
Bare-Metal Switches And Their Customization And
Usability In A Carrier-Grade Environment

Leonhard Nobach∗1, Jeremias Blendin∗1, Hans-Jörg Kolbe†, Georg Schyguda†, David Hausheer∗
∗Peer-to-Peer Systems Engineering Lab, TU Darmstadt, Email: {lnobach,jblendin,hausheer}@ps.tu-darmstadt.de

†Deutsche Telekom AG, Darmstadt, Email: {Hans-Joerg.Kolbe,G.Schyguda}@telekom.de

Abstract—The current ecosystem of network elements, such
as switches and appliances, is largely dominated by devices
supplied and sold with a bundled operating system, and software
dedicated to manage the device’s forwarding hardware, however,
these platforms are not open-source and cannot be arbitrarily
customized, and there is no cost transparency or flexibility in
choosing software different to the bundled components.

In this paper, we explore the capabilities of bare-metal
switches, which are equipped with commodity switching hard-
ware components, but shipped without an operating system. We
evaluate the feasibility of these commonly lower-cost devices to
meet the requirements of a customized, carrier-grade network
function. Therefore, we have implemented a prototype on generic
hardware, re-using as much open-source software as possible.
Our Broadband Remote Access Server (BRAS) prototype can
lower the cost compared to proprietary network appliances, and,
known to have a hardware backplane capacity of 720 Gbps, the
merchant-silicon / ASIC approach can highly outperform the
state of the art of current x86-based virtualized network func-
tions, while implementing the most important BRAS features.

Index Terms—Bare-Metal Switching, Dataplanes, Network
Functions, Middleboxes, Sofware-Defined Networking, Cost-
Efficiency

I. INTRODUCTION

Traditionally, a network switch is sold as an all-in-one
device. It is guaranteed to provide a number of features,
certain performance metrics, network, routing, spanning-tree
and authentication protocols, as well as a (commonly vendor-
specific) configuration interface. When a device is sold, a
licensing contract is usually made with the same vendor to
use the latter’s software, specifically tied to the hardware of
the switch.

When looking at the market of switches offered using this
traditional business model, we can see that the number of
vendors and their products is very large, however, the used
hardware components are very similar. Even regarding the
most essential components (like the forwarding ASIC2), a
small group of hardware manufacturers supplies the switch
vendors with the same products. In the last years, some switch
vendors started with a new business model: The latter focuses
on hardware manufacturing only, and sells switches made out

1since May 2017 with Multimedia Communications Lab (KOM), TU
Darmstadt.

2Application-Specific Integrated Circuit

of the aforementioned, well-known bulk components to a low
price.

On the one hand, this approach has created a two-sided
market, as new companies have emerged entirely focusing
on software compatible with the switches, thus enabling the
traditional and also some novel use cases. On the other hand,
it opens up the opportunity for customization of the software
to specific needs of the network operator, as, besides that
network operators are challenged by the cost of traditional
all-in-one forwarding hardware, they often have to adapt their
internal processes to the heterogeneous software of the latter.
To support free customization, an open-source community
has emerged, providing tools and environments for software
development [11].

In this work, we first motivate the scene for bare-metal
switches (BMS) – which emerged from the market and open-
source communities – as a new research area. Here, we
also state commonalities and differences to software-defined
networking. Secondly, we assess the feasibility and effort of
creating customized software for a BMS under the require-
ments of large network operators, which procure networking
hardware in high quantities, and thus have a larger opportunity
to save license costs. Therefore, this paper has a special focus
on programmability and customization of these switches from
a technical perspective.

As a proof-of-concept, we have implemented and present in
this paper a representative use case on a BMS using publicly
available software and APIs only: a Broadband Remote Ac-
cess Service (BRAS), which terminates home routers, provides
them with an IP address, and handles their authentication
and quality of service. Our qualitative test results verify
successful implementation of all the essential features of a
BRAS. Throughput performance results have been beyond our
measurement capacities at the time of writing, however the
device’s capacity is given in the datasheet with 720 gigabits
per second [6], [15].

The next section (Section II) provides the background of the
BMS concept and introduces methods and APIs to program
a BMS device. After discussing related work in Section III,
we explain and reason the desired behavior (IV) and introduce
our implementation (V) with a special focus on using the flow-
based API to the ASIC (Section V-B). We finally present the
evaluation results of our implementation in Section VI.

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

II. BACKGROUND

In one sentence, a bare-metal switch, also known as white-
box switch, is a switch not bundled with an operating
system (OS), which also means that the BMS vendors only
provide warranty and support for the hardware. Furthermore, a
BMS platform is targeted to be as open for OS customization
as servers in a datacenter are. In all use cases we have seen, OS
customization means to install a Linux-based operating system
on the bare-metal switch (even Microsoft does that [14]).

The advantage of OS customization is that the switch op-
erator can develop and configure the switch’s control plane to
the own needs. In a BMS-based infrastructure, there is no need
to adapt the business processes and monitoring infrastructure
to the interfaces provided by a switch vendor. Customized
software components installed on servers (like monitoring and
management) can even be re-used and installed on the switch
hardware, as well.

Common to PC/Server Arch. Special to BMS

Operating System (typically Debian-based Linux)

Storage
Fans,
PSU

Mgmt
Interface

Switch
ASIC

System Management
Tools (Monitoring,
Package Management
etc)

Application

Fig. 1. BMS Generic Architecture

Figure 1 depicts a generic architecture of a bare-metal
switch. At a first glance, the switch has an architecture
which is very common to a commodity server, and from a
management perspective, a bare-metal switch can be operated
exactly as such: When installing a Linux-based OS (like
OpenNetworkLinux) and connecting through the management
interface, the switch will behave like a default Linux host3.
From here, it is possible to install, compile and run Linux
software as needed for own purposes.

The main difference of using a BMS compared to using a
server is to get the switchports running, which is not possible
with an out-of-the-box Linux so far. The switch ports will not
be visible to Linux as network interfaces, this only applies to
the management interface. Instead of appearing as individual
devices to the Linux kernel, the switchports are tied together
by a powerful application-specific integrated circuit (ASIC),
providing a single interface to the Linux kernel only. The

3An exception is that the BM switches commonly do not have a VGA port
and must be initially configured via the serial interface until SSH access is
established.

operating system and the application commonly does not
receive and send packets over this interface, instead it instructs
the ASIC with rules on what to do with any packets coming in
(e.g. to modify them), so called forwarding rules. The ASIC is
capable of executing these rules on packets with a very high
data rate compared to CPU-based I/O. Nevertheless, ASICs
are also capable of accepting rules to directly forward packets
to the control plane, or send packets from it, however this
should be rarely used in order not to degrade performance.

To avoid the complexity of dataplane programmability,
ASIC vendors have joined the BMS community and provide
drivers, interfaces and abstractions to their dataplane [4]. OS
vendors for BMS also provide alternatives to the low-level
ASIC programming APIs with middlewares for true Open-
Flow [13], Linux interfaces and bridges, or even a traditional
command line, however with additional license costs.

A. BMS and the SDN concept

Bare-metal switching is actually the SDN concept driven
very far and to a low level. Most software-defined network
controllers are commonly relying on standardized, south-
bound protocols like OpenFlow to tell switches what to do.
However, SDN switches then translate commands of these
standardized, south-bound protocol commands into changes
in the ASIC forwarding tables (Forwarding Information Base
(FIB) or Ternary Content-Addressable Memory (TCAM)).

Bare-Metal Switches generally do not support any standard-
ized south-bound protocol out of the box, if such a protocol is
desired, it must be implemented in the operating system first.
An attempt to achieve this on a bare-metal switch is the pub-
licly available OF-DPA (Section II-B) in combination with the
Indigo OpenFlow agent. Although OF-DPA is standardized,
the applied table restrictions to OpenFlow are very narrow, and
likely will reject an OpenFlow control plane not specifically
adapted to it. A proprietary alternative is PicOS [13], which
aims for OVSDB and OpenFlow compatibility.

The idea of the BMS concept is that, instead of stan-
dardizing the network communication protocol between the
controller and the switch, the local forwarding application
programming interface (API) of the switch is standardized, and
the SDN controller is extended to the switch CPU instead of
being restricted to a remote server. This distributed concept has
the potential to improve dataplane reaction times compared to
delayed controller links (like when enabling forwarding upon
a packet event), to reduce network traffic due to controller
interaction, and to improve resilience of the control plane (if
a controller or the link to it fails). Unfortunately, at the time
of writing, there is no widely-supported vendor-neutral API to
manage the ASIC, likely due to hardware differences.

B. OpenNSL and OF-DPA

As a major provider of switching ASICs, Broadcom has
stepped up to the bare-metal switch community by supplying
interfaces for ASIC programmability. The specification and
libraries OpenNSL and OF-DPA are publicly available on
GitHub [3]. They both consist of drivers, a daemon, and

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

interfaces. OpenNSL originally focuses on traditional network
management commands. In particular, typical API actions in
OpenNSL are about adding/removing VLANs and ports to
VLANs, switching ports to L2/L3 mode, adding/removing
routes, port mirroring, QoS, statistics, link aggregation, and
VxLAN.

The OpenFlow Dataplane Abstraction (OF-DPA) is an API
to modify the forwarding behavior of the ASIC in a flow table
format. The operations like adding and removing flow tables,
group actions, and meters, are very similar to OpenFlow,
however the table types of its multi-table pipeline are very
restricted in their functionality. Since June 2016, the OF-DPA
APIs have become part of the OpenNSL library.

Like mentioned before, the similarity to OpenFlow allows
the API to be directly accessed over this network protocol
with an appropriate OpenFlow agent like Indigo. However,
because of the very restricted set of possible matchers and
actions in every table, the semantics of an OpenFlow controller
must be adapted to the particular table type restrictions, which
contradicts the idea of OpenFlow’s hardware independence.
The detailed OF-DPA specification is available on GitHub [4].

OF-DPA can be used either as an API by a local controller
on the switch, or via OpenFlow by a remote controller.
Regarding the first variant where we will focus on, a controller
application can load a shared library, recommended for C and
C++ development. For Python developers, a Python wrapper is
also supplied with OF-DPA [5]. We have first tested the Python
wrapper, which is stable and relatively easy to use, however,
we experienced performance problems with controller packet-
in/out operations, thus we have switched to the C header files.

To the best of our knowledge, there are no OF-DPA-based
open-source applications at the time of writing. Although
Python example scripts are given for a small set of opera-
tions, larger projects written in the C language could not be
discovered.

C. The OF-DPA pipeline model

The OF-DPA pipeline [4] consists of two main entities, ta-
bles and group actions, which are both known from OpenFlow.
Tables match a selected set of fields and can apply a selected
set of actions on the packet and on several metadata fields,
while group actions are a set of actions to be applied to a
packet. Entries of several table types in OF-DPA can set a
group action on a packet, which is only executed after the end
of the ingress pipeline. This means a subsequent ingress table
entry can also clear group actions previous tables have applied,
which will lead to no effect of the group action. OF-DPA has
very strict requirements on the sequence of tables which must
be applied.

Although OF-DPA comprises a large number of table and
group action types (some of them are for MPLS termina-
tion/initiation and for VXLAN support), most VLAN-based
L2/L3 use cases only require a small excerpt of it. This is
caused by the fact that most tables have a built-in default action
which forwards a packet to the next relevant table. In this
document, we therefore restrict our explanation to the likely

most required ones: the VLAN, the Policy ACL flow table,
the L2 Rewrite and the L2 Interface group action. With these
elements alone, it is possible to implement a Layer 3 hop with
multi-field flow matching.
• The VLAN table matches the input port and the (first)

VLAN tag only. If no entry exists in the VLAN table,
a packet is dropped, which constitutes a VLAN filter
per port. Except in special cases like removing a second
VLAN tag, VXLAN or MPLS L2 initiation, the successor
of the VLAN table is the Termination MAC flow table.

• The Policy ACL table can be seen as most powerful
one: It supports wide-field matching on most packet
headers, comparable to current OpenFlow versions. It is
also possible to apply meters here. However, instead of
applying versatile actions as in OpenFlow, the table is
restricted to applying only the following group actions.

• An L2 Rewrite group action is applied by the Policy
ACL table. It can rewrite the VLAN ID and the source
and destination MAC addresses (note that IP rewriting
is not possible in the current OF-DPA version). The L2
Rewrite group action must apply an L2 Interface group
action afterwards.

• The L2 Interface group action can be applied either
directly or via the L2 Rewrite group action. It is just
defined as a tuple consisting of an output interface and
output VLAN. When applied, the packet will be sent out
on the respective port tagged with the given VLAN. If
the packet’s VLAN does not match the one in the action,
the packet is dropped (therefore, the L2 Interface group
action is a kind of VLAN filter).

D. Broadband Remote Access Servers

A broadband remote access server (BRAS) is a fundamental
network function in an ISP’s network. The function terminates
DSL access multiplexers (DSLAMs) from the subscriber side
and provides access to the IP network. In some networks, the
BRAS uses PPP over Ethernet (PPPoE) at the subscriber’s side
to terminate multiple subscribers, in other networks, VLAN-
based subscriber termination is used where we will focus
on. A BRAS has strong requirements on performance, as it
terminates and services a very large number of subscribers.
Therefore, the BRAS network function is commonly imple-
mented in appliances with special ASIC support, which can
be assumed to be very expensive compared to bare-metal
switches.

III. RELATED WORK

Three years ago, first contributors started to emancipate
from purchasing tightly-coupled hardware-software-systems.
Int 2014, Facebook announced the Open Switching System
(FBOSS) at the Open Compute Project (OCP) Engineering
Summit [7]. The announcement describes a hardware switch-
ing platform consisting of widely available commercial-off-
the-shelf (COTS) components.

While especially OpenFlow-based SDN switches have
widely been subject to research [10], investigating the oppor-

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

tunities and drawbacks of bare-metal switches is still a very
new topic for the research community. Kurtz et al. [9] have
compared a virtual switch (an Open vSwitch instance) and
a PicOS-based bare-metal switch regarding performance in
the context of critical infrastructures. While the bare-metal
switches outperform virtualized instances especially in for-
warding latency, failovers have been found as slower regarding
the former.

Efforts to implement the functionality of a BRAS in an
SDN/NFV environment have also been recently proposed in
the Central Office Re-designed as a Data Center (CORD)
architecture [12]. CORD envisions to replace the specialized
hardware currently used to terminate subscribers, including
an optical line termination (OLT), a BRAS, and other related
components, with commodity hardware servers. CORD also
comprises bare-metal switches, however dedicated for Layer
2 or MPLS packet forwarding between VNF instances only.
The major difference to our approach is that, in CORD, the
BRAS runs in a VNF (as a virtual subscriber gateway), instead
of the bare-metal switch’s ASIC used in our prototype.

Several other works have adopted the OF-DPA abstraction
for their use case [8], [16], [17], including an SDN testbed
and an OF-DPA controller.

IV. SYSTEM DESIGN

We will only briefly specify the desired behavior in this
section. The BRAS has two internally-configured MAC ad-
dresses, the subscriber-facing and the core-facing one. Several
ports are being designated for termination of the subscriber’s
side, the Optical Line Termination (OLT) ports. Note that their
physical layer can be easily adapted by exchanging the SFP
module, e.g. with a module with GPON4 support or a special
wavelength. Besides the subscriber-facing ports, core ports can
be configured on the switch. These ports support a simple
IP/Ethernet format and thus can be attached to core networks.

In the upstream direction, the dataplane must detect and
redirect subscriber authentication attempts and control packets
to the CPU. The BRAS must furthermore ensure that only
authenticated subscribers (identified by their VLAN ID) can
send packets originating from their designated IP addresses,
obtained from a preconfigured lease pool. A three-color-
based meter must be applied5 to ensure subscribers can only
consume the bandwidth of the purchased service. In the
downstream direction, the BRAS must look up the packet’s
destination IP address, and if it belongs to an authenticated
subscriber, forward it to the subscriber’s VLAN ID.

Additionally, a subscriber is assigned to a set of services
(like Internet, VoIP and IPTV), which are either specified by
an additional inner VLAN tag, or by the IP subnet which is
used. Upon authentication, the BRAS terminates all services
the subscriber is assigned to, and forwards it to a specified
core port or VLAN.

 OpenNetworkLinux (Debian-based)

linux-kernel-bde.ko
linux-user-bde.ko

Broadcom Trident-II ASIC

OF-DPA daemon

libofdpa_rpc_client

UNIX RPC

BRAS Implementation
libwebsockets

libjansson (JSON
parser)

Subscriber management system

Websockets (add subscriber,
remove subscriber)

Initial
configuration file

Edge-Core AS5712-54x

(ofdpa_api.h)
Flow Handler

Control Packet
Handler

Local state manager Manage subscriber list

Enable/disable
forwarding
for customer

Authenticate attempts / success

Control Packet I/O

OF-DPA API

Only implemented as a Python script stub

JSON-RPC

Fig. 2. System architecture of the BRAS implementation

V. IMPLEMENTATION

Our implementation of the aforementioned BRAS is
planned to be realized with as much free software as possible.
Therefore, we have selected OpenNetworkLinux (ONL) as
the operating system platform (Figure 2). For performance
reasons, the BRAS control plane is written entirely in the C
language (depicted in blue). However, proprietary components
cannot be avoided, as we require them for ASIC support. These
proprietary components include the OF-DPA binary and the
OF-DPA RPC client (depicted in red). As the BRAS control
plane runs locally, we have decided to use OF-DPA without
an OpenFlow agent and directly link against the OF-DPA API.

The BRAS software is loaded with an initial configuration
file (see Figure 3 for an example). The values in this con-
figuration file are related to the supported services, subnets,
core ports and MAC addresses, and cannot be changed at
runtime. Upon startup, initial flow rules are installed (Section
V-B) and a Websockets server is started to accept subscriber
configuration at runtime.

Figure 4 depicts the subscriber state model. Initially, a
subscriber is not existing (white) in the device configuration. If
a subscriber is added to the device via the Websockets connec-
tion, the subscriber is initialized (red): The local state manager
installs flow rules which only forward authentication packets
from the subscriber to be passed to the controller, however no

4Gigabit Passive Optical Network
5RFC 2697, 2698 or 4115

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

{
” c o n f i g u r a t i o n ” : {

” g l o b a l i n f o ” : {
” s e r v i c e l i s t ” : [
{

” srv name ” : ” I n t e r n e t ” ,
” s r v s u b n e t ” : ” 100 . 50 . 1 . 0 / 24 ” ,
” s r v c o r e p o r t ” : ” 7 ” ,
” s r v v l a n t a g ” : ” 4 ” ,
” s rv nex t hop mac ” : ” 00 : 1b : 21 : 1 c : e 7 : 4b ” ,
” s r v u n t a g g e d f l a g ” : ” 1 ” ,
” s r v g a t e w a y i p v 4 addr ” : ” 100 . 50 . 1 . 254 ” ,
” s r v g a t e w a y i p v 4 mask ” : ” 255 . 255 . 255 . 0 ”

} , {
” srv name ” : ” IPTV” ,
” s r v s u b n e t ” : ” 192 . 168 . 2 . 0 / 24 ” ,
” s r v c o r e p o r t ” : ” 8 ” ,
” s r v v l a n t a g ” : ” 8 ” ,
” s rv nex t hop mac ” : ” 00 : 30 : 48 : 8 a : cd : d0 ” ,
” s r v u n t a g g e d f l a g ” : ” 0 ” ,
” s r v g a t e w a y i p v 4 addr ” : ” 192 . 168 . 2 . 254 ” ,
” s r v g a t e w a y i p v 4 mask ” : ” 255 . 255 . 255 . 0 ”

}] ,
” i pv 6 p r e f i x l e n g t h ” : ” 64 ” ,
” bras sub mac ” : ” 52 : 54 : 00 : 00 : 00 : 01 ” ,
” b ra s co re mac ” : ” 52 : 54 : 00 : 00 : 00 : 02 ”

}
}

}

Fig. 3. Example initial JSON configuration file, defining three services:
Internet (VLAN 4) and IPTV (VLAN 8). The internet service uses the core
port 7 (untagged), and IPTV uses the core port 8 (tagged). Subscribers and
their ports/VLANs are configured at runtime.

forwarding is yet enabled. The Control Packet Handler then
waits for authentication attempts of the subscriber, and if the
authentication has been successful, the forwarding state for
all the subscriber’s services to the core network and back is
established, the subscriber is then authenticated (blue). In the
other direction, a subscriber becomes deauthenticated by not
refreshing the authentication state in a pre-defined interval.
Finally, a subscriber can be removed from the local state (e.g.
by ending the service contract or moving to another BRAS
region).

Inited, not authed

Authenticated

Not existing

Drop all packets
on the port-VLAN
combination

Allow authentication
packets to go to the
controller

Forward subscriber traffic

addSubscriber
(via Websocket)

Successful
authentication

delSubscriber
(via Websocket)

Timeout (not reau-
thenticated in time)

Fig. 4. Per-subscriber state diagram in the BRAS switch

A. Subscriber Configuration and Authentication

To initialize subscribers, a Websocket service is started
which is accessible on the BRAS management port; sub-
scribers can be added and removed by connecting to this

{” cmd” : ” a d d u s e r ” , ” a rg ” :{
” s u b s c i d ” : ” 1002 ” ,
” username ” : ” john doe ” ,
” password ” : ” 12345 ” ,
” port num ” : ” 5 ” ,
” v l a n i d ” : ” 11 ” ,
” s e r v i c e t a g s ” : [” 4 ” , ” 8 ”]

}}

Fig. 5. Example runtime configuration of a subscriber. If successful, the
command is answered with ’OK’, with an explanatory failure notice otherwise.

service. Figure 5 shows how a subscriber with a specified
username and password is added in a JSON format. The
specified OLT port and the VLAN ID is expected when
the subscriber authenticates. Furthermore, the subscriber is
restricted to the given service VLANs. The subscriber ID is
only for internal use (e.g. to be able to delete the subscriber
when needed) and can be arbitrarily chosen.

In a BRAS for carrier-grade productive usage, standard
formats for authentication should be followed. A candidate
for a state-of-the-art standardized authentication protocol is
EAP over LAN (EAPOL), which is part of the IEEE 802.1X
authentication standard. Subscribers requesting authentication
can use this protocol via a Ethernet-based message exchange in
conjunction with a RADIUS server in the provider’s backend.
However, authentication is a task conducted by the control
plane, the dataplane’s task is only to forward authentication
packets to the controller (or the RADIUS server). The im-
plementation of an EAPOL support is hard, to simplify the
PoC implementation targeted to assess ASIC programmability
for the dataplane, we have designed a simple, light-weight
authentication protocol. It is plain-text username-password-
based, and therefore not secure especially against eavesdrop-
ping. We argue that to extend the PoC to EAPOL support,
only the C-based control plane code must be extended, but
not the dataplane capabilities which we want to evaluate.

BCast

Username Password

Authentication Request

Opcode = 0x01srcMac Ethtype = 0x0876

6 Byte 6 Byte 2 Byte 1 Byte

64 Byte 64 Byte

dstMac

Service ID Assigned IPv4 Address

Opcode = 0x02srcMac Ethtype = 0x0876

6 Byte 6 Byte 2 Byte 1 Byte

2 Byte

Assg. IPv4 Subnet Assg. IPv4 Gateway

4 Byte 4 Byte 4 Byte

Authentication Response

Per customer service subnet:

...

...

Sub. VLAN

Sub. VLAN

...

...

Fig. 6. BRAS Authentication Packet Format

Figure 6 shows the packet format for the authentication
request and response. Authentication requests (initially sent
by the client) are always using the broadcast address on the
Ethernet layer, as the destination MAC address is assumed
to be previously unknown. The source MAC address is very

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

important, as, upon successful authentication, it is used as the
future CPE WAN interface address, the only address allowed
to send packets through the BRAS dataplane and the target
MAC address for any packets sent to the subscriber. Next,
the subscriber’s VLAN is expected (assumed to be assigned
by the DSLAM, which is agnostic of any authentication). The
ethertype of the next header of the VLAN tag is set to 0x0876
which we have chosen as the ethertype of the custom protocol.
After the opcode (0x01), the username and password fields
are both of a 64-byte fixed size, containing null-terminated
strings.

In the response packet, the destination MAC address con-
tains the CPE which made the request, and the interior BRAS
MAC address as the source, and the requesting subscriber’s
VLAN. The ethertype is equal to the request, but the opcode
of the response is 0x02 upon authentication success, 0x03
otherwise. Upon success, for every service available, the
service VLAN ID (2 byte), the assigned IPv4 address, the
subnet mask, and the default gateway are provided6.

B. Flow Model

In this section, we describe the dataplane implementation
in OF-DPA 2.01. To a certain extent, the dataplane follows
the behavior of a typical Layer 3 hop (a router), which
is straightforward to implement in OF-DPA. The greatest
challenges however for a scalable implementation in OF-DPA
are beyond these functionalities, like the antispoofing, which
requires a large table for source IP matching, as well as a
fine-grained metering support. In the following, we describe
two dataplane modes, the double-tagged and the single-tagged
mode. The latter mode was introduced, as the implementation
of the double-tagged mode was not supported by the present
OF-DPA API version.

in_port

Set VLAN ID

Group action that is applied

Match

Action

Flow table entry

Relevant packet header (field)

Metadata field

Relevant packet header (field)

Group action that was set

Fig. 7. Meaning of the elements used in the following OF-DPA flow model
figures.

Figure 8 depicts the flow model we have used for the
double-tagged mode in the packet flow direction from the
subscriber to the core (see Figure 7 for the meaning of the
symbols). The L2 Rewrite and L2 Interface group actions have
to be instantiated only once per service in this direction, the
VLAN table entry must be instantiated per subscriber, while
a VLAN 1 and the Policy ACL entry must be instantiated
for every subscriber times every service. The handling of
the ingress double tag was supported and successfully tested
in this direction. In the pipeline, we introduce the term
ASIC VLAN as an only internally-used VLAN ID, carrying
information which would otherwise be lost between the tables

6We implemented the IPv6 dataplane, but we did not implement IPv6
control plane functionality.

due to the stripping of the outer VLAN tag. The ID can be
arbitrarily chosen, however must be unique on the ingress port
to be able to uniquely match the packet in the subsequent
Policy ACL table. As the number of different VLAN IDs is
4096 (or a little bit less), the maximum number of subscribers
times services on every port is restricted to this number.

Figure 9 shows the double-tagging mode in the direction
from the core to the subscriber. Despite the support of a
large number of entries to match the destination IP address
in the Unicast Routing flow table, we had to use the Policy
ACL table to be able to apply per-subscriber metering. The
pipeline described here is not valid, as an Egress VLAN
table entry, which is required for the Egress VLAN 1 table
to add a second tag, cannot follow an L2 Interface group
action. The Egress VLAN table is only accepted after an
L2 Unfiltered Interface group action (here, the metadata field
ALLOW_VLAN_TRANSLATION is set to 1), which itself can
only be used in MPLS intiation or termination use cases.

Figure 10 shows the flow model for the single-tagged mode
in the packet flow direction from the subscriber to the core.
The only difference is that no service VLAN tag is used,
instead, the service is identified by the source IP subnet of the
subscriber. This approach is functional, provides a comparable
isolation, and does not impose the scalability restrictions of the
ASIC VLAN approach, leading to only 4096 subscribers times
services.

In the packet flow direction of the single-tagged mode from
the core to the subscriber (Figure 11), no egress tables are
required, thus, the pipeline of this mode is functional. Like in
the double-tagged mode, the Policy ACL table must be used
to be able to apply a per-subscriber meter, the large Unicast
Routing table cannot be exploited.

VI. EVALUATION RESULTS

Figure 13 depicts the test setup we have used to evaluate
correct operation of the BRAS PoC. Therefore, we have
connected a test server to the switch with four Gigabit Eth-
ernet ports: dslam0 (Switchport 5), dslam1 (Switchport
6), core0 (Switchport 7), core1 (Switchport 8). On the
test server, we have implemented two test customer premises
devices (CPE) in LXC containers (subsc1 and subsc2), every
traffic from or to these containers has been tagged with an
individual VLAN ID (resembling the behavior of DSLAMs)
on dslam0. In various tests, we forwarded tagged traffic
to dslam1 instead, to verify correct behavior with multiple
ports. The CPE LXC containers use a Python script as the
authentication client at the BRAS.

The interface core0 has been split into two subinterfaces
for the service VLANs 8 and 10, which have been configured
as tagged core interfaces in the BRAS, core1 has been
configured as the service VLAN 4, but untagged.

The connectivity between the subscriber VMs and the core
networks was tested with ping and iperf3.

We have focused on functional tests and table size restric-
tions, as we have assumed these to be the primary bottlenecks
of the platform. Table I shows the implementation and testing

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

L2 Rewrite

IP

(Core VLAN)

Out port

Core MAC

IP

ASIC VLAN*

Internal MAC

Policy ACL

in_port
ASIC VLAN*
Source MAC
Source IP

Apply L2 Rewrite
group action,
color entry action,
meter.

IP

ASIC VLAN*

Internal MAC

IP

Inner VLAN

Outer VLAN

VLAN

VLAN ID (outer)
in_port

Set OVID to
VLAN ID
Pop VLAN

VLAN 1

VLAN ID (inner)
in_port
OVID

Set VLAN to
ASIC VLAN*

IP

Inner VLAN

OVID
Internal MAC

Internal MAC

Color-Based
Actions

Drops red-colored
packets
(Clear Actions),
does nothing else.

IP

ASIC VLAN*

Internal MAC

L2 Rewrite

L2 Rewrite

Sets new source
and dest MAC
Sets VLAN ID
to Core VLAN.

L2 Interface
IP

Core VLAN

Core MAC

Sets core output
port and VLAN

Conditionally
strips
the VLAN tag.

Fig. 8. OF-DPA flow model of the double-tagged mode, upstream direction

IP

ASIC VLAN*

Internal MAC

L2 Rewrite

IP

Core VLAN

Core MAC

L2 Rewrite

Sets new source
and dest MAC
Sets VLAN ID
to ASIC VLAN*

IP

ASIC VLAN*

Internal MAC

IP

Inner VLAN

Internal MAC

Outer VLAN

Out port

Policy ACL

in_port,
Core VLAN
Destination MAC
Destination IP

Apply L2 Rewrite
group action,
color entry action,
meter.

IP

Core VLAN

IP

(Core VLAN)

VLAN

VLAN if existing,
in_port

If untagged,
sets the core
VLAN (requires
2nd entry).

Core MAC

Color-Based
Actions

Drops red-colored
packets
(Clear Actions),
does nothing else.

IP

Core VLAN

Core MAC

L2 Rewrite

L2 Interface

Sets core output
port.

Egress VLAN

AVT must be 1,
ASIC VLAN*,
out_port

Set inner VLAN,
Set OVID to
outer VLAN,

Egr. VLAN 1

VLAN ID (inner)
out_port
OVID

Push VLAN,
Set VLAN ID
to OVID.

IP

Inner VLAN

OVID

Internal MAC

Core MAC

Problem:
ALLOW_VLAN_
TRANSLATION
(AVT) forced to 0. AVT=0

Out port

Out port

L2 Rewrite

IP

Core VLAN

Core MAC

Fig. 9. OF-DPA flow model of the double-tagged mode, downstream direction

L2 Rewrite

IP

(Core VLAN)

Out port

Core MAC

IP

Subsc. VLAN

Internal MAC

Policy ACL

in_port
VLAN ID (Subsc.)
Source MAC
Source IP

Apply L2 Rewrite
group action,
color entry action,
meter.

IP

Subsc. VLAN

Internal MAC

IP

Subsc. VLAN

VLAN

VLAN ID (Subsc.)
in_port

Set OVID to
VLAN ID
Pop VLAN

Internal MAC

Color-Based
Actions

Drops red-colored
packets
(Clear Actions),
does nothing else.

IP

Subsc. VLAN

Internal MAC

L2 Rewrite

L2 Rewrite

Sets new source
and dest MAC
Sets VLAN ID
to Core service
VLAN.

L2 Interface
IP

Core VLAN

Core MAC

Sets core output
port and VLAN

Conditionally
strips
the VLAN tag.

Fig. 10. OF-DPA flow model of the single-tagged mode, upstream direction

IP

Client VLAN

Internal MAC

Out port

L2 Interface
IP

Client VLAN

Internal MAC

Sets core output
port.

L2 Rewrite

IP

Core VLAN

Core MAC

L2 Rewrite

Sets new source
and dest MAC.
Sets VLAN ID
to Client VLAN

Policy ACL

in_port,
Core VLAN
Destination MAC
Destination IP

Apply L2 Rewrite
group action,
color entry action,
meter.

IP

Core VLAN

IP

(Core VLAN)

VLAN

VLAN if existing,
in_port

If untagged,
sets the core
VLAN (requires
2nd entry).

Core MAC

Color-Based
Actions

Drops red-colored
packets
(Clear Actions),
does nothing else.

IP

Core VLAN

Core MAC

L2 Rewrite

Core MAC

Fig. 11. OF-DPA flow model of the single-tagged mode, downstream direction

Feature OF-DPA Impl. Test Essential
Support Status Status Feature

VLAN Single Tagging Yes Done Success Yes
VLAN Double Tagging No - - No
Antispoof Yes Done Success Yes
IPv6 Yes DP-only Success Yes
Metering (RFC 2697 ff.) Yes Done Not tested Yes
Authentication - Done Success Yes
Liveness - Done Success No
ARP Responder - Done Success Yes
Lease from IP Pool - Done Success Yes

TABLE I
BRAS IMPLEMENTATION AND TESTING STATUS

status of several features of our BRAS PoC, we also provide
whether the features are essential for a BRAS implementation
or not: In this context, essential features are the ones that are
required to build a BRAS. This e.g. applies to authentication,
provisioning of leases, and ARP responding. However, VLAN
double-tagging (a.k.a. Q-in-Q or IEE 802.1ad) can be used to
increase the identifier space of VLANs, or to apply hierarchi-
cal pushing/popping of the VLANs, and is desired in carrier
networks, however, it is possible to implement a functional
BRAS without it.

In our prototype, we could successfully implement and test
all these essential features of a BRAS. As already mentioned,

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

L3 Rewrite

Core VLAN

Core MAC

IP

ASIC VLAN*

Internal MAC

IP

Inner VLAN

Internal MAC

Outer VLAN

Out port

L2 Interface
IP

ASIC VLAN*

Internal MAC

Sets core output
port.

Egress VLAN

AVT must be 1,
ASIC VLAN*,
out_port

Set inner VLAN,
Set OVID to
outer VLAN,

Egr. VLAN 1

VLAN ID (inner)
out_port
OVID

Push VLAN,
Set VLAN ID
to OVID.

IP

Inner VLAN

OVID

Internal MAC

Problem:
ALLOW_VLAN_
TRANSLATION
(AVT) forced to 0. AVT=0

Out port

Out port

IP

Core VLAN

Core MAC

VRF

Termination
MAC
in_port,
VRF
Destination MAC

Forwards to
the Unicast
Routing
flow table

IP

(Core VLAN)

VLAN

VLAN if existing,
in_port

If untagged,
sets the core
VLAN (requires
2nd entry),
VRF = VLAN.

Core MAC

Unicast
Routing table

Applies L3 Rewrite
group action

IP

Core VLAN

Core MAC

VRF
Destination IP

VRF

IP

ASIC VLAN*

Internal MAC

L3 Rewrite

Sets new source
and dest MAC
Sets VLAN ID
to ASIC VLAN*

Fig. 12. OF-DPA flow model of the single-tagged mode when using the Unicast Routing table, downstream direction

Bare Metal Switch (Edge-Core AS5712-54x)

subsc1 subsc2

VLAN 10 VLAN 11 (Subscriber)

VLAN 8, 10 (Service VLANs)
Untagged (representing
VLAN 4)

100.100.4.1100.100.10.1100.100.8.1

dnets-auth-
client.py

dnets-auth-
client.py

5

6

7

8

dslam0 core0 core1dslam1

Test Server

Fig. 13. BRAS PoC test setup.

we have not been able to successfully implement a functional
double-tagging in the OF-DPA pipeline. At the time of writing,
it was not available in the published programming inter-
face [4]. Due to the extraordinarily high backplane capacity of
the switch according to the hardware descriptions (720 gigabits
per second), we could not verify an upper limit for throughput
caused by the limitation of our testing equipment. Current
limitations in the evaluation hardware (load generators) also
did not allow to test the meters.

Another aspect is scalability. We identified the Policy ACL
flow table to be the primary bottleneck to create a scalable
implementation on the AS5712-54x (Trident II), which could
manage up to 3072 entries. According to our flow model, the
switch requires two flows per subscriber times subnet, in a

dual-stack implementation even 4 entries are required. Even if
a dual-stack subscriber uses 1 service VLAN, 768 subscribers
are supported per switch only. Using the Unicast Routing table
for the downstream direction doubled the number of possible
subscribers, however a metering support is not intended by
this table. Nevertheless, Broadcom and other vendors have
announced new chipset generations with support for much
larger flow tables [15]. Thus, the current scalability limits are
not expected to persist.

A. Next Steps

While we have conducted functional tests of the BRAS
implementation, the PoC still needs to undergo stress and per-
formance tests in a next step, which requires several additional
high-capacity servers and specialized hardware to cope with
the high backplane capacity of the hardware. Recommended
tests include setting up, adding and removing large numbers
of subscribers, or conducting parallel high-throughput and la-
tency tests on multiple ports. Furthermore, configuration input
- either in the initial config file or the Websocket-based runtime
configuration - must be validated. In the current state, for
example, it is possible to configure multiple service VLANs on
a single physical port as untagged. Finally, especially because
of the scalability restrictions we experienced with the studied
silicon, we will also evaluate chipsets from the upcoming new
generations.

VII. CONCLUSION AND OUTLOOK

The bare-metal switch hardware market is well-established,
and open-source projects are becoming more and more mature
to support switch customization. The popularity of Broadcom-
based chipsets highly influences the possibilities of unique
programmability, thus OF-DPA can currently be seen as the
most prominent open interface to program a bare-metal switch
pipeline on a flow level. For simple use cases up to Layer 3
routing, and for the essential requirements on a BRAS, OF-
DPA has been found as suitable and well-usable. With increas-
ing hardware support since January 2017, vendor-independent
API candidates like the OCP’s Switch Abstraction Interface

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

(SAI) might gain more and more relevance in the near future,
at least for traditional switching and routing use cases.

With a publicly available programming interface of a com-
moditized chipset, we have been able to implement the BRAS
regarding the essential features, basically providing the proof
that it is rather a matter of evolution of existing merchant
silicon and programming interfaces to enable network oper-
ators to shift to this technology. Now, it is desired to also
support advanced BRAS features like point-to-point protocol
(PPPoE) termination. We are looking forward to upcoming
generations of switching chipsets: Future hardware enables
protocol-independent pipeline programming and customization
with a terabit or multi-terabit backplane capacity [1], but
– as opposed to ASICs – specified in software by using
open languages like P4 [2]. Thus, the need for an ASIC
may not be present anymore even for highest-performance
network functions, and it will finally – as envisaged when
SDN came up – only be a matter of software, whether a switch
becomes a BRAS, a traffic shaper, or a firewall. Our efforts for
prototyping displayed clearly that also on the software side, a
major change is underway. Especially the progress of open
switch abstraction layer definitions will play a key role in
further separating hardware from software.

ACKNOWLEDGEMENTS

This work has been supported by Deutsche Telekom through
the Dynamic Networks 5 project. Furthermore, we thank our
colleagues and the reviewers for their valuable input and
feedback.

REFERENCES

[1] Barefoot Networks. Tofino, May 2017. https://www.barefootnetworks.
com/technology.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. SIGCOMM CCR,
44(3):87–95, 2014.

[3] Broadcom. Broadcom-Switch on GitHub, December 2016. https:
//github.com/Broadcom-Switch/.

[4] Broadcom. OpenFlow Data Plane Abstraction (OF-DPA): Abstract
Switch Specification, Version 2.01, December 2016. https://github.com/
Broadcom-Switch/of-dpa/blob/master/OFDPAS-ETP100-R.pdf.

[5] Broadcom. OpenFlow Data Plane Abstraction (OF-DPA): Python
wrapper, December 2016. https://github.com/Broadcom-Switch/of-dpa/
blob/master/bin/as6700-trident2-fsl14/OFDPA python.py.

[6] Edge-Core. AS5712-54x Product Information, May 2017. http://www.
edge-core.com/productsInfo.php?cls=1&cls2=8&cls3=44&id=15.

[7] Facebook. Facebook Open Switching System, November 2013. https:
//code.facebook.com/posts/681382905244727.

[8] D. Fritzsche, Z. Magyari, M. Schlosser, and T. Jungel. Basebox –
integrating whitebox switches into linux: A controller implementation
for OF-DPA hardware. In EWSDN, pages 52–54. IEEE, 2016.

[9] F. Kurtz, N. Dorsch, and C. Wietfeld. Empirical comparison of
virtualized and bare-metal switching for SDN-based 5G communication
in critical infrastructures. In NetSoft, pages 453–458, June 2016.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation
in campus networks. SIGCOMM CCR, 38(2):69–74, Mar. 2008.

[11] Open Network Linux. Open Network Linux, December 2016. https:
//opennetlinux.org.

[12] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,
J. Hart, G. Palukar, and W. Snow. Central office re-architected as a data
center. IEEE Communications, 54(10):96–101, October 2016.

[13] Pica8. PicOS datasheet, June 2016. http://www.pica8.com/wp-content/
uploads/2015/09/pica8-datasheet-picos.pdf.

[14] K. Subramaniam. Microsoft showcases the Azure Cloud Switch
(ACS), December 2015. https://azure.microsoft.com/en-us/blog/
microsoft-showcases-the-azure-cloud-switch-acs/.

[15] R. Toghraee. Comparing the Broadcom silicons used in dat-
acenter switches, June 2016. https://www.linkedin.com/pulse/
comparing-broadcom-silicons-used-datacenter-switches-reza-toghraee.

[16] S.-Y. Wang and I.-Y. Lee. Minireal: A real SDN network testbed built
over an SDN bare metal commodity switch. In ICC, pages 1–6. IEEE,
2017.

[17] S.-Y. Wang, S.-Y. Liu, and C.-L. Chou. Design, implementation and
performance evaluation of software openflow flow counters in a bare
metal commodity switch. In Computers and Communication (ISCC),
2016 IEEE Symposium on, pages 651–656. IEEE, 2016.

Leonhard Nobach, Jeremias Blendin, Hans-Jörg Kolbe, Georg Schyguda, David Hausheer:
Bare-Metal Switches And Their Customization And Usability In A Carrier-Grade Environment.
In: Proc. 42st IEEE Conference on Local Computer Networks (LCN), pp. 649-657, IEEE, October 2017.
ISBN: 978-1-5090-6523-3

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

