic (Sym) and
asymmetric traffic (Asym). In each Inet connection the MBS
is a communication endpoint; we assume lower bandwidth for
the uplink than for the downlink. Sym (lows always request
the same amount of bandwidth for both directions of a node
pair, thus modeling, e.g. VoIP traffic. Asym traffic represents
file transfers or video streaming sessions inside the network,
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with most of the demand in one direction and only a negligible
amount in the reverse direction.

We instantiate the three modelled scenarios as shown in
Table I1. The traffic pattern for the AccNet scenario consists of
Inet flows only. In the Intern scenario we combine the sym and
asym? traffic pattern for communication among nodes of the
WMN. The Mixed scenario combines all three types of traffic.
Table IT shows the individual setting for the traffic patterns
for all studied scenarios, whereby the demand is uniformly
distributed and specified as demand in minislots per {rame per
flow. The demands for the different WMNs scenarios were
chosen such that the total demand for all flows in each scenario
was in average around 80 minislots per frame. We assumed
a total number of 67 available minislots, which corresponds
to about 70% of all minislots in the ETSI(n = 8/7, 3.5 MHz,
OFDM 256) mode of the IEEE 802.16 standard.

Fig. 5 and Table IIl show the results for MiH, He and
HeNC for Setup II°. The results clearly indicate the superior
performance of He vs. the baseline MiH if traffic patterns leave
room for optimization.

TABLE Il
TRAFFIC PATTERNS FOR SETUP 1
Inet Up./Down. | Sym | Asym
3 | No. of flows 1171 0 0
48 Demand per flow 1-2/4-8 0 0
< | Mean total demand 82.5 minislots per frame
£ | No. of flows 0 2x 8 6
£=’ Demand per flow 0 3-4 3-5
= | Mean total demand 80 minislots per frame
2 | No. of flows EHE l 2x 5 5
= | Demand per flow 1/1-3 3 2-5
< | Mean total demand 80.5 minislots per frame

2 Asym. traffic is modelled with a reverse demand of zero, as the negligible
demands are scheduled using short-term reservations not controlled by CORE,
further for the reservation-based MAC a non-zero amount for the reverse
demand has only low impact as soon as the reservation is issued.

*We omit the presentation of the results for the network coding variant
MiHNC, because the inherent limitations in identifying NC sessions leads
only to marginal performance gains relative to MiH.
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Fig. 5.

In particular, for the Intern scenario, He is able to admit
around 20% additional flows compared to MiH, while HeNC
rcalizcs an improvement of about 33% in scheduled flows.
For the Mixed scenario, the improvements are even more
impressive: He outperforms MiH by scheduling around 30%
additional flows, HeNC is able to increase the number of
flows by nearly 50%. At the same time, Fig. 5 shows that
AccNet does not provide this room for optimization, which
is due to the bottleneck MBS. Since we assumed a total of
67 minislots, the MBS can serve a maximum demand of 67
minislots per frame, which also limits the performance of all
three schemes as shown in Fig. 5 (b). Network coding does
not help in this scenario either, because our heuristic prefers
flows with high demand, i.c. downstream {lows and docs not
permit sufficient upstream flows to the MBS to yield network
coding opportunities. In contrast, as shown earlier, the possible
gain further improves if network coding is enabled (HeNC)
and sufficient network coding opportunities can be identified,
which is true for the scenarios Mixed and Intern.

C. Summary of Results

The evaluation shows that CORE can very much improve
the performance in WMNSs. In networks that are tractable,
our devised heuristics perform slightly worse than optimal
solutions. However, please note that the former have been
tuned such that they are able to operate in near real-time,
while the latter are infeasible for realistic scenarios because
of their runtime. Our scheme shows an excellent performance
in realistic environments. In particular, the He as well as
the HeNC variant significantly outperform the baseline of
minimum-hop routing (MiH) by up to 50% improvement in
terms of scheduled flows. At the same time, our algorithms are
able to identify network coding opportunities and are practical
to deploy network coding in TDMA/TDD mesh networks,
even if these networks deploy per-hop link-level encryption.

VI. CONCLUSION

We see that CORE is able outperform the baseline schemes
by admitting up to 50% of additional traffic. Further, to reach

(b) Demand served

Intern AceNet Mixed AccNet
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Simulation results for Setup Il

the solution CORE needs to search a very small fraction of
the solution space. The distributed deployment of the solutions
make the WMN robust to failures of the central server. In
future we plan to investigate further optimizations to our
heuristics, e.g. distributed computations of the heuristics.
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