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Abstract. Local reuse detection is a prerequisite for a multitude of
tasks ranging from document management and information retrieval to
web search or plagiarism detection. Its results can be used to support
authors in creating new learning resources or learners in finding exist-
ing ones by providing accurate suggestions for related documents. While
the detection of local text reuse, i.e. reuse of parts of documents, is cov-
ered by various approaches, reuse detection for object-based documents
has been hardly considered yet. In this paper we propose a new fin-
gerprinting technique for local reuse detection for both text-based and
object-based documents which is based on the contiguity of documents.
This additional information, which is generally disregarded by existing
approaches, allows the creation of shorter and more flexible fingerprints.
Evaluations performed on different corpora have shown that it performs
better than existing approaches while maintaining a significantly lower
storage consumption.
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1 Introduction and Motivation

Detection of reuse is a prerequisite for a multitude of tasks. Duplicate or near
duplicate detection plays an important role in web search and retrieval where it
is, for example, used to filter result lists. However, there are several tasks that
require not only the detection of near duplicate documents but the detection of
local reuse (meaning reuse of smaller parts of documents). Detection of plagia-
rism is an important use case [1] but also in the fields of web search or local
desktop search several scenarios require techniques for detecting local reuse. Ex-
amples are retrieval of related documents or tracking of information flow for news
stories [10, 16], over different blogs [10, 9] or in newsgroups or forums. Even in
the field of Technology Enhanced Learning (TEL), the obtained information can
be used to support authors as well as users of learning content (see Section 2).
Generally, algorithms that efficiently handle the near-duplicate detection prob-
lem [7, 4, 5] do not work well for the detection of local reuse [19], while standard
string matching approaches like Greedy String Tiling [22] or Local Alignment
[6] usually suffer from bad runtime behavior or high storage consumption. There
are so-called fingerprinting techniques that allow for the detection of local reuse
while maintaining an acceptable runtime and storage behavior. However, most
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existing approaches concentrate on the detection of text reuse. Many documents
contain not just text but also images, audio, video or other content types such as
geometric forms or structures. Especially in the domain of Technology Enhanced
Learning such object-based formats are commonly used. Presentation slides are
a good example. They often contain many shapes and diagrams but compa-
rably little text. Even documents generated by modern word processing tools
usually contain objects like images or charts, which are completely neglected by
text-based reuse detection methods.

In this paper we propose a flexible fingerprinting technique for the detection
of local reuse based on the contiguity of a document’s content (Section 4) that
outperforms existing fingerprinting approaches (Section 3) in most aspects on
the corpora used for evaluation (Section 5) including an annotated subset of the
TREC newswire corpus and the LIS.KOM corpus created during the evaluation
of the LIS.KOM framework [13]. In the following Section we define local reuse
and show how local reuse detection can be applied to support different scenarios
in the area of Technology Enhanced Learning.

2 Application of Local Reuse Detection to support TEL

We define local reuse extending the definition for local text reuse by Seo and
Croft [19] as follows: Local reuse occurs when content is copied from one doc-
ument to another. In this definition, content can be anything from a part of a
sentence to an image or an audio file. The reused content can be modified and
may only make up a small fraction of the new document. It is apparent that local
reuse relations are not transitive (a property often assumed for near-duplicate
documents [7]), meaning that document A may reuse content from document B
and B content from document C without A and C having anything in common.

The main use case for local reuse detection is to discover documents which
overlap and thus are related to each other. This information can be used to
support retrieval and generation of learning content. The resulting document
relations can e.g. be used to generate recommendations, enrich given search
results, or track the flow of information.

If one document is part of a search result or relevant for a user, e.g. because
he is learning it, related documents might be potentially interesting too. Doc-
uments that are near-duplicates, are not useful for recommendation since the
user already knows most of the content. They are thus usually filtered out by
search engines like Google. However, this is not the case for documents that
overlap in parts only. When a document A is relevant for a user and document
B partially overlaps with document A, the content that document B contains in
extent to the overlapping passages is probably relevant for a user or learner. Au-
thors of learning content, like e.g. lecture slides or WBTs, can be provided with
information about how a document is connected with other documents. This is
especially helpful for authors who are not the creator of named document. If
the document itself does not contain the content they need, one of the related
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documents might. Local reuse detection allows to find such relations and to give
authors access to potentially relevant information.

Another way to support authors is to enable them to track their content. This
applies mainly to commercial scenarios where an author has financial interest
in his documents not being reused without permission. However even in open
content scenarios authors might want to know where their content goes and who
reuses it.

3 Fingerprinting Approaches for Local Reuse Detection

The given section covers the methodology for fingerprint generation and gives
an overview on existing approaches for local reuse detection for text-based as
well as for object-based documents.

3.1 Fingerprint Generation

While near-duplicate fingerprinting techniques generally produce one fingerprint
per document, techniques for the detection of local reuse usually generate several
fingerprints, i.e. hash values representing a document. How these fingerprints are
put together depends on the approach used. Usually the following steps are per-
formed during fingerprint creation: Initially a document is preprocessed. Com-
mon preprocessing steps for text include filtering of special characters, stopword
filtering or stemming. Secondly chunks are extracted from the document. These
chunks are then turned into numeric values using hash functions like MD5 [17].
In the final phase most approaches select a subset of the hashes resulting from
the second step. This subset is then called fingerprint (or set of fingerprints)
of the document. Most of the approaches described in this section use shingles
as chunks. Shingles, as described by Broder [3], are sequences of k consecutive
terms that are generated by extracting the contents of a sliding window with
fixed size k running stepwise over the text.

3.2 Containment Calculation

To quantify the reuse between two documents, most approaches use an asym-
metric measure as such a measure reflects differences in length of the documents.
The containment of document A in document B is defined by Broder [3] as:

C(A, B) =
|FA ∩ FB |
|FA|

(1)

FA and FB are the sets of fingerprints of documents A and B respectively and
are usually treated as sets in the mathematical sense (e.g. by [8], [18] and [19])
meaning that every fingerprint only occurs once in the selected set of fingerprints,
even if it has multiple occurrences in the document. However, taking duplicate
fingerprints into account and thus treating FA and FB as multisets [20] can be
beneficial in some scenarios.
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3.3 Approaches for Text-based Documents

K-gram. K-gram is the first and simplest of several approaches that use shingles
as chunks. It serves as the basis for most of the following fingerprint schemes. It
is based on the n-gram overlap approach [14] and simply uses all shingles of a
document generated by a sliding window with size k as fingerprints. Therefore
the number of fingerprints generated by k-gram for a document with n tokens is
calculated as Nk−gram = n− k + 1. This, however, only applies when a multiset
approach is used. When using k-gram in a set-wise fashion, as it is usually done,
the given formula represents an upper bound for the number of fingerprints. The
following four approaches take the fingerprints generated by k-gram and reduce
their number by selecting a representative subset. Since a subset of k-gram’s
fingerprints may never provide as accurate results as the whole set, k-gram is
usually used as a benchmark to evaluate these approaches.

0 mod p. For a selection algorithm to work properly, it is required to select
the identical subset of fingerprints for identical documents. A random selection
algorithm would not fulfill this requirement. 0 mod p [15] selects every hash value
that is dividable by p out of the hashes generated by k-gram. Thus the average
number of fingerprints 0 mod p selects is N0 mod p = Nk−gram/p. One drawback
of this approach is that if very common shingles are dividable by p the results
can be effected negatively. Moreover it is not guaranteed that if two documents
contain identical chunks that these chunks will be selected in both documents.
Therefore, reuse may not be detected. The guarantee given by 0 mod p is that if
a chunk is selected in one document it will be selected in every other document
as well.

Winnowing. Winnowing [18] uses a second window with size w sliding over
the shingles resulting from k-gram. In each winnowing window the lowest hash
value is selected as fingerprint. If there is more than one lowest hash value, the
rightmost one within the window is chosen. Schleimer et al. have shown that
winnowing yields slightly better results than 0 mod p and give a lower bound
for the number of fingerprints chosen as Nwinnowing ≥ 2/(w+1) ·Nk−gram. While
the selection 0 mod p performs is global, winnowing’s selection of fingerprints
depends on the other hash values within the same winnowing window. This
means that even if two documents share a common shingle, winnowing does not
necessarily select that shingle’s fingerprint in both documents. However, if two
documents share a chunk that is at least as large as the winnowing window w,
at least one common shingle out of that chunk is selected in both documents.

Other Approaches: Hailstorm [9] combines the results of winnowing with
a better and more global coverage of the document. Each token (i.e. word)
of a document is hashed separately before applying k-gram to the document.
Each shingle is then examined whether the token with the lowest hash value
is the leftmost or rightmost token within the shingle. If this is the case, the
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shingle is selected as fingerprint. It is necessary to use a large window size to
reach high compression rates with Hailstorm. However, the quality of k-gram for
detection of local reuse usually decreases for big window sizes (e.g. k > 6), since
the sensitivity of k-gram for small changes increases with an increasing window
size. Originally, Hailstorm has been developed for origin detection. In that use
case content is often cited and fully copied from document to document, with
relatively long parts of text remaining unchanged. In such a scenario greater
values for k - like 8, as proposed in [9] - work well, which is not the case for
detection of local reuse.

Hash-breaking [2] is not based on k-gram and thus does not use shingles. A
document is divided into non-overlapping chunks. Every word of the document is
hashed and if a resulting hash value is dividable by a given parameter p, the text
is divided at this point. The resulting text chunks are then hashed and used as
fingerprints of the document. While a chunk of text selected by hash-breaking
is on average p tokens long, it might be very short or very long in practice,
depending on the distribution of hash values. Specifically, when a sequence is very
short and consists of very common words, the results Hash-breaking provides are
influenced badly. Seo and Croft have modified hash-breaking such that it only
selects chunks that are at least p tokens long (revised hash-breaking) [19].

Since the chunks hash-breaking selects can be very long, the approach is very
sensitive to changes. If only one character in a chunk is changed, the hash values
and thus the outcome of the approach is completely different. Seo and Croft
use Discrete Cosine Transformation (DCT) to make it more robust against
small changes [19].

3.4 Approaches for Object-based Documents

Object-based documents are documents whose main content is non-textual. Typ-
ical examples for object-based documents are presentations, web based trainings,
documents from modeling tools (like e.g. Visio or ARIS), project charts or the
output of various design tools (like Adobe InDesign or MS Publisher). While
there are many existing approaches for the detection of reuse for text-based doc-
uments, very few approaches for detecting reuse between object-based documents
exist or have been researched.

In [11] Klerkx et al. evaluate the reuse of PowerPoint presentations in the
ALOCOM repository [21]. To detect reuse, Klerkx et al. utilize the cosine mea-
sure for textual content, hash functions for images and a mix of both for the
content of slides. No specifics are given and, since different techniques are used
for text and images, no common fingerprint can be generated.

Basic approaches like k-gram or the selection algorithms based on k-gram can
be adapted for object-based documents. If it is possible to extract ordered fea-
tures from a document it is possible to extract fingerprints from it. For instance,
to generate k-gram fingerprints for a PowerPoint presentation, the objects need
to be extracted in the order they occur in the document. To be able to process
both objects and textual content at the same time it is necessary to generate
individual hash values for each of them and then apply the k-gram window to the
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resulting bit string. Hence, the preprocessing used on an object-based document
is different, but the principle mechanics of the approach are the same as in the
text-based case.

4 MiLe Approach

Documents possess an inherent order. In text documents, for example, the order
in which words occur is (for most languages) an eminent aspect of the text’s
semantics. That is, if the word order is changed, either a nonsense sentence is
created or semantics are changed: E.g. Tom protects Lisa has a different meaning
than Lisa protects Tom or protects Tom Lisa.

Existing fingerprinting approaches do not consider documents as a contigu-
ous entity but as a set of individual chunks (or features) which forms the basis
for the fingerprint generation. While it is possible to store additional offset infor-
mation for each shingle or chunk (see e.g. [9]), utilizing this information requires
additional storage and computational effort, e.g. reconstructing the order of a
document’s k-gram fingerprints would approximately take O(n log n) steps, de-
pending on the algorithm used.

We propose a fingerprinting algorithm called MiLe that utilizes the contiguity
of documents. The main idea behind MiLe is to not break up documents into
chunks and select a subset to calculate a resemblance measure but to transform
the resemblance estimation problem into a string-matching problem, thereby
benefiting from the additional information taken from the contiguous nature of
documents.

The comparison of documents using document fingerprints usually consists
of two steps: First a fingerprint is generated for every document, which is then
used to estimate the resemblance. This is also the case for MiLe. However, while
all local reuse detection approaches described in Section 3.3 generate a set of
fingerprints, MiLe creates only one fingerprint per document.

4.1 Fingerprint Generation

While the generation of fingerprints for text-based and object-based documents
is different, the calculation of containment is not, i.e. once a MiLe fingerprint has
been created it can theoretically be compared to any MiLe fingerprint regardless
of the underlying document type. Therefore we first describe the two different
methods of fingerprint generation before proceeding with the general calculation
of containment measures.

Generating MiLe Fingerprints for Text-based Documents. The resulting
bit sequence of a MiLe fingerprint is created from a text-based input document
by performing the following steps:

1. The document’s text content is extracted and preprocessed. Preprocessing
can, for example, involve case folding, stop-wording or stemming. For the
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evaluation (Section 5) we mainly used case folding (i.e., we converted all
characters to lower case).

2. The preprocessed text is tokenized at word level.
3. Every token is projected onto a hash-value consisting of very few bits (e.g., 4

bits). A simple algorithm could calculate the MD5 value [17] for each token
while only using the first n bits. Of course, custom and hence more efficient
projection methods could be used when runtime is critical.

4. The generated bit values are appended to a bit string, in the order their cor-
responding token appears in the document. This bit string is the document’s
MiLe fingerprint.

MiLe fingerprints are relatively short and can be seen as a lossy compressed
version of the document as each token of the input text is mapped to a part of
the resulting fingerprint while the order in which tokens occur is preserved. As
a result, MiLe fingerprints can be used to locate the exact position of matching
parts in the original documents without having to have access to these docu-
ments. If stop wording is part of the preprocessing MiLe can still be used to give
a good estimate as to where reuse has occurred.

Generating MiLe Fingerprints for Object-based Documents. The gen-
eration of a MiLe fingerprint for an object-based document works quite similar
as for a text-based document. In the following, we describe the generation of
a MiLe fingerprint using a PowerPoint presentation as example. However, the
presented algorithm can be applied to arbitrary types of object-based documents
as long as they allow their content to be accessed. There are three main differ-
ences to the text-based version that need to be addressed when generating MiLe
fingerprints for object-based documents:

1. The preprocessing
2. The order of objects
3. The object feature used for fingerprinting

For preprocessing, the object-document is decomposed into modular objects,
that means all grouped elements in the presentation are ”un-grouped” until they
reach a modular state. The text elements are preprocessed like in the text-based
version of MiLe.

While the order of slides in a presentation is given by default, objects on a
slide have no obvious order. However, since MiLe is order preserving two iden-
tical slides need to be processed in the exact same order. There are different
possibilities to determine the order of objects including the position of an object
(i.e. its coordinates), its layer or - what we make use of - a given ID. This ID
is unique for all objects on a slide. During the preprocessing of a PowerPoint
document the non-textual objects on a slide are ordered by their ID.

The last difference to the text-based version of MiLe is how objects find
entrance into the fingerprint. Texts are usually divided into tokens (i.e. words)
and each token is used as feature for the generation of the fingerprint. We do
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this as well for the text fragments of object-based documents. However, for a
non-text object there are various features that could be used for fingerprinting.
Possibilities include its shape, area, width and height, color or combinations
of the above. These work well for basic objects like lines, arrows or geometric
shapes. However, for images or even more complex objects the named features
are not distinctive enough. In those cases we export a scaled image of the object
as feature.

The features are then processed in the given order the same way as in the text-
based version of MiLe to generate the fingerprint of an object-based document.

4.2 Containment Calculation.

Once the fingerprints of two documents have been created, reuse between these
documents can be detected, measured and localized without further access to
the documents’ contents.

To determine the resemblance of documents A and B, their MiLe fingerprints
are treated as strings and a basic string matching algorithm is applied:

1. Shingles are extracted from B’s fingerprint and stored in a lookup table.
Here, a token corresponds to the bit length chosen during fingerprint cre-
ation. The shingle length corresponds to the minimal length m a match
has to have at least. This parameter also greatly affects the probability of
collisions: With a bit length of four and a shingle size of five the size of a
comparison unit will be 20 bits.

2. An integer used for counting matches is initialized.
3. Shingles (using the same shingle length as above) are extracted from A’s

fingerprint. Each shingle is, in the order of appearance, compared to the list
of shingles extracted for B.

4. If B contains the shingle, the match counter is incremented with regard to
the previous shingle. The counter is incremented by one, if B did contain
the previous shingle, as this means that two consecutive shingles and hence
m+1 tokens matched. The counter is incremented by m if B did not contain
the previous shingle: Here an individual shingle (m tokens) matched. 1

To obtain the containment of A in B the value of the resulting match counter
c has to be divided by the length of A’s fingerprint (number of tokens):

C(A, B) =
c

NA −m + 1
(2)

Hence, the calculation is not based on the number of matching shingles but on
the number of matching tokens (i.e. words) which improves the accuracy. As
each document always consists of roughly as many shingles as tokens the divisor
in equation 2 is in both cases almost identical. The dividend on the other hand
can differ greatly, depending on the shingle size and the distribution of matches.
1 For further refinement one can keep track of the shingles that have been matched

and delete them from the list of B’s shingles.
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4.3 Using MiLe on large corpora

MiLe shows a runtime behavior that is similar to state of the art approaches
like k-gram for the one-to-one comparison of document fingerprints. However,
mostly this is not the main use case. What is usually needed is an efficient way
to compare one input document to a large scale corpus. One scenario could be
a plagiarism detection system that offers customers the possibility to upload
an input document that is then checked against all stored documents. In this
section we will describe how to use inverse indexes to store MiLe fingerprints
that allow for efficiently processing such queries. A näıve approach would be to
build a lookup table using the fingerprint’s shingles as keys, thereby generating
keys of the size of MiLe’s comparison unit (cp. Section 4.2). While in this set-
ting we would still benefit from the more accurate resemblance calculations and
the robustness against small changes (see Section 4.4), we now have a storage
consumption that is equal to that of k-gram and, if we additionally store the
complete MiLe fingerprint, even higher. The easiest way of reducing the storage
requirements is to not insert a document pointer for every comparison unit. This
is similar to the subset selection approach of 0 mod p, Winnowing or Hailstorm.
If we only store a document pointer for every oth shingle (we call o the overleap
factor) we reduce the storage requirements by a factor of o. To still benefit from
the contiguity of the content we change the resemblance calculation algorithm
as follows (m describes the minimal match length, o the overleap factor):

1. Create MiLe fingerprint for the input document that is to be compared to
the corpus and initialize a counter ci for each document Di in the corpus.

2. For each shingle (i.e. comparison unit) in the document’s fingerprint lookup
the shingle in the hash-table.
(a) If it is not found, continue with the next shingle.
(b) If a match was found for a document Di and the previous shingle for

Di was not a match then increment ci by m + w · (o − 1). Here w can
be used to parameterize the percentage of how many of the overleaped
tokens will be marked as matching (see below).

(c) If the previous shingle for document Di was also a match, increment ci

by the overleap factor o.
3. To obtain the containment the resulting match counters ci have to be divided

by the length of the corresponding fingerprints (cp. Section 4.2).

The idea behind these incrementing steps is that if a match was the first in
a series there is a certain probability that the previous o − 1 tokens are also
matches but were not matched because of the overleap. As we cannot quantify
this probability we assume that it is 50% therefore setting w = 0.5 and hence
adding 0.5(o−1). If the match is not the first in a series we act on the assumption
that the tokens in between are also matches and therefore increment the counter
by o. This strategy is comparable with the bridging strategy proposed in [9].
However, Hamid et al. still weigh all shingles equally and thus do not take the
contiguity of the underlying texts fully into account. If the overleap factor is
less or equal to the minimal match size, the missing steps between two matches
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can be easily obtained out of the keys of two consecutive matches. This can
be used to refine the containment calculation if necessary. For some use cases,
for example, when the exact position of where reuse has taken place is relevant
the complete MiLe fingerprint has to be stored alongside the inverted index.
However, as the space needed to store the MiLe fingerprint is constant and since
usually low bit rates can be used, the overleap factor approach still yields good
compression rates as seen in Section 5.

4.4 Properties of MiLe

The two dominant parameters of the MiLe approach are the bit length b for
fingerprint creation and the minimal match length m. The size of a MiLe fin-
gerprint for a document A with |A| tokens is |A| · b/8 bytes. The size of MiLe
fingerprints can therefore directly be controlled by adjusting b.

When working with very low bit sizes (such as b = 2) the minimal match
length m has to be increased in order to avoid accidental collisions. This can
be regarded as a strictness factor, as MiLe ignores all matches with less than m
tokens. If a bigger bit size is used, a smaller m can be used accordingly. Since the
bit size has to be chosen before creating the fingerprints it cannot be adjusted
afterwards2. The minimal match length on the other hand can be adjusted for
each resemblance calculation, thereby it is possible to adapt MiLe for a specific
use case without recalculating fingerprints.

k-gram is often criticized for its lack of flexibility and - mainly for bigger
window sizes - sensitivity to small changes. The MiLe fingerprint provides for a
certain kind of robustness against small changes. It can be quantified as a func-
tion of the ordered common tokens in two compared sequences. The probability
that two sequences are matched by MiLe is

prmatch =
1

2b(m−c)
0 ≤ c ≤ m (3)

where c is the number of common tokens of two sequences in the respective
order, b the bit size and m the minimal match length. Thus the more tokens
in two sequences already match, the higher the probability that these sequences
will be matched although they do not overlap completely. The steepness of this
increase is determined by the chosen bit size. c = m constitutes a regular match.

How to choose b and m very much depends on the use case at hand. From
the evaluations conducted (see Section 5) we can conclude that the size of the
comparison unit (i.e. b∗m) should be in the range of a bit size which is sufficient
for algorithms like k-gram or winnowing on the given corpus. In use cases where
the basic MiLe algorithm is applicable it is preferable to use very low bit rates
(e.g. b = 3) as this yields the highest compression rates. However, this means
that the containment calculation has to be conducted in a stricter mode (larger
m). On the other hand, if used with an inverted index (see Section 4.3) the

2 Actually, it is possible to downgrade MiLe fingerprints, i.e. create the 4-bit MiLe
fingerprint out of the 5-bit fingerprint.
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dominant factor in respect to storage consumption is the number of document
pointers stored per document. Hence the bit size can be increased to allow for a
smaller minimal match size.

A simple statistical analysis, under the assumption that words are equally
distributed, suggests that with a comparison unit of 20 bits it is possible to han-
dle a corpus consisting of one million documents each consisting of 10, 000 words.
Under these assumptions, when comparing an input document to the entire cor-
pus, we can expect less than 2000 documents where the containment calculation
is off by more than 5% due to collisions originating from a too small comparison
unit. Note, that in this model the probability for collisions grows linear with
the number of documents in the corpus, i.e. if the number of documents in the
corpus is doubled, you should expect twice as many documents with an error of
more than 5% in the containment calculation.

5 Evaluation

To evaluate MiLe and compare it to existing approaches two corpora have been
used. An annotated subset of the TREC newswire corpus created and used by
Seo and Croft [19] for text-based documents and a corpus which resulted from the
evaluation of the LIS.KOM framework (see [12] and [13] for details) for object-
based documents. We compare the results of MiLe with the results of k-gram
quality wise. K-gram is generally seen as benchmark and none of the selection
algorithms based on k-gram performs equally well. Neither Hash-breaking nor
DCT fingerprinting reached the quality of k-gram either. To show that MiLe can
compete in terms of storage consumption we additionally evaluated 0 mod p and
winnowing with different configurations and compared the fingerprint sizes on
the TREC corpus.

5.1 Annotated TREC Corpus

The TREC newswire corpus is a large corpus consisting of news stories of several
big American newspapers and news agencies like Wall Street Journal, LA Times,
Financial Times or Associated Press. We use a small manually annotated subset
of it. We have chosen this corpus as it has been specifically created for the
evaluation of reuse detection methods.

Evaluation Setting. The annotated TREC corpus consists of 600 document
pairs manually categorized in six categories. The corpus was originally created
by Seo and Croft to evaluate their DCT fingerprinting approach against other
existing approaches [19]. Three levels of reuse are distinguished, which when
applying an asymmetric containment measure, result in six different categories.
The categories used are named:

1. Most / Most (C1): Most of the text of document A is reused covering most
of the text of document B
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2. Most / Considerable (C2): Most of the text from document A is reused in B
covering a considerable amount of document B

3. Most / Partial (C3): Most of the text of document A is reused in B, covering
only a small part of document B

4. Considerable / Considerable (C4) (as above)
5. Considerable / Partial (C5) (as above)
6. Partial / Partial (C6) (as above)

The thresholds for manual categorization were at 0.80 containment for most,
0.50 for considerable and 0.10 for partial. Since the corpus did not contain doc-
ument pairs with no reuse and hence the partial threshold would be ineffectual
for automatic classification, we added a seventh category with documents that
have no resemblance. We have added 100 document pairs for category 7.

The evaluation of a reuse detection approach can now be treated as a cat-
egorization problem and thus quality measures like precision and recall can be
applied. We decided to use a ten fold cross-validation approach on the given 700
document pairs. We used the Weka framework for our tests and the F1 measure
as harmonic mean of precision and recall as measure. We averaged the results
over ten runs to reduce statistical variations. We used the two containment mea-
sures for each document pair as the only features for Weka’s tree based J48
classifier.

Results. We have compared MiLe’s performance to that of k-gram, 0 mod
p and winnowing. Table 5.1 contains an excerpt from the results. For k-gram,
winnowing and 0 mod p 16 bit fingerprints were used, as the performance stalls
at that point. However bit sizes down to 13 bits produce more or less acceptable
results. The standard deviation of the average F1 value over the ten runs is given
in parentheses. MiLe was evaluated in the two modi described in Section 4: the
basic algorithm and the extended version for large corpora with a given overleap
factor o. We included the best configurations for 0 mod p and winnowing and
found that shingle sizes of only 2 and 3 produce the best results. Note that
the fingerprint sizes given in table 5.1 assume that the fingerprints are stored
directly. When using an inverted index the fingerprint size would depend upon
the size used for a document pointer. The tendency suggested by the results can
however be converted directly to the number of document pointers needed per
document.

With only 2 bits, basic MiLe produces slightly better results than 0 mod
4 while producing a fingerprint that is only half the size. Even when assum-
ing 13 bit fingerprints for 0 mod p (which comes at the cost of quality) MiLe
would still outperform 0 mod 4 in terms of storage consumption. As expected,
with increasing bit rates MiLe’s results increase quality wise and from 4 bits on
MiLe’s results even get better than k-gram’s. Still the storage consumption is
comparable to that of 0 mod p and winnowing.

When considering large corpora the overleap factor described in Section 4.3
allows MiLe to use an inverted index. If an overleap factor equal to the minimal
match size is used the storage space needed per document is equal to that of a
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Table 1. Performance of fingerprinting techniques on annotated TREC newswire col-
lection. MiLe is divided into the basic algorithm (Section 4.2) and MiLe in large corpora
settings (Section 4.3). The fingerprint sizes are given in bytes.

Approach C1 C2 C3 C4 C5 C6 C7 F1 (std) Size

2-gram 0.954 0.859 0.909 0.833 0.818 0.940 0.994 0.901 (0.012) 600
3-gram 0.930 0.838 0.880 0.826 0.749 0.895 0.992 0.873 (0.009) 600

0 mod 4, k=2 0.901 0.716 0.817 0.713 0.628 0.908 0.995 0.811 (0.010) 150
0 mod 6, k=2 0.902 0.701 0.760 0.673 0.526 0.875 0.986 0.775 (0.013) 100

winnowing
k=2, w=4 0.905 0.781 0.871 0.778 0.735 0.909 0.995 0.853 (0.011) 240
k=3, w=6 0.882 0.758 0.853 0.783 0.682 0.876 0.993 0.832 (0.010) 171

MiLe
b=2, m=8 0.915 0.853 0.854 0.781 0.594 0.772 0.959 0.818 (0.010) 75
b=3, m=5 0.928 0.864 0.837 0.818 0.712 0.886 0.984 0.861 (0.010) 113
b=4, m=4 0.925 0.890 0.894 0.802 0.734 0.937 0.998 0.883 (0.014) 150
b=5, m=4 0.926 0.905 0.896 0.871 0.813 0.957 1.0 0.910 (0.010) 188

MiLe
b=3, m=5, o=6 0.924 0.796 0.824 0.755 0.554 0.833 0.982 0.810 (0.019) 94
b=4, m=5, o=4 0.904 0.844 0.900 0.797 0.736 0.896 0.992 0.867 (0.013) 188
b=4, m=5, o=5 0.913 0.774 0.850 0.751 0.670 0.900 0.995 0.836 (0.014) 150

basic MiLe fingerprint. The quality decrease on the other hand is still low enough
as for MiLe to produce better results with less storage consumption than 0 mod
p or winnowing.

5.2 LIS.KOM Corpus

The LIS.KOM framework supports, among others, the automatic capturing of
structured relations emerging from reuse processes conducted on documents.
During the evaluation of the framework reuse relations between PowerPoint
documents have been captured. These relations reflect the reuse of PowerPoint
documents and include near-duplicates as well as partial reuse. The collected
relations have been manually categorized with regards to their validity. The
LIS.KOM framework seldom captures invalid relations. However, while Power-
Point documents are reused because of their contents most of the time, sometimes
a document is reused because of its template or structure. These relations are
captured by the LIS.KOM framework but are worthless for most - if not all -
utilization scenarios. Thus it is desirable to sort these out automatically.

Evaluation Setting. The object-based LIS.KOM corpus consists of 290 rela-
tions connecting 367 different PowerPoint documents. 244 of the relations have
been categorized as valid whereas 46 relations have been categorized as template
or invalid relations. In most cases documents connected by a non-valid relation
do not overlap as much as valid relations do. Thus it is feasible to apply finger-
printing techniques to automatically determine the validity of a given relation.
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A simple categorization problem with two categories results where precision and
recall can be applied. For this evaluation we compared the object-based version
of MiLe with a straightforward adaptation of k-gram for object-based docu-
ments. We applied a ten fold cross-validation using the containment measures
for each relation as features for optimizing the containment thresholds on the
training sets. Due to the given distribution of categories a baseline algorithm
which categorizes each relation as valid reaches a quality of already 84.1%.

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1 2 3 4 5 6 7 8 9 10 11 12

window size / minimal length

F1
 

k-gram (set)
k-gram (multiset) 
MiLe (4 bit)
MiLe (5 bit)
MiLe (3 bit)
Baseline

Fig. 1. Comparison of MiLe and k-gram for object-based documents

Results. Figure 1 shows the results for the evaluation of MiLe and k-gram on
the LIS.KOM corpus. It is evident, that for bit sizes of 4 or 5, MiLe performs
significantly better than the adapted k-gram. Even when using MiLe with a bit
size of 3, the algorithm performs better than k-gram for values of m ≥ 7. The
categorization quality of both algorithms is comparatively stable for many dif-
ferent parameterizations. The storage consumption of MiLe is for all bit sizes
significantly smaller than that of k-gram (as shown in Section 5.1), especially
when using MiLe with 3 bits. Both approaches are able to raise the given baseline
considerably. The optimal configuration of MiLe reaches a categorization quality
of 97,2% for the F1 value. This is the case for a configuration of MiLe with bit
size 4 and minimal match length 4, which is a configuration very similar to the
optimal one on the TREC corpus. For both algorithms, the optimal thresholds
for the calculated containment reside between 10 and 30 percent in most config-
urations. However, the stricter the configuration, i.e. the bigger the window size
or minimal match length respectively, the smaller the optimal threshold which
the containment has to pass for a relation to be counted as valid.
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6 Conclusions

In this paper we propose MiLe, a fingerprinting approach for detecting local
reuse, which is a current and relevant topic of research and can be applied to
support Technology Enhanced Learning in various ways. MiLe can be used to
detect text reuse as well as reuse between object-based documents (e.g. Pow-
erPoint presentations). We have evaluated the performance of our approach for
both cases, the former on an annotated subset of the TREC newswire collection,
which was specifically designed for this purpose, and the latter on the LIS.KOM
corpus. Our results show that MiLe is not only able to produce better results
than k-gram - which is generally used as benchmark for local reuse detection -
but that it can also compete with selection approaches like 0 mod p or winnow-
ing in terms of storage consumption. MiLe’s runtime performance is comparable
to that of the k-gram based selection algorithms when using an inverted index as
described in Section 4.3. As the evaluation has shown, the overleap factor allows
for compression rates better than those achieved by 0 mod p or winnowing, while
still producing better results.

So far the MiLe approach is promising, as evaluations have shown good re-
sults, especially quality wise. We have proposed an inverted index structure that
allows MiLe to be used on large corpora. However, so far MiLe has only been
evaluated on comparably small corpora, so that future work has to include an
evaluation of MiLe on a large corpus. This should also be used to empirically
validate the claims made in Section 4.4 on how to choose MiLe’s parameters in
order not to generate too many collisions. Beyond that, future work will include
in-depth research on the exploitation of the flexibility provided by the full length
MiLe fingerprints, as this is one of the interesting factors that distinguishes MiLe
from other approaches.
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