
Statelet-Based Efficient and Seamless
NFV State Transfer

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer

Abstract—Network Functions Virtualization (NFV) environ-
ments can provide increased elasticity and flexibility for oper-
ators, as network-related services can be scaled and moved as
needed. Such operations require a seamless transfer of state to
provide a service without interruption or performance degrada-
tion. In this paper, we propose and analyze a novel approach for
efficient and seamless NFV state transfers. Our approach is based
on the concept of statelets, which are compact representations
of information in incoming packets that change the state of a
Virtualized Network Function (VNF). We present and describe
SliM (Slim Migration), a system for efficient NFV state transfers
using a statelet interface that we have implemented as an add-on
to the Data Plane Development Kit (DPDK), a high-performance
packet I/O library. We have evaluated SliM in a testbed and
present results that show its benefits in terms of lower delays and
lower packet-loss rates. Moreover, our analysis and evaluation
results show that SliM offers three times as much shared link
capacity to the dataplane as previous approaches, while reducing
the duration of a state transfer to one third of their time.

I. INTRODUCTION

Network Functions Virtualization (NFV) is a concept that
applies cloud computing principles to the design, deployment,
and management of network services. It enables fast and
elastic provisioning of network functions (NFs), also known as
middleboxes, and has the potential of significantly reducing the
operator’s cost and increasing flexibility by deploying NFs on
multi-purpose commodity hardware instead of purpose-built
hardware. An instance of a Virtual Network Function (VNF)
deployed on an NFV infrastructure can be migrated from one
physical node to another, e.g., to optimize traffic flows in
the network. It can also be split into multiple instances, each
deployed on a different physical node, e.g., to scale out the
NF and better cope with increasing demands.

Migration techniques widely used for web services in
cloud environments conceptually take a snapshot of a service
instance, transfer the snapshot to the new destination, and
resume the service from the new instance [1] [3]. To avoid
state inconsistencies, the service is typically halted during
the parts of this procedure and messages arriving during the
migration are buffered and processed after the new instance
resumes. This approach is badly suited for the migration of
VNFs and their stringent requirements on jitter and packet
loss; VNF migration requires seamless operation so that a
user of a network service does not perceive any disruption nor
performance degradation even during the migration process.

Therefore, existing VNF migration techniques commonly
transfer a snapshot of the state of a servicing instance to a
new instance and subsequently resynchronize the inconsistent

state; a successful and timely resync process is crucial as it
enables the destination instance to seamlessly continue the
operation of the NF with its most recent state. However,
existing approaches are not well-suited especially for the high-
volume resync traffic of bandwidth-intensive NFs, which may
slow down the resync process significantly, or even make
it impossible to resync at all under adverse conditions. To
make matters worse, both the resync traffic and the actual
dataplane traffic of the NFs may compete for the same network
bandwidth resources, and prioritizing one over the other does
not improve matters. This problem becomes more apparent
as we consider current trends towards NFV at the edge such
as provider edge clouds, virtual CPEs, and fog computing,
which require VNF migration across shared and bandwidth-
constrained network links.

To address the lack of efficient solutions for a seamless
NFV state transfer, we propose a novel approach based on
statelets, which are compact representations of the information
in incoming packets relevant for a VNF’s state change during
the migration process. This approach enables us to reduce
the volume of the resync traffic, effectively leaving more
bandwidth share to the datapath traffic and shortening the
resync duration. This paper builds on and advances the basic
idea and concept behind our statelet approach [16] with the
following contributions:

• We describe the details of the statelet approach.
• We present and analyze the model of our SliM system

and how it implements the statelet approach.
• We introduce a system implementation of SliM including

a DPDK library for statelet announcement and instal-
lation, which allows VNF developers to benefit from
DPDK’s performance enhancements.1

• We implement two widely used VNFs to evaluate our
system in a testbed, the results of which confirm our
analysis and demonstrate that SliM NFs can achieve 3-
fold increase in bandwidth utilization while reducing the
duration of the state transfer to one third of previous
work.

We explain the system model and the migration proce-
dure in Section IV, and subsequently analyze and quantify
the the problem and our proposed approach in Section V.
After describing the system implementation and platform in
Section VI, we discuss the evaluation setup and the evaluation
results in Section VII, respectively.

1Available on GitHub: https://github.com/nokia/SliM

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

II. RELATED WORK

Different network management tasks require solving the
problem of resynchronizing a computing instance’s changing
state to another instance. State migration requires the state
of a source to be transferred to a destination on demand, the
location of the destination might be spontaneously selected,
based on criteria such as network optimization. Commonly, a
snapshot of the source instance’s current state is transferred
first, but is outdated when it reaches the destination, thus,
it must be resynchronized to the current state of the source
afterwards. Another task is failure recovery, [4], [22], [23].
Here, the physical location of a backup node required can
be carefully planned and pre-defined. The initial state can be
proactively transferred (or is empty at boot time), but as the
state in the primary instance changes, it must be continuously
resynchronized with the backup instance, so that the latter can
take over operation with the current state in case of failure.

Improving the performance and costs of state migration in
platform virtualization environments is a thoroughly studied
topic which first came to larger attention through the work
of Clark et al. [3]. To migrate a virtual machine according
to their approach, a snapshot of all memory pages is copied
to the destination in a first round, using shadow pages in
successive rounds to determine and transmit any changes
that have occurred during the transfer of the previous round
(Figure 1 (1.)). The approach was tested on a highly utilized
web server, while observing 165ms of downtime, which is
acceptable regarding most web services. The downtime here
is caused by the last round, which requires a VM halt until
the last page differences have been transferred. Additionally,
a service degradation regarding the capacity can be observed
during the page diff transfer lasting 72s.

The evaluation was conducted in an intra-datacenter envi-
ronment, leading to the assumption that the latency between
the source and destination VM was small during the evalu-
ation. Several further optimizations for delta-based migration
techniques have been proposed, including compression and
deduplication mechanisms [1]. These have been evaluated
under very heterogeneous conditions and workloads, thus the
spread of the performance results is significant. The total
VM migration times range between 3.6s and 35min with
downtimes between 200ms and 3s. Raad et al. [19] achieve
sub-second downtimes transferring virtual machines over WAN
links using the Locator/Identifier Separation Protocol (LISP).

An alternative to state delta transmission is deterministic
replay. Here, a transferred, outdated snapshot is updated by
capturing system events (like network packets) at the source
and reprocessing them at the destination. H. Liu et al. [14]
leverage an event capture mechanism originally proposed for
intrusion detection to recover a current system state at the
destination instance.

The migration of virtual network functions can be classified
as a domain-specific problem of state migration of virtualized
entities. A variety of network functions and its applications

must guarantee a certain throughput and latency without sig-
nificant packet loss. While TCP-based best-effort services can
absorb the downtime of the previous approaches with retrans-
mits and rate control, an even small downtime or a degradation
of capacity can lead to perceivable service disruption when
processing real-time traffic for Voice-over-IP (VoIP) or video
conferencing. Therefore, various approaches have emerged
for seamless migration in NFV environments, [5], [7], [8],
[17], [21]. Besides state migration mechanisms, frameworks
for VM placement and orchestration exist [2], [6], which can
make use of the former and profit from them. Finally, when
moving network functions seamlessly, the underlying SDN
must be migrated with them [9]. Most important related work
is summarized in Table I.

Olteanu et al. [17] have implemented and evaluated a
ClickOS-based framework for seamless elastic scaling of a
carrier-grade NAT virtual middlebox. The authors chain NAT
instances for state migration, their migration approach profits
from the fact that after a socket is being established, the state
of the NAT implementation used becomes immutable, it does
not change anymore except that it may eventually time out.
The VNF chain could increase the datapath length and thus
bear the risk of jitter in higher-delay networks. L. Liu et
al. [15] exploit the short life of a large fraction of flows. These
short-lived mice flows will eventually end at the source before
the migration is supposed to end. They therefore address the
challenge of identifying long-lived elephant flows and provide
a new API to the VNF to identify these flows.

OpenNF [8] enables a network function to seamlessly split
or merge several sessions, or completely transfer its state to
other physical resources by using the aforementioned deter-
ministic replay of packets after snapshot transmission. We refer
to this method as duplication-based state resynchronization,
or a double processing of packets (Figure 1 (2.)). The OpenNF
controller plays a significant role on the data plane by buffering
packets. The framework furthermore defines a common inter-
face to extract, delete and merge state. Therefore, it introduces
a state classification, depending on distinct flows. A drawback
of OpenNF is that the controller is utilized by packet buffering
at the dataplane, which may reach high volumes. Therefore,
Gember-Jacobson et al. [7] changed the OpenNF architecture
in two significant ways: First, a packet is processed not only
by the original NF, it is duplicated and sent to the newly
instantiated NF just to keep its state up-to-date. Secondly,
the communication between the original and the new network
function to keep a synchronous state does not require an
intermediate controller (peer-to-peer).

Several of the aforementioned frameworks for managing
state require significant integration effort by software devel-
opers, especially regarding the classification of state as to be
split, merged, or cloned for horizontal scaling. To overcome or
mitigate this. Khalid et al. [13] recently developed a method
for code analysis, which automates this kind of classification
for network function developers. The mechanism was tested
on widely-used implementations like Snort or OpenVPN.

There are alternatives to state migration in low-delay NFV

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

Per-flow SDN rules Gen./Spec. Ctrl. in
Datapath

State Sync Info

VM Live Migration [3] No SDN (L2 Gratuitous ARP) Generic No Memory page diff
Split/Merge [21] Yes Generic Yes Flow State
Scalable CGN [17] No NAT-specific No NAT Information
OpenNF [8] Not required (flowspace) Generic Yes Packet
P2P-OpenNF [7] Not required (flowspace) Generic No Packet
SliM No Generic No Statelet

TABLE I
OVERVIEW OVER RELATED WORK

environments. Kablan et al. [11] suggest to use RAMClouds to
share all state between VNF instances, avoiding the necessity
of state migration. Other approaches suggest distributed state
management [18], for example based on distributed hash tables
(DHTs).

A use case of software-defined networks (SDNs) is to
flexibly interconnect VNFs, for example in service chains.
This is relevant, as when moving groups of network functions
seamlessly, the underlying SDN must be migrated with them.
Ghorbani et al. [9] propose an architecture to seamlessly
move an underlying SDN, while minimizing the impact of
congestions. Their claims are proven analytically, followed by
a testbed evaluation.

Failure recovery mechanisms share commonalities with the
aforementioned instance migration. The Remus [4] framework
executes speculatively until a checkpoint has been reached,
transfers memory deltas (Clark et al. [3]), and releases outgo-
ing Tx packets held in a queue only after acknowledgement of
the state update from the backup instance. Remus is evidently
suitable for TCP flows, but likely not for delay-sensitive NFs in
today’s networks, as the periodic release of queued packets (at
checkpoints every 25ms) may result in unacceptable delay and
jitter effects, which could be aggravated by a WAN-delayed
acknowledgement from the backup unit.

Mechanisms like FTMB [22] have been designed espe-
cially for NF failure recovery. Similar to Split/Merge [21],
Rajagopalan et al. [20] exploit per-flow states to replicate a
VNF’s state step-by-step. Their approach achieves a signifi-
cant cost reduction regarding state synchronization. However,
besides the per-flow-state requirement, it requires frequent
SDN controller interaction on the dataplane, depending on the
number of flows.

III. APPROACH

In duplication-based mechanisms [7], [8], the traffic used for
double-processing does not directly have an impact on the crit-
ical path of the application delay. Nevertheless, the bandwidth
required for state transfers remains a significant cost factor. For
example, a VNF may be required to be seamlessly transferred
between datacenters, or from a datacenter to an enterprise site.
Here, the double-processing traffic’s path might often share
a common physical link with the dataplane, which creates a
bottleneck: the synchronization traffic competes with dataplane
ingress traffic. State migration time will approach infinity as

MemoryPacket Buffer Changed state
(dirty pages)

Double processing

Statelet announcement Statelet installation

Packet duplication

Ingress Packet

Memory diff1.

2.

3.

State Transfer

State Transfer

State Transfer

Fig. 1. Comparison of different approaches for state synchronization. 1. VM
live migration (last round) [3], 2. OpenNF with peer-to-peer transfer [7], 3.
Statelet-based transfer (our approach).

less and less bandwidth is available, and if available bandwidth
is exhausted, migration will completely fail, assuming that
dataplane traffic must not be dropped. Furthermore, as the
amount of duplication traffic must also be buffered at the
destination until VM startup, it has a negative impact on buffer
memory consumption, and aggravates the risk of overflow.

The problem of insufficient bandwidth capacity also applies
to traditional, transparent VM live migration techniques [1]:
In order to achieve minimum or no downtime, the number of
iterative rounds must be set to a high value. Besides taking
a long time consuming a significant amount of bandwidth,
the mechanism will probably never converge with an absence
of dirty pages, since the network-intensive workload changes
the memory on every incoming packet (like packet buffers or
counters).

Due to the aforementioned appraisal that many network
functions require only a small amount of information in every
packet to update their state, like header fields [2], the idea is
to identify this information with the help of the specific VNF
application. Therefore, one of the contributions in this paper
is the introduction of a novel interface for this task.

The approach assumes an NF which changes its state deter-
ministically based on incoming packets. For every incoming

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

packet, the NF is able to actively pass all information it
requires for internal state modification in a compact represen-
tation to an interface, referred to as a statelet. Furthermore,
another VNF instance of the same type is able to change its
internal state accordingly, based on an incoming statelet.

Compared to previous work proposing memory page
diffs [3], which may contain large structures changed after
every packet entering, or proposing duplication of whole
packets with possible information irrelevant for state syn-
chronization [7], [8], statelets are expected to produce less
traffic (see Section V for details). Figure 1 compares different
previous approaches with the statelet approach.

A statelet can be seen as a set of information defining
the new state together with the previous state. For a formal
definition, consider a current state s ∈ S of a VM, and
a packet p ∈ P entering. Let the next state be defined
with s′ = f(s, p). The task for a NF developer to make
use of the statelet approach is to also define a function
g : S×P → L which returns2 a statelet l ∈ L, and a function
h : S×L→ S which installs the statelet at the destination, so
that ∀s, p : f(s, p) = h(s, g(s, p)). For the statelet approach
to be effective, the total information carried in statelets should
be much smaller than in packets, i.e. |L| � |P |.

More specifically from an interface perspective, a statelet
is assumed in the following as a variable-length byte vector.
A statelet can be empty (only announcing a packet event, for
example to increase packet counters)3, or can be omitted (no
information about a packet event required, no relevant state
change). On the examples of several VNF types, we show
how VNFs can make use of statelets (Table II):

• Network Address Translation: Besides translating and
forwarding packets, the NF must maintain entries in a
NAT table with the respective fields for mapping in-
coming and outgoing packets to translated connections.
Commonly, a NAT creates an entry in this table upon a
socket’s first packet. A very simple NAT gateway only
announces a statelet upon creation of a new NAT table
entry (and whenever it is explicitly closed, e.g. due to a
FIN packet, if available). The resulting statelet for entry
creation just contains the source address/port and the
destination address/port (12 bytes with IPv4). A more
elaborate NAT function also gathers statistics like packet
and byte counters, which require the corresponding infor-
mation to be transferred as a statelet for every incoming
packet, however still only comprising several bytes.

• Signature-based Intrusion Detection: A very basic in-
trusion prevention mechanism would just drop packets
upon finding a signature, thus operating stateless. How-
ever, it is commonly required to look into the packet
history to identify repeated attacks, for example SSH
or HTTP dictionary attacks. Thus, a statelet is produced
for any information that might be required to identify

2Statelet omission (unchanged state) is not modeled here for brevity.
3In our implementation, the statelet also has a two-byte type id.

attacks in the future, like information about relevant login
attempts and the origin address of dictionary attacks.

• VPN Concentrator: This NF generates various statelets
during a user’s connection establishment, announcing the
current state of the authentication procedure for this user.
For authenticated clients, any change of cryptographic
state, like sequence numbers, AES keys, or rekeying
events and corresponding information, is announced with
a statelet.

We prove that a statelet is never required to exceed the
packet size to make a consistent state update: If a statelet is
larger than the packet which has triggered it, it must contain
(1) redundancy, as per our previous assumption state change
is only based on information in incoming packets, and/or (2)
information about state which was not changed by the entering
packet (which becomes redundant at the destination already
having this information). Finally, in the extreme case that the
redundancy can only be removed with larger computational
overhead leading to degraded dataplane performance, the
mechanism can fall back to transferring the packet as the
statelet like in duplication-based approaches. This infers that
the costs of duplication-based mechanisms constitute an upper
bound for statelet-based ones.

The statelet announcement is an additional step in the
dataplane process, so it is necessary to ensure that the overall
dataplane performance is not significantly degraded. We will
argue in the following why the concept of statelets only has a
very small impact on VNF performance: First, the announce-
ment can be (and should be) implemented as an asynchronous
call. In our implementation, the dataplane is only required to
point to allocated memory in order to announce a statelet,
before continuing with normal dataplane operation, while any
other operation on the statelets may be conducted by an out-
of-band thread (Section VI). Secondly, statelet announcement
is necessary only during a short period of the migration
process. Therefore, the NF’s dataplane thread checks a flag
upd_enable, and announces statelets only if the flag is set.

The introduction of a new interface also means an integra-
tion effort for developers, however, many approaches suggest
state-aware network functions to allow for not only state
transfer, but also seamless horizontal scaling [7], [8], which
require the integration of novel APIs. Statelet announcement
may also become a part of a future API unifying several
state management features towards elastic VNFs [12]. Finally,
code analysis techniques [13] may not only be used for state
classification towards split/merge operations, but could also
be applied to identify information in a packet required for
generating a statelet in existing NF implementations.

IV. SYSTEM MODEL

In this section, a model of a generic framework for VNF
migration is proposed and described, which exploits the use
of the statelet approach introduced in the last chapter. In
our model, several hardware nodes with a hypervisor man-
aging virtualized computing resources are given, which are

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

VNF Type Example Behavior Example Workload Statelet size(s) Relative
statelet
flow
size σ*

NAT Maintains a NAT ta-
ble, an ARP table, and
counters for keeping
track of the internal
hosts’ traffic.

Every 15th workload
packet opens a
new socket. ARP
requests are not
required (steady
state).

• 12+18 bytes for every new NAT socket
• 10 bytes for every new ARP table entry
• 12 bytes for every workload packet

(counters)

0, 025

Intrusion
Detection

Tracks TCP/UDP flows
for suspicious content,
fully captures suspi-
cious packets.

Multiple TCP/UDP
flows, 5% of packets
are suspicious.

• 20 bytes to track the current flow’s ses-
sion for every non-suspicious packet,

• Entire content (512 bytes) for every sus-
picious packet

0, 057

VPN Session Works in AES-CBC
(Cipher Block Chain-
ing) mode, 256 bits
block size. Uses coun-
ters to keep track of
packet numbers.

Session data only. For every packet:
• 4 bytes for the current session identifier
• 32 bytes for the ciphertext of the packet’s

last block (decryption and encryption)
• 12 bytes for counters (bytes and packets)

0, 093

* Assuming a mean packet size of 512 bytes, see Section V

TABLE II
EXAMPLES OF NETWORK FUNCTIONS, WORKLOADS, AND THE CORRESPONDING STATELETS

connected by a flexible software-defined network (SDN) with
limited capacity and significant delay.

The nodes and network are managed by a logically cen-
tralized controller, which is also in charge of coordinating the
migration process. The problem of if, when, and where to
place a VNF is out of scope, but has been investigated in
previous work [2], [6]. The controller is restricted to control
traffic, it is not involved in any data traffic, including packet
buffering. This makes the controller’s bandwidth requirements
independent from the VNF load, thus relieves it from the
necessity to scale depending on the latter.

In the following, we assume that a migration is about to be
conducted from a source (srcInst) to a destination instance
(dstInst). Furthermore, we separate between complete and
partial VNF migration. The latter will leave dstInst with
handling only a part of the traffic that has been formerly
processed by srcInst. Complete migration is desired to perform
resource optimization or maintenance tasks, partial migration
by scale-out mechanisms which need to “split” a VNF by
redistributing a part of the traffic only. The mechanism for
seamless state transfer as proposed in our work can be used
for partial migration and full migration (see Section IV-D). In
the remainder of the paper we focus on full migration.

Last, we assume that VM state snapshots can be taken
locally at the nodes, and can be installed on destination nodes
currently not in dataplane operation. A snapshot should exactly
contain the VNF’s state at the moment of triggering it. The
process may need time, but there must not be VM halts
longer than an accepted jitter tolerance (depending on the
application). Thus, a mechanism is required allowing the VNF
to operate without any service disruption while the snapshot
is taken, and to guarantee that the snapshot is consistent
at snapshot start. These mechanisms are known as isolated

snapshots or redirect-on-write (see Section VI-B).
A possible approach is to consult shadow page tables on

the hypervisor [3], which has the advantage that the snapshot
creation is transparent to the guest VM. Alternatively, like
in our proof-of-concept implementation (see Section VI), the
snapshot can also be actively prepared by the VNF’s software
itself, allowing a freshly booted application instance to recover
from it. This enables the VNF to select necessary parts of the
dataplane state, but avoids state not necessary for taking up
the dataplane operation at the destination.

A. Architecture

VNF

upd_out

in0

out0

upd_in

st_q_inp
kt

_q
0

Virtualization
Node

st_q_out

NFVI
Controller

VNF
Environment Instance

SDN
SDN

Unidirectional
SDN access port

Control traffic

(T1)

(T2)

(B0)

(A0) (C)

(D)

in1

out1

p
kt

_q
1

(B1)

(A1)

Fig. 2. Architecture overview, 2 interfaces

In the proposed abstraction (Figure 2), the VNF has one or
multiple full-duplex network interfaces, and we instantiate sev-
eral resources for each of them: two unidirectional dataplane

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

interfaces in and out, and a packet queue pkt_q (dashed
rectangles)4. The statelet interfaces upd_in and upd_out
are novel in this abstraction. They are not required to be
network interfaces, they may as well be implemented using
functions to pass statelets in the form of variable-length byte
vectors (without addressing etc.), however they should operate
in order and without risk of data loss.

State migration functionality is provided by the VNF Envi-
ronment Instance (VEI), handling control tasks and providing
status updates to the NFVI controller. The VEI maintains
three queues: pkt_q, st_q_out and st_q_in. In all cases,
pkt_q is directly attached to in. pkt_q buffers network
packets to guarantee in-order processing during switchover
(only for a short round-trip time), st_q_out and st_q_in
buffer statelets. The ends of the queues not facing towards the
VNF, as well as the out port (Figure 2, A-D), are flexibly
assigned via the SDN, as described in the following. In the
initial and final state of a migration, the SDN delivers all
VNF dataplane traffic to pkt_q, while taking the processed
traffic from out to its destination. The ports of st_q_in and
st_q_out (C and D) are unused in the initial configuration.

Whenever a flag upd_enable is set, the VNF prepares
statelets upon incoming packets as discussed in Section III,
and passes them them to upd_out. A VNF instance receiving
this vector via upd_in applies the respective changes to its
internal state, but does no further action (like sending packets
out).

B. State Migration Procedure

srcInst dstInst

st_q_inpkt_q

(B)

(A) (C)

st_q_out

(B)

(A)

(D)

(empty)State

SDN

SDN

Snapshot
stream

(T1)

(T2)

Statelet stream

Fig. 3. Datapath during migration process before traffic redirect.

Figure 3 depicts the components in the datapath of the state
migration before the traffic redirect to dstInst takes place.
The following steps are conducted, some of them concurrently,
for example if threads are opened for parallel execution.

1) The controller prepares dstInst on the destination
hypervisor. The destination VEI does not have any state yet,
and is not connected to any datapath. At dstInst, st_q_in

4In the following, we simplify the process description and depict only one
network interface.

and pkt_q are set into a mode where they only enqueue
statelets, but do not dequeue and pass them to the VNF
application for processing.

2) srcInst then connects to the freshly prepared
dstInst using a reliable, connection-oriented protocol like
TCP to send two data streams. srcInst then sets the
upd_enable flag, and immediately opens a statelet dequeue
thread and a snapshotting thread:

2.1) The statelet dequeue thread (T1) continuously waits
for new statelets on st_q_out (which are now continuously
generated by the VNF dataplane) and sends them out on
the statelet stream. The dequeuing continues until explicitly
interrupted in the following steps.

2.2) The snapshotting thread serializes the VNF’s state,
and sends it over the snapshot stream. The thread closes the
snapshot stream afterwards, before closing itself.

Simultaneously, dstInst opens two threads upon connec-
tion attempt of srcInst, a statelet enqueue thread (T2) and
a synchronization thread:

2.3) The statelet enqueue thread enqueues the byte vectors
received over the statelet stream in st_q_in. As no dequeu-
ing takes place yet, the size of st_q_in increases (statelets
are buffered at the destination).

2.4) The synchronization thread receives the snapshot over
the stream, and installs it for dstInst. Then, it immediately
starts to dequeue statelets from st_q_in, and applies the
respective changes to the snapshot. If the thread notices that
st_q_in has reached an underrun of d statelets for the first
time, it sends a redirect message to the controller. In our
implementation, d was set to 0, thus the message is sent
whenever the queue is empty for the first time after dequeueing
start. If the statelet stream has been closed and st_q_in
is empty, the dataplane of dstInst is activated by letting
the dataplane continuously dequeue and process packets in
pkt_q. In the latter queue, packets will have arrived after
switchover, and wait during the drain-packet round-trip in
order to be processed after the last statelet. In this case, the
migration has finished from the perspective of dstInst.

srcInst dstInst

st_q_inpkt_q

(B)

(A) (C)

st_q_out

(B)

(A)

(D)

State

SDN

SDN

(T1)

(T2)

Injected
drain packet

Statelet stream
closed after
receiving drain
packet

State

Fig. 4. Datapath during migration process after traffic redirect.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

3) Upon receiving the redirect message (Figure 4), the
controller redirects the ingress flow of srcInst’s dataplane
input to the one of dstInst5. dstInst cannot yet start with
the dataplane operation, as there could still be some statelets
from srcInst underway.

To ensure srcInst has completed all dataplane operations,
and to guarantee in-order delivery, a special drain packet is
now injected by the SDN controller on the datapath where the
switchover was made, but towards srcInst. If the network
prioritizes packets, it has the lowest priority used on the
datapath to srcInst. The drain packet is sent as an indicator
that likely there will be no additional packets on the former
path to srcInst. Upon receiving this packet, srcInst flushes
st_q_out and closes the statelet stream (the latter causes the
synchronization thread of dstInst to start the dataplane).
Here, the migration has finished from the perspective of
srcInst.

C. Mutual Exclusion

Except in the case of making a snapshot at srcInst which
requires isolated snapshotting (Section VI-B), the process
ensures mutual exclusion between dataplane and synchroniza-
tion operations on the state. At srcInst, statelets are quickly
written to st q out before continuing dataplane operation, so
that the statelet dequeue thread can process them from the
buffer without any further interaction with the dataplane. At
dstInst, the first operation is the installation of the snapshot
before any buffered statelets are applied to it. Similarly, the
pkt_q is drained only after the statelet stream has been closed
and st q in has been drained, thus the last statelets have been
installed before dataplane operation continues at dstInst.

D. Extending to partial state migration

In the last section, a complete state transfer to a destination
VNF was described. For seamless scale-out/in operations, a
partial state migration might be desired which offloads parts
of a VNF’s instance’s workload to another instance (split), or
combine the workload on a single instance (merge). Traffic
control for split and merge was handled in previous work [8].
Given that the VNF is able to define a pattern by which the
flowspace can be split, as well as the corresponding state, this
section extends the full state migration scheme to allow partial
migration of a VNF’s state, which allows to use it for split and
merge operations.

First, the source VM omits state that does not need to
be transferred to dstInst during snapshot serialization.
Secondly, statelets are only announced if they are required for
the state which has been included in the serialized snapshot.
Thirdly, the SDN controller redirects only relevant flows to the
destination instance. Finally, upon receiving the drain packet,
the source instance does not stop the dataplane operation. 6

5To minimize packet loss during the redirect operation, flows can be
prepared in a previous step, so that only a single switchover operation is
needed on one forwarding device.

6For example, when iterating a hashtable for snapshotting, every odd IP
address is skipped, only statelets for odd addresses are announced, and the
SDN controller applies a wildcard bit mask to redirect only odd IP addresses.

While a state migration for an instance split only requires
minimum modifications to the complete migration method, a
merge is challenged by the operational dataplane of dstInst,
which must not be interrupted. The first problem is that the
snapshot must be merged with the operational state of the
destination, furthermore, mutual exclusion between statelet
installation and the dataplane must be ensured. Therefore, data
structures which support split and merge must be used, in the
sense that a memory structure in the snapshot transferred does
not interfere with a structure used by the current dataplane of
the destination instance during merge.

We therefore propose the following solution: If a source
instance responsible for flowspace A (e.g. odd IP addresses
only) shall be merged with a destination instance responsible
for flowspace B (e.g. even addresses), the snapshot data
structures (e.g. the hashtables) are not merged along with
the VNF instances. Instead, the snapshot of the source is
written to a separate memory region of the destination, and
the subsequent statelets are installed here, as well. When the
dataplane of the destination instance eventually takes over
operation for the source instance’s datapath (after the statelet
stream closes), the dataplane selects the structure to use based
on the flowspace description, ingress packets of flowspace
B are processed on the destination instance’s original data
structure, while packets from flowspace A operate on the
received and updated snapshot. The proposed mechanism only
has minor impact on dataplane performance, as it requires one
additional match operation only.

V. ANALYSIS

A B

src dest

l

m

n

ab

(Traffic from A to B)

ba

(Traffic from A to B)

State
Mig.

Fig. 5. Flow and physical link model of an infrastructure for a state migration.

In this section, the problem of state migration in NFV
environments with restricted bandwidth capacity, which was
motivated in the introduction, is quantified. Therefore, a
flow and physical-link model is applied to the model of
the state migration mechanism we have described in Section
IV. Besides supporting problem motivation, the goal of this
section is to allow assessing of requirements and properties
on state migration mechanisms in a network with specific
physical properties. The analysis in this section puts a focus

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

on interdependencies of migration completion time, bandwidth
usage, and the statelet factor required to successfully complete
the migration in finite time.

For any data stream being handled by an NF in any time
interval, the statelet factor σ is defined in the following
as the ratio of the average statelet traffic volume caused by
the packets of the stream and the average volume of the
packets themselves. For example, if a stream consists of 500-
byte packets only, and the size of the statelets generated is
50 bytes per packet in average, σ is 0.1. A stream with
σ = 1 corresponds to the performance of duplication-based
mechanisms. Examples for statelets are shown in Table II.

Figure 5 depicts the model of a generic NF inside bi-
directional traffic between A and B. The NF is about to
be moved from src to dest over a common datapath which
is shared with the traffic between A and B. This especially
happens when moving an NF between datacenters: Instead of
having a dedicated, strong link between src and dest for state
transfer, here, the inter-datacenter WAN link may become the
bottleneck. Even more restricted WAN links must be used by
migrations to or from virtual customer premises equipment
(vCPE).

For reducing complexity, the model neglects control traffic,
WAN delay including WAN-related queueing delay, and the
effect of TCP flow control mechanisms. The model assumes
that if packet loss occurs caused by exceeded bandwidth
requirements, the service becomes unstable and cannot be
fulfilled. The bandwidth of internal interfaces between the
hypervisor and its VMs (PCI and memory buses) are also
assumed much larger than the inter-VM links. However, the
aforementioned parameters neglected in this model are taken
into account in the evaluation in Section VII.

The model assumes three full-duplex physical paths, l, m
and n. l is the common sub-path of the paths (src,A) and
(src,B) (depicted in Figure 5). m is the common sub-path of
the paths (src, dest) and (A,B), while n is the common sub-
path of the paths (dest, A) and (dest, B). On these physical
links, several flows are established: ab (user traffic from A
to B), ba (user traffic from B to A) and a state migration
flow from src to dest (in the model, a reverse ACK path is
neglected.).

In the following, C<link> returns the total available capacity
of the physical path of <link>. Fab or Fba return the current
bandwidth consumption of the flows ab or ba. Based on
these definitions, Equation 1 defines the remaining bandwidth
capacity available for state transfer between src and dst.

Crem = min{Cl − Fab − Fba, Cm − Fab, Cn} (1)

In the system model, the packets are immediately sent to
and held by the destination hypervisor until the state snapshot
is established at the destination. Tall is comprised of the time
for snapshotting, the time required to transfer the state over the
remaining bandwidth, and the time taking over the dataplane
operation at dest. TB is the combined local snapshotting time
at src and installation time at dest. Finally, S is the snapshot

size. The condition to be able to keep up with the state while
transferring the snapshot is given in 2.

σ · (Fab + Fba) < Crem (2)

As the buffer is populated at dest the time to transfer the
snapshot over the remaining bandwidth while simultaneously
transferring the statelets, the total migration time, is modeled
with Equation 3.

Tall = TB +
S

Crem − σ · (Fab + Fba)
(3)

To find out the maximum statelet factor accepted for given
network and load parameters, Equation 4 can be used.

σ <
Crem − S

Tall−TB

Fab + Fba
(4)

In Figure 6, the maximum allowed statelet factor is plotted
on an example with Cm = 1000MBit/s, and the capacities
of l and n set to 10Gbit/s. The snapshot size was chosen with
S = 20MByte, local snapshotting/installation time TB with
0.3s. The graph contains a curve each for different desired
migration times tall. At the points where the curves hit the X
axis, the bandwidth is insufficient even to transfer the snapshot
in the desired total migration time tall. We can also observe
that, compared to packet duplication (σ = 1), the bandwidth
utilization can almost be tripled with very small statelets,
which confirms our testbed evaluation results.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

M
ax

. a
llo

w
ed

 s
ig

m
a Tall=0.5s

Tall=0.7s

Tall=1s

Tall=1.5s

Tall=2s

Tall=8s

Dataplane capacity in each direction (Fab, Fba, Mbit/s)

Fig. 6. Analytical determination of the maximum allowed statelet factor
which is required for a successful seamless migration of a VNF. Duplication
corresponds to a statelet factor σ of 1. Note that the dependency between the
total migration time Tall and the dataplane capacity is non-linear.

A. Impact of dataplane load on traditional VM migration

Traditional memory-delta-based state resynchronization
mechanisms [3], [4] are not seamless, they have a significant
downtime during the last round of memory delta transfer
(Section II, [1]). It is difficult to quantify the amount of
invalidated memory, which depends on the type of NF and
implementation details. However, it is possible to model a ring

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

buffer containing received packets, the least element a high-
performance NF will have: Whenever a packet arrives, a part
of the ring buffer having (at least) the size of the packet is
dirtied. As ring buffers eventually wrap around and overwrite
their last entries, not more memory than the size of the ring
buffer can be dirtied in one round of delta transfers.
rDP is the current dataplane load, rc the capacity of the

link. m0 is the initial snapshot size, the total memory of the
VM. We determine the time to transfer memory dirtied in the
last round mi with ti = mi

rc−rDP
. The memory which has

dirtied and must be transferred in the next round is defined
with mi+1 = min{r · ti, cmbuf · bufsz}. We set bufsz to
1400bytes and cmbuf = 64K, like in our implementation.

100m

1

10

100

1k

0M 200M 400M 600M 800M 1000M

T
im

e
(s

)

Applied dataplane workload (bits/s)

Total migration (100MB)

Total migration (1000MB)

1m

10m

100m

1

10

100

T
im

e
(s

)

Down (100MB)

Down, Dataplane off (100MB)

Fig. 7. Numerical calculation of total migration times and last-round
downtimes, based on an optimistic model of delta-based VM live migration.

Figure 7 shows the results of calculating 10 rounds of delta
transfer for different dataplane utilization. At the top, the
duration of the last round is depicted during which the VM is
paused (Downtime). A variant with dataplane traffic switched
off during the last round is also considered (rDP = 0), so that
the link capacity is available solely for state transfer. We can
observe a cut in the increasing downtime and total migration
time at 500M, which is caused by the ring buffer wrapping
around and overwriting already invalidated pages.

The model is optimistic and must be considered as a
lower bound of downtime and duration. It ignores TCP slow
start phases, control and protocol overhead, delay, signaling
overhead, and CPU bottlenecks which would further decrease
performance in a testbed evaluation. As SliM performs even
better than the optimistic model, we did not conduct a testbed
evaluation for comparison of delta-based migration with SliM.

VI. EVALUATION PLATFORM

Our SliM proof-of-concept implementation (Figure 8) has
been designed for the KVM/QEMU/libvirt virtualization en-
vironment, but should be easily adaptable to other hypervisor
technologies. The implementation is prepared to be integrated
into OpenStack in the future, but uses a custom Python-based
NFVI controller at this point in time. Every VNF has one
or multiple dataplane interfaces, as well as one management
interface. In our deployment, the latter is connected to a single
subnet shared between all VNFs, while the dataplane interfaces
are connected to an SDN-controlled domain.

VNF

VEI
(.so file)

State

DPDK Linux

Process

TCP/IP

dp0 dp1 mgmt

VM
Context

Fig. 8. Software architecture of the proof-of-concept and evaluation imple-
mentation on a NFVI hypervisor.

The Data Plane Development Kit (DPDK)7 is used for the
dataplane interfaces in order to reduce kernel stack overhead
and make use of accelerated features. The management inter-
face operates on Linux kernel sockets for convenience. We
chose to implement the VEI inside the VM, as the effort to
implement a reliable VM/host interface can thus be avoided
without any obvious drawback.

The VEI is loaded by the network function as a shared ob-
ject (.so) library. It depends on DPDK for required datapath
functionality, but passes the majority of DPDK’s API up to the
VNF, with some exceptions e.g. on lcore8 assignment and
burst reception/transmission. The VNF may obtain multiple
lcores for its dataplane operation (as usual in DPDK), where
statelets announced by any lcore to st_q_in are dequeued
by a single dequeue thread. To offload the dataplane operation
from overhead, the VEI just requires the dataplane to pass
the pointer to the statelet with slim notify statelet(...), which
is enqueued on a rte_ring instance before immediately
returning.

A. Statelet Stream

The statelet dequeue thread takes the byte vectors and sends
them over a TCP stream in a type-length-value (TLV) format,
where the type is a VNF-specific identifier. The type and
length fields (in bytes) of every statelet are each 2 bytes long,
leading to a maximum statelet size of 65536 bytes.

As the statelet path is not time-critical until the stream is
closed, statelets are buffered until the maximum segment size
(MSS) of TCP has been reached. For example assuming a MSS
of 1400 and 12-byte statelets (similar to our proof-of-concept
VNF implementation, including the type), 100 statelets can be
transferred with only one TCP segment. Compared to packet
duplication, this additionally reduces overhead due to headers
and inter-frame gaps, and offloads the intermediate path from
switching small packets.

To offload the datapath from state migration overhead and
to avoid jitter and peaks caused by it, the aforementioned
work is handled in a separate thread both on the sender and
receiver side. While snapshots can be simply serialized by

7http://dpdk.org
8Logical CPU cores for dataplane operation

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

another thread, statelet announcements must be conducted by
the dataplane thread itself, however they immediately return
after placing the statelet’s pointer in a ring buffer, which is
then further processed by a dequeuing thread. Currently, in our
proof-of-concept implementation, the stream uses the Linux
kernel TCP stack for convenience, however, implementations
like mtcp [10] may be used for statelet transfer in future
versions, providing even higher performance.

A possible extension to the statelet mechanism would
be that if a packet overwrites the state change a previous
packet has caused, the statelet of the previous packet, if
still buffered at the source and waiting to be sent (e.g. in
a maximum-sized TCP segment), could be discarded in the
buffer. However, to the best of our knowledge, mapping a
statelet to the ones that will be overwritten would require
an API extension and additional processing power on the
dataplane, and the expected traffic reduction might not justify
it. To shrink the statelet stream’s size close to a maximum
extent in future implementations, run-length encoding (RLE)
or stream compression formats like gzip could be used. A
compression of the statelet stream should be effective, as
the latter is supposed to have a low entropy, and does not
directly affect dataplane performance as statelets are packet
in a separate thread. Nevertheless, it should be carefully used
in order not to deteriorate the statelet thread performance of
SliM.

B. Isolated Snapshots

In Section IV, a mechanism to do isolated snapshots of
the VNF state was assumed. Therefore, in the proposed im-
plementation, we developed a lightweight, well-tested mech-
anism to make isolated snapshots of rte_hash, a hashtable
implementation in DPDK. If a snapshot must be taken, the
hashtables can be freezed. When reading from the table, an
argument is passed whether to read from the freezed or the
most current state. Thus, snapshot serialization can use the
freezed state not including subsequent write actions, while the
dataplane can operate on the most current state.

The hash map maintains a struct with two values a and b
for every key stored in it, key => (a, gena, b, genb), where
gena and genb are positive integer metadata values, referred to
as generations. Additionally, a table-wide generation t exists,
which is initially 0. On every unfreeze, which occurs after the
shapshot has finished, t is increased by 1. The value m is t+1,
if the table is currently freezed, m = t otherwise. Informally,
m is always one ahead of t while the table is freezed, t catches
up when unfreezing.

If an entry e is to be added, the value of the struct is
initialized with k => (e,m, null,−1). Whenever an entry
is present and must be overwritten, the entry is written to
either a or b, depending on which generation is smaller:
k => (e,m, ∗9, ∗), if gena < genb, or k => (∗, ∗, e,m)
otherwise. If an entry is read, the value of either a or b is
taken, depending on which value has the higher corresponding

9The asterisk denotes that no change is made to this field.

generation. However, only if we want to read from the freezed
state for snapshotting, the value with the highest generation is
taken not exceeding t. If such a value does not exist, the value
is assumed as not present in the map. Finally, if an entry is to
be deleted, the entry struct is completely removed if the table
is not currently freezed. If the table is freezed, a new value
is created containing null, non-isolated read actions therefore
assume this value is not present.

The implementation supports multiple subsequent freezes
and unfreezes, allowing to resume normal operation after a
failed migration and retry it at a later point in time, or allowing
for multiple split and merge operations in future implementa-
tions supporting partial migration. For entries deleted during a
freeze, cleaning jobs must currently delete the backing structs
after unfreeze, however, these can be placed in a queue during
the freeze, so the cleanup processes are not required to iterate
over the whole table. Finally, snapshot serialization can be
conducted parallel to write actions, as no backing rte_hash
entries are deleted while in freezed state breaking the linked
serialization list. The correct operation was verified in an
extensive test case.

C. VNF Example Implementations

For evaluation and proof of concept, a Network Ad-
dress Translation (NAT) VNF was implemented. It uses
two lcores for two duplex dataplane interfaces dedicated
to the interior and exterior network, where packets from
the interior to the exterior network are masqueraded behind
the exterior IP address of the VNF. The network function
supports ARP requesting/responding, and TCP/UDP NAT, but
currently IP fragmentation and ICMP are unsupported. The
VNF additionally keeps track of the interior network hosts’
traffic volume by using counters.

The VNF’s state is comprised of the NAT, ARP and counter
table. If the VEI requests state updates, a statelet is generated
for every new NAT socket created (18 bytes), for every new
ARP table entry (10 bytes), and for every change of a host’s
packet counter (12 bytes), where the latter occurs on every
data-plane packet processed. The counters are also used to
detect out-of-order statelets or packets, which did not occur in
the evaluation so far.

To demonstrate the feasibility of implementing other net-
work functions with the SliM framework, we have also im-
plemented a simple (non-standard) mobile packet gateway
(PG) with DPDK and SliM. Every packet coming from the
load generator is tagged with a 2-byte ID, resembling a mobile
cell to which the sender, a mobile subscriber, is currently
associated. Beneath the cell ID, it is also announced if the cell
attempts to hand the user over to another cell. The gateway is
required to tag every packet coming from the echoserver (the
outside network) with the tag of the cell to which the mobile
subscriber is currently associated, and therefore looks it up
with the incoming packet’s destination IP and port.

The challenge of the packet gateway NF, generating statelets
for every handover (50 bytes), is to instantly tag packets from
the exterior network with the new cell ID (thus redirecting

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

them to the new cell) as soon as a handover is announced
from the interior, even when a large number of handovers are
conducted during state migration.

VII. EVALUATION

AS5712 Switch

Server 2 (R630)

Server 1 (R630)

ASIC

OF-DPA

SliM Fwd.
Agent

NFP-4000 Network Processor

DPDK DPDK DPDK

40GbE

3x
10GbE

mlx4 NIC

srcInst dstInstLatency
Generator

PCI-PT

Controller
and Load

Generator

Echosrv.

Intel NIC

PCI-PT

FIB/TCAM
Update

1GbE
Mgmt.

VirtIO

Fig. 9. Hardware and virtualization architecture used in the evaluation setup.

In this section, the evaluation setup is described, before the
results of the proof-of-concept platform are presented and dis-
cussed. The evaluation is conducted on two PowerEdge R630
servers10, operating on Linux and as a Kernel-based Virtual
Machine (KVM) hypervisor. The servers each comprise two
CPU sockets with 10 physical cores on each socket. Figure
9 depicts the hardware and virtualization architecture used.
Server 1 is equipped with two different dual-port network
interfaces (NICs), a Mellanox ConnectX-3 (mlx4) and an Intel
82599ES card. Server 2 uses a single Netronome NFP-4000
network processor (NPU) card with two 40GbE ports. Besides
the two servers, an Edge-Core AS5712-54x bare-metal switch
is involved in the experiment. The switch runs Open Network
Linux and the OpenFlow Dataplane Abstraction (OF-DPA)
layer11 to be able to control its forwarding behavior in a
flow-like abstraction. Although OF-DPA can be used via the
OpenFlow protocol over the network, we decided to directly
link against the layer with a C-based SliM forwarding agent
running as a Linux application on the switch, to avoid delayed
responses to dataplane events.

On Server 1, two VMs are set up, a VM combining a
controller and load generator with dedicated access to the
dual-port mlx4 NIC via PCI Passthrough (PCI-PT), and a
second VM, the echoserver, having dedicated access to one
of the Intel NIC’s ports. Connected to PCI virtual functions
spawned by the NFP-4000 NPU, Server 2 comprises both
srcInst and dstInst. To establish a realistic simulation
scenario however, if the instances communicate with each
other, their whole traffic including management must traverse

102x Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz, 2x64GB RAM
11http://opennetlinux.org, https://github.com/Broadcom-Switch/of-dpa

the AS5712 hardware switch first as if they were placed on
different machines. The aforementioned traversal of the inter-
instance traffic – like all traffic from or to the VNF instances
under test – then involves metering and latency simulation like
explained in the following.

Figure 10 schematically illustrates the flows used in the
evaluation setup. A switched management VLAN (red) pro-
vides basic IP connectivity between both VNF instances and
the controller. Furthermore, two dataplane paths, dp0 and dp1
are configured. Upon initialization of srcInst, all traffic
originating from the load geneator’s dp0 interface is for-
warded to the respective interface of srcInst and vice versa
(blue), like the traffic between the echoserver and srcInst’s
dp1 interface (green). To implement the switchover command
of SliM, the two dataplane paths can be redirected by the
AS5712 switch to the respective interfaces of dstInst.

SliM is supposed to be able to migrate for example be-
tween inter-datacenter links, thus the setup must consider the
datapath to have a delay which is typical for this scenario.
Therefore, an additional latency was set to 2.5ms with a
DPDK-based latency generator NF12 connected to the NPU.
The latency, which is applied into both directions of all traffic
from or to the VNFs, results in a round-trip time (RTT) of
10ms between the VNFs themselves, and in an RTT of 5ms
between each VNF and the controller / load generator. This
value approximately resembles the delays of typical intra-
European datacenter links13.

The total traffic from or to each VNF instance under test is
furthermore restricted by a meter, dropping packets above a
rate of 1Gbit/s (burst size 20ms) per each direction. Although
the SliM VNF implementations have been successfully tested
with much higher data rates, the target is to hereby investigate
the effect of external bandwidth limitation described in the
introduction. As stated in the introduction, the traffic priori-
tization strategy decides in an overload situation, whether a
state migration over a shared link will try to keep up with
the resynchronization process to the cost of migration time
and possible migration success, or drop dataplane packets to
succeed in a shorter or finite amount of time. In our evaluation,
the shared bandwidth is provided to all flows on a best-effort
basis, no traffic of any flow is prioritized. This configuration
should ensure eventual success even in an overload situation,
however to the cost of packet loss.

The evaluation uses the NAT and the PG VNF implemen-
tation introduced in Section VI-C. The experiment starts with
an active srcInst at relative time s. dstInst is booted up
quickly thereafter (inactive with no state), and at s+5 sec, the
state migration is triggered. Performance and traffic metrics are
collected during [s, s+15 sec]. The measurement is conducted
for every setup variant described, and for different loads.
For every setup and load combination, the measurement was
repeated 13 times to obtain results with a high confidence. For
comparison, a duplication-based resynchronization mode was

12https://github.com/tudps/sloth-latency-gen/
13http://www.verizonenterprise.com/about/network/latency/, March 2017

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

AS5712 Switch

Latency
Generator

Server 2 (R630)Server 1 (R630)

srcInst

dstInst

Echo Server

Controller and Load Generator

(2.5ms)

dp0

dp0

dp1

dp1

dp0

dp1

mgmt

mgmt

(Source VNF)

(Destination VNF)

mgmt

Metering
1 Gbit/s

sdn-mgmt

Metering
1 Gbit/s

Agent

Fig. 10. Schematic illustration of flows in the evaluation setup. All depicted flows are bi-directional.

implemented in SliM, to ensure that results are comparable
and not biased by implementation details. When in duplication
mode, the whole ingress packet is copied and sent to the
destination VM instead, where it is processed [7].

A typical workload of an interior network communicating
with external servers is applied to the VNF datapath. For
evaluating the NAT VNF, a packet generator opens 128 UDP
sockets to 4 echo addresses through the NAT VNF, the latter
reply with same-sized packets from the exterior datapath.
Therefore, both the original and the reply packets pass the
NAT function, where their source address and port number
are translated. For evaluating the PG NF, 256 subscribers are
being connected with a very fast mean handover frequency
of 2s each. Furthermore, stricter requirements are applied for
measuring packet loss, a packet is also considered as lost if it is
sent to a wrong cell, with the exception if the last handover was
7,5 milliseconds ago (150% of the round-trip time between
load generator and NF).

For both NFs under test, the load generator includes a
counter and a timestamp in every packet to identify out-of-
order packets, loss, and the round-trip time (RTT). Measure-
ments are conducted with 1400-byte and 512-byte packets, the
former is almost the maximum transmission unit (MTU) in the
Internet, while the latter is close to the median of the Internet’s
packet size distribution14. 20MB of filling zeroes were added
to the snapshot to simulate additional workload for larger
states. If a future NF in a carrier-grade environment maintains
hundreds of thousands of sessions, the latter snapshot size
is a realistic assumption, even if only connection tables are
maintained (50 bytes of state per connection).

A. Results

The absence of any service downtime significant to the
application is a requirement for seamless migration. Caused
by the best-effort scheduling when restricting the dataplane to
1Gbit/s, state migration traffic can supplant dataplane traffic
if required to finish the migration in finite time and thus suc-
ceed15, leading to dataplane packet loss, which can therefore
be considered as the primary indicator for migration failure

14https://www.caida.org/research/traffic-analysis/pkt size
distribution/graphs.xml

15Note that any prioritization of dataplane traffic would lead to overloaded
migration attempts to completely fail, as their state cannot converge.

0.0s

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

0 200 400 600 800 1k

(L
os

t p
ac

ke
ts

)
/ (

pk
ts

/s
)

Applied dataplane workload (Mbit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 11. “Seconds of packet loss”, number of packets lost divided by the
packets to process every second. NAT NF. The last point for Duplication
(1400) beyond the y-axis range is at 3.9s.

0.0s

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

0 200 400 600 800 1k

(L
os

t p
ac

ke
ts

)
/ (

pk
ts

/s
)

Applied dataplane workload (Mbit/s)

PG with SliM (1400)

PG with SliM (512)

Fig. 12. “Seconds of packet loss”, PG NF.

0.0s

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

0 200 400 600 800 1k

(P
kt

s
w

ith
 R

T
T

 >
 1

5m
s)

 /
(p

kt
s/

s)

Applied dataplane workload (Mbit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 13. Packets exceeding a RTT larger than 15ms divided by the packets
per second, NAT NF. The last point for Duplication (1400) beyond the y-axis
range is at 3.8s. Beyond 200 Mbit/s, SliM clearly outperforms Duplication.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

10ms

100ms

1000ms

0 200 400 600 800 1k

P
ea

k
of

 R
T

T
 a

vg
. o

ve
r

50
0

m
s

Applied dataplane workload (bit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 14. NAT NF, 500ms intervals with max. mean RTT, NAT NF.

due to overload. Therefore, Figure 11 and 12 show the packet
loss during the experiment in seconds of loss. The latter metric
is the total number of packets that have been lost during
one instance migration divided by the current packet rate
per second16, which makes it especially adequate to compare
packet loss between different workload traffic rates. Besides
packet loss, another important criterion for seamless behavior
is latency. Figure 13 depicts the seconds of RTT larger than
15ms. It is defined like the seconds of loss, but also includes
packets which have arrived later than 15ms (note that we have
a baseline delay of 10ms caused by the load generator).

For the NAT NF, regarding both metrics, we can observe
that no or only minor loss occurs when using SliM and
Duplication at low rates. At 300M(bit/sec), Duplication starts
to cause downtimes for both packet sizes, SliM however can
avoid loss up to 800M, where Duplication already causes an
outage of ∼ 1, 5s. SliM only starts to fail around 900M. A
small loss occurs for the PG NF beyond 500MB (Figure 12),
which is caused by the workload model’s strict requirement
that a handover must be in effect 7, 5ms after announcement,
otherwise packets are considered as lost.

0s

1s

2s

3s

4s

5s

0 200 400 600 800 1k

D
ur

at
io

n

Applied dataplane workload (Mbit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 15. Migration duration for 1400-byte and 512-byte packets, NAT NF.

The higher bandwidth consumption of duplicated packets
negatively impacts queuing delays. In Figure 14, the large
RTTs of Duplication are caused by packets enqueued in
pkt_q, still waiting for the stream of duplicated packets to
end for in-order delivery. This also applies to SliM, however

16For example, a loss rate of 1s can mean that for 1 second, no packet has
been returned to the load generator, or that only half of the packets have been
returned to it for 2 seconds.

0s

1s

2s

3s

4s

5s

0 200 400 600 800 1k

D
ur

at
io

n

Applied dataplane workload (Mbit/s)

PG with SliM (1400)

PG with SliM (512)

Fig. 16. Migration duration for 1400-byte and 512-byte packets, PG NF.

only beyond 850M, and results in RTTs not larger than 100
milliseconds in average. Figures 15 shows the total duration of
an instance migration for the PG NF, where SliM can finish in
a third of the time of Duplication at high data rates. Regarding
the migration duration, both require less than 1s up to 100M,
however, Duplication requires much more time with increasing
workload and reaches 5s at 800M, where SliM still can
finish in under 1s. In summary, compared to Duplication, the
performance results show that the link utilization can almost be
tripled when using SliM, while maintaining seamless behavior.
For the PG NF (Figure 16), the migration does not appear to
be influenced by the dataplane workload as much as with the
NAT NF, caused by statelets not being generated per packet,
but only during cell transitions17.

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1k

S
iz

e
of

 p
kt

bu
f

Applied dataplane workload (Mbit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 17. The length of pkt_q for different workload bandwidths, NAT NF.

Figure 17 shows the maximum number of elements in
pkt_q during the experiment. In our implementation, we had
to limit the size of the buffer for pkt_q to 64K packets. If
migration success is considered as an absence of any pkt_q
overflow (which results in large packet loss), Duplication fails
beyond 300M. Finally, the state transfer traffic for the NAT
NF is shown in Figure 18, having a baseline requirement of
20MBytes for the snapshot size (the traffic for the PG NF
has been measured with a nearly constant value of ≈ 23MB,
again, independent from the dataplane workload). We conclude
that, compared to Duplication, SliM significantly reduces the
traffic which must share capacity with the dataplane during
migration.

17A very small tendency of longer duration after 600M could be explained
with congestion on the link shared with the dataplane.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

0

50M

100M

150M

200M

0 200 400 600 800 1k

S
ta

te
 T

ra
ns

fe
r

V
ol

um
e

 (
by

te
s)

Applied dataplane workload (bit/s)

SliM (1400)

Duplication (1400)

SliM (512)

Duplication (512)

Fig. 18. State transfer traffic volume of the NAT NF, 20MB additional
snapshot size.

VIII. CONCLUSION AND FUTURE WORK

We have presented a new mechanism for bandwidth-
efficient state migration, SliM, which only transfers the infor-
mation in a packet required for the state synchronization be-
tween two or more instances of a VNF. We have implemented
the proposed mechanism as a framework for DPDK, together
with a NAT and a mobile packet gateway VNF implementation
as a proof of concept. Evaluation results show a significantly
higher performance of SliM compared to the state-of-the-art
duplication-based approach with increasing bandwidth: With
minor performance penalties caused by the migration, SliM is
able to operate over links utilized up to three times the level
at which duplication mostly fails.

For future work, we plan to extend the implementation with
support for partial migration to allow for split and merge
operations, as well as a small optimization to further reduce
delay and jitter during switchover. In this work, we treated
payload and state flows as best-effort, however, QoS strate-
gies could decrease packet loss at the expense of increased
migration time, or vice versa. We also plan implementing
different types of VNFs over SliM, like an IDS, a CDN node,
and a VPN. Furthermore, future development activities may
include an evaluation on a large-scale distributed testbed, or
the integration of SliM into a larger NFVI cloud platform like
OpenStack.

ACKNOWLEDGEMENTS

This work has been supported by a Ph.D. internship at Nokia
Bell Labs, and in part by the German Research Foundation
(DFG) within the Collaborative Research Center (CRC) 1053
- MAKI.

REFERENCES

[1] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia. A survey on virtual machine migration and server consolidation

frameworks for cloud data centers. Journal of Network and Computer
Applications, 52:11–25, 2015.

[2] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: Enabling innovation
in middlebox applications. In HotMiddlebox. ACM, 2015.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, pages
273–286. USENIX, 2005.

[4] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual machine
replication. In NSDI, pages 161–174. USENIX, 2008.

[5] T. Dietz, R. Bifulco, F. Manco, J. Martins, H.-J. Kolbe, and F. Huici.
Enhancing the BRAS through virtualization. In NetSoft, pages 1–5.
IEEE, 2015.

[6] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware or-
chestration layer for middleboxes in the cloud. Technical Report
”arXiv:1305.0209”, 2013.

[7] A. Gember-Jacobson and A. Akella. Improving the safety, scalability,
and efficiency of network function state transfers. In HotMiddlebox.
ACM, 2015.

[8] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling innovation in network
function control. In SIGCOMM. ACM, 2014.

[9] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Caesar, J. Rex-
ford, and D. Walker. Transparent, live migration of a software-defined
network. In SoCC. ACM, 2014.

[10] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.
mTCP: a highly scalable user-level tcp stack for multicore systems. In
NSDI, pages 489–502. USENIX, 2014.

[11] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. Stateless
network functions. In HotSDN, pages 49–54. ACM, 2015.

[12] J. Khalid, M. Coatsworth, A. Gember-Jacobson, and A. Akella. A
standardized southbound API for VNF management. In HotMiddlebox,
pages 38–43. ACM, 2016.

[13] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella. Paving the way for NFV: Simplifying middlebox modifi-
cations using StateAlyzr. In NSDI, pages 239–253. USENIX, 2016.

[14] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual
machine based on full system trace and replay. In HPDC, pages 101–
110. ACM, 2009.

[15] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han. U-haul: Efficient state
migration in NFV. In SIGOPS, page 2. ACM, 2016.

[16] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer. SliM: Enabling efficient,
seamless NFV state migration. In ICNP, pages 1–2. IEEE, Nov 2016.

[17] V. Olteanu, F. Huici, and C. Raiciu. Lost in network address translation:
Lessons from scaling the world’s simplest middlebox. In HotMiddlebox.
ACM, 2015.

[18] M. Peuster and H. Karl. E-State: Distributed state management in elastic
network function deployments. In NetSoft, pages 6–10. IEEE, 2016.

[19] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pu-
jolle. Achieving sub-second downtimes in large-scale virtual machine
migrations with LISP. TNSM, 11(2):133–143, 2014.

[20] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico replication: A high
availability framework for middleboxes. In SoCC. ACM, 2013.

[21] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/Merge:
System support for elastic execution in virtual middleboxes. In NSDI.
USENIX, 2013.

[22] J. Sherry, P. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, et al. Rollback recovery
for middleboxes. In SIGCOMM. ACM, 2015.

[23] D. Williams and H. Jamjoom. Cementing high availability in OpenFlow
with RuleBricks. In HotSDN, pages 139–144. ACM, 2013.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Leonhard Nobach, Ivica Rimac, Volker Hilt, David Hausheer: Statelet-Based Efficient and Seamless NFV State Transfer.
In: IEEE Transactions on Network and Service Management (TNSM), vol. 14, no. 4, p. 964-977,
December 2017. ISSN 1932-4537.

