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Abstract. Due to changing market conditions and resulting flexibil-
ity requirements, the reference-conform implementation of processes in
companies increasingly gains importance. The internal assessment of the
realisation of reference processes (process conformance) is a resource-
intensive task in terms of time and cost. The paper at hand presents a
process model analysis method to address this issue using a combined
structural and semantic comparison and analysis approach. The method
provides decision support for process analysts concerning the adjustment
of processes to reference processes in IT Governance contexts.
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1 Introduction

In Business Process Management, reference models provide predefined solutions
to a specific class of problems, e.g., the acceleration of business process imple-
mentation, or the harmonisation of internal processes. Process reference models,
in particular, describe domain specific processes and generally provide an estab-
lished and solid foundation for the analysis and improvement of internal pro-
cesses. By describing dynamic aspects of an enterprise, e.g., activity sequences,
organisational activities required to satisfy customer needs, control flow between
activities, particular dependency constraints, etc., they help decreasing risk and
provide beneficial clues for detection and improvement of weaknesses. [1][2]

IT Governance defines guidelines and reference processes in order to stan-
dardise processes in a company and IT departments, aiming at assuring confor-
mance and simplification of control. Reference models in the field of IT Gover-
nance (also called best practice frameworks) are voluminous and have a large
application scope (cp. [3], [4]). They consist of recommended general proce-
dures, roles, responsibilities, and guidelines, combined with explicit process ref-
erence models [5]. Established frameworks, such as the IT Infrastructure Library
(ITIL)[6], specify best practices as process or workflow models. As governance
targets management processes rather than operative processes, processes and
activities defined by IT Governance frameworks generally reside on a relatively
high abstraction level.
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Once introduced in companies, the adherence to reference models is dimin-
ished over time, e.g., by undocumented changes such as merging with new pro-
cesses or process fragments, or natural human workflow evolution. In these cases,
differences must be identified in retrospect, which mostly is a costly and time
consuming procedure.

Reference models for governance purposes rather are to-do- or check-lists
than control flow-oriented models and can be considered abstract models [4][3][6].
Comparing abstract processes is different: it is important to investigate whether
(activity similarity), and in what order (activity permutation) composite, general
activities are performed rather than in what exact way, e.g., the behaviour. When
assessing processes with respect to such abstract process models, it is important
for the process engineer to find general correspondences between process model
parts. Even if possible, precise matchings are mostly not mandatory. Atomic
activities as well as process behaviour are not of central importance in governance
reference models – correspondence determination between process models and
structure analysis become more important in this respect.

Commonly, process comparisons are performed by considering adequate no-
tions of equivalence, e.g., bisimulation, trace or similar equivalences based on
string-based, structural, and behavioural similarity metrics (cp. [7], [8]). For
large models, those computations quickly become very complex. In particu-
lar, behavioural comparison approaches anticipate the comparability of process
models, i.e., the existence of exact pairwise candidate assignments. Existing ap-
proaches for reference process analyses are often limited by the high computa-
tional complexity of the graph matching problem. Performing process compar-
ison and analysis of process models deployed for governance purposes, i.e., the
control and steering of IT systems, raises additional challenges that we address
within this paper.

The paper at hand presents an analysis technique for process models identi-
fying related activity groups in terms of structure and content (related cluster
pairs). A related cluster pair, intuitively, consists of two groups of activities hav-
ing one correspondent in the other process model, respectively. Generally, clus-
ters abstract from the behaviour of the comprised activities (in terms of activity
permutation and gateway conditions).

Using this technique, we are able to provide similarity values not only for en-
tire processes, but also cluster level similarities. Additionally, by merging clus-
ters, the technique allows the indication of the position of supplementary or
missing activities (location of differences) and the indication of activity order
differences (permutation). The currently realised approach computes similari-
ties between activities of event-driven process chains (EPC) models (events and
functions).

The remainder of this paper is structured as follows. In section 2, we introduce
fundamental concepts used, in section 3 we explain the analysis approach in
detail. After a comparison with related work in section 4, section 5 concludes
the paper.
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2 Basics

In this section, we introduce basic concepts and definitions such as event-driven
process chains, similarity measures, and SESE regions.

2.1 Event-driven process chains

Event-driven process chains (EPC) are a method for the modelling of business
processes, introduced within the scope of the Architecture of Integrated Infor-
mation Systems (ARIS) [9]. The method of EPCs is widespread and its concepts
can be easily transferred to other modeling approaches. An basic EPC can be
defined as follows:

Definition 1 (Event-driven process chain). An event-driven process chain
represents a directed, connected graph G = (V,E). The set of vertices V consists
of three disjoint sets of functions F , events E, and connectors C. The vertices
are connected by arcs representing the control flow. Functions and events appear
in an alternating sequence.
Let I(v) and O(v) be the set of incoming and outgoing arcs for a given node
v ∈ V , respectively. Then, ∃eS ∈ E with |I(eS)| = 0 and |O(eS)| = 1 denoted as
start event eS and ∃eE ∈ E with |I(eE)| = 1 and |O(eE)| = 0 denoted as end
event eE. ∀f ∈ F and e ∈ E\ {eS , eE}: |I(f)| = |I(e)| = |O(f)| = |O(e)| = 1.
A connector c ∈ C of type t ∈ {AND,OR, XOR} represents a logical connection
between functions and events. ∀cS ∈ C with |I(cS)| = 1 and |O(cS)| ≥ 1, cS is
denoted as split connector and ∀cJ ∈ C with |I(cJ)| ≥ 1 and |O(cJ)| = 1, cJ is
denoted as join connector. If one or more functions directly follow an event, the
respective connector in between must be an AND connector. Finally, each f ∈ F
and each e ∈ E is assigned a label.

2.2 Similarity measures

In order to determine similar function or event pairs, we apply two generally
different similarity metrics: string-based and semantic similarity measures. Gen-
erally, three major classes of string-based metrics can be distinguished: edit-
distance-based, token-based, and hybrid metrics [10]. Edit-distance-based metrics
determine the minimal cost in terms of edit operations to transform a string S
into a string T where edit operations are insertions, deletions, and substitutions
of characters. Token-based metrics compare multi-word strings on token (i.e.,
word) level (instead of character level) and hybrid metrics combine character-
and token-based methods. As representatives of token-based and hybrid met-
rics, the Jaccard (simjac) and the Monge Elkan metric (simmoe), respectively,
are defined as follows for the token sets A and B [10][11]:

simjac(A, B) =
|A ∩B|
|A ∪B|

; simmoe(A, B) =
1
|A|

|A|∑
i=1

|B|
max
j=1

sim(Ai, Bj)
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The Monge Elkan metric maximises the similarity between the tokens of set A
and all tokens of set B. The overall similarity equals the mean average of these
maximum scores. As a semantic similarity metric distributional similarity is
considered in our approach, allowing for the fact that different process designers
may use different terms for the same activity. Two kinds of distributional simi-
larity can be distinguished: first order and second order similarity. The former
refers to words occurring in the same context, while the latter concerns words
which occur in similar contexts. The corpus is tokenised and stopwords (frequent
function words) are eliminated. The metric applies a context window size of ±3
words. Moving the window over the corpus results in a set of dependency triples
for a given word. A dependency triple is of the form (w, r, w′), where w repre-
sents the given word whose context is examined, w′ is a word occurring in the
context of w, and r refers to the relationship between w and w′ (e.g., the relative
position of w′ with respect to w). To obtain the distributional first order simi-
larity of two given words w1 and w2, a comparison of their dependency triples is
performed using the following information theoretic measure suggested by Lin
[12]:

simLin =

∑
(r,w′)(w1, ∗r, ∗w′) + (w2, ∗r, ∗w′)∑

(r,w′)(w1, ∗, ∗) +
∑

(r,w′)(w2, ∗, ∗)

The measure is based on the assumption that the similarity between two words
can be expressed as the amount of information contained within the dependency
triples which are common to both words, divided by the amount of information
contained in all the dependency triples of w1 and w2 that match the pattern
(w1, ∗, ∗) and (w2, ∗, ∗), where ∗ is a wildcard for r and w′, respectively.

2.3 SESE Regions

A Single-Entry Single-Exit (SESE) region, intuitively, represents an area within
a graph that has a distinct entry edge and a distinct exit edge [13]. Inside nodes
can only be reached from those outside by passing the entry edge and nodes
outside can only be reached from inside by passing the exit edge.

Definition 2 (Canonical SESE Region). For a given edge e, a canonical
SESE region R (if it exists) is the smallest SESE region of which e is either
the entry or the exit edge. Canonical SESE regions are either node disjoint or
nested. [13]

This definition emphasises that each edge e of a graph G does not necessarily
have to be part of an enclosing edge pair of a SESE region. This is especially the
case, if e resides inside a canonical region. Furthermore, canonical SESE regions
represent a unique and node disjunctive decomposition of a graph-based process
model. Additionally, SESE regions meet the condition of transitivity [13]. Given
two SESE regions S1 = (a, b) and S2 = (b, c), their union also represents a SESE
region S3: (a, b) ∪ (b, c) = (a, c) = S3.
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Fig. 1. Simplified Example from ITIL [6]

3 Related Cluster Analysis

The analysis technique presented in the following consists of two steps: corre-
spondences and cluster determination, and conditioned cluster merging. Due to
space limitations, we show a simplified example from ITIL [6] in Figure 1. The
EPC model to the right shows a simplified excerpt from the reference process
“Event Management Process” defined in the “Service Operation” book of ITIL.
An event, in this context, “can be defined as any detectable or discernible oc-
curence that has significance for the management of the IT Infrastructure or the
delivery of IT services” [6]. The left model shows a simplified potential realisation
of this process in an IT department.

3.1 Correspondences and cluster determination

Correspondences of process nodes, i.e., functions or events, are identified using
a combined string-based and semantic similarity measure. For the nodes ki of
model 1 and mj of model 2, the node similarity simnode is computed as follows:

simnode(ki, mj) = w1 · simfos(ki, mj) +w2 · simmoe(ki, mj) +w3 · simjac(ki, mj)
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We compute a similarity value per node pair, that consists of the weighted com-
bination of two string-based metrics (simmoe and simjac) and a semantic first
order similarity measure (simfos, cf. Section 2.2). The weight for the syntactical
metric part is 25% (w2 = w3 = 0.125), while we weight the semantic part with
75% (w1). In the result shown in Figure 1, we see that, e.g., “filter event” and
“log event” have not been assigned to each other, although they have a high
syntactic similarity value (0.50). As well, “determine level of significance” and
“assess relevance” have correctly been matched, although only 2 out of 6 words
are synonyms. The utilised semantic metric identifies word similarities based
on a Wikipedia corpus exceeding synonym relationship. The result is a list of
relevant correspondences per node. For the exclusive identification of 1 : 1 - re-
lationships, we solve the resulting assignment problem with one of the standard
procedures [14][15].

In a further step, clusters and related cluster pairs are determined. A cluster
C is defined as C = (F,E), by the sets of functions F and events E it comprises.
Intuitively, it is a SESE region with additional characteristics.

Definition 3 (Related Cluster Pair). A related cluster pair is defined as a
six-tuple (CA, CB , MF , ME , simR, t) where CA = (FA, EA) and CB = (FB , EB)
are clusters with function sets FA and FB, and event sets EA and EB.
MF : FA → FB and ME : EA → EB are isomorphisms such that ∀f ∈ FA :
simR(f, MF (f)) ≥ t and ∀e ∈ EA : simR(e, ME(e)) ≥ t where simR is a sym-
metric similarity function and t ∈ R with 0 ≤ t ≤ 1 is a threshold.

Note, that the set of vertices V of clusters in this case only refers to functions
and events. Gateways as well as the ordering of activities are (explicitly) not
considered here.

Each related node pair turns into a smallest possible related cluster pair
(e.g., cluster 1). All unassigned nodes form unassigned clusters (e.g., node “filter
event”, cp. Fig. 1). For all nodes of the left model, corresponding nodes have been
assigned. In the right model, for the nodes “filter event”, “event is significant”
and “event is insignificant” no correspondences were found.

3.2 Conditioned cluster merging

In the second step, adjacent clusters are merged in both models simultaneously
– related cluster pairs as well as unassigned clusters. While the latter are just
merged per model, the merging of the first ones is model-spanning and adheres
to conditions. The first condition is to demand from an adjacent node B of node
A in model 1, that its corresponding node B’ in model 2 is adjacent to A’, which
is the correspondent to A. The second condition is, that the resulting node group
must in turn be a cluster. This way, we aggregate sets of nodes to form larger
related clusters.

This bottom up-process first merges nested SESE regions to form related
clusters and then merges sequences of clusters, and is interrupted by stop con-
ditions such as adjacent unassigned nodes. This way, the process models are
transformed into sequences of largest possible related clusters.
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During this computation, cluster types are determined and assigned to the
related cluster pairs. In particular, we distinguish BasicSEQ (sequence), XOR-SJ,
OR-SJ, AND-SJ (split-join, respectively), and ITER (loops). In Figure 1, the re-
lated cluster pair cluster 8 has the type SEQ, the inner cluster to the left is an
XOR-SJ, while on the right, an OR-SJ has been identified.

We determine further cluster characteristics: PERM designates differences in
node sequence in the cluster pair, CHILDSTRUCTDIFF and PARENTSTRUCTDIFF
mark structural differences of related clusters referring to the resulting parent
cluster or the child clusters, NONBASIC tags a related cluster pair that contains
more complex than the above simple cluster types. In the example, characteris-
tics of cluster 8 are CHILDSTRUCDIFF and BasicSEQ.

Related clusters are marked according to whether they are internally similar
in structure or not (cluster similarity level). Generally, we distinguish two differ-
ent cluster similarity levels: content-related cluster pairs contain corresponding
elements with differing structure, while structure-related cluster pairs consist of
clusters that are similar concerning their elements in terms of structure and con-
tent. In the example, the activities were aggregated to form the shown clusters,
however, as outlined, the cluster types cluster 8 refers to are not similar. Those
cluster pairs are marked as “content-related”, and not “structure-related”. In
these cases, the final decision on whether the modeled activities actually mean
the same must be left to human experts. Alternatively, formal behaviour inves-
tigations can be performed on clusters in order to identify further differences, or
to compute change operations to map them.

The related cluster pair similarity refers to the similarity of two related clus-
ters and represents the mean average of the similarity value of the node pairs
contained in the respective clusters.

3.3 Discussion

Our approach identifies largest-possible related clusters and computes clus-
ter types, structural internal cluster characteristics, as well as similarity levels
(content-related vs. structure-related). Based on these pieces of information, a de-
tailed report on the similarity of process models can be automatically generated,
which are used for governance purposes, e.g., supporting process conformance
checks. Generally, in our approach, we are able to consider two process models
(parts) as similar, even if other similarity notions do not indicate a sufficient rela-
tion. Concerning process part similarity and process model similarity, the notion
of related cluster pair similarity is different from existing similarity notions.

The computational complexity of solving the assignment problem is O(n3)
[14]. This determines the complexity of the approach presented. The actual cal-
culation of the correspondences matrix is cheaper: O(nm), considering events
and functions as input parameter of the first (n) and the second model (m).

In our approach, we combine label and semantic similarity. We weight the
latter with 75% with respect to different labels actually describing the same ac-
tivity. For semantic similarity we use a Wikipedia corpus-based approach. This
way, we can identify word relations that exceed synonym-centred investigation.
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We are able to find, e.g., the mapping of the word pair “hotel” and “accomoda-
tion”, not representing a synonym relationship.

So far, related work does not address the large-scope investigation of sim-
ilar process regions. This approach represents an inexact investigation, mark-
ing regions similar, even if they differ in structure (e.g., gateways, conditions).
However, this allows for a fast, yet effective investigation of large and complex
processes, as it is often needed in application areas in IT Governance. Based
on this analysis, detailed reports on process conformance can be computed, and
change operations can be formulated, if required. Considering state-of-the-art
governance reference processes as counterparts, detailed reports gain special im-
portance, referring to expert conformance check reports.

4 Related Work

In this section, we discuss related work from the field of process analysis, com-
parable to the IT Governance context of the work at hand (cf. Tab. 1).

Andrews et al. present both a technique and prototype tool for visual graph
comparison, which analyses similarities of given graphs and suggests a merged
graph [16]. The resulting graph can be manually edited by the process engineer
(e.g., replacing labels, changing node positions). The approach assumes the ex-
ternal provision of node similarities. Clearly, the emphasis lies on graphical graph
layouting and presentation to the process engineer for final visual assessment.

Dijkman presents a technique to identify the differences between EPC process
models. Besides the type of a difference, also the exact position of the differences
can be determined [17]. For this, the difference typology presented in [18] is for-
malised. For the actual computation, the author makes use of formal semantics.
Since the approach has exponential complexity, it requires repeated scoping of
the process models. The approach processes EPCs with a small number of start
events.

A further approach by Dijkman et al. [8] proposes the application of graph
matching algorithms to the problem of ranking business process models in a
given repository with respect to their similarity to a given process model. The
four heuristics presented are based on the graph-edit-distance algorithm, which is
NP-complete. To determine the similarity of the graph nodes, the node labels and
their types are compared using string-edit-distance measures. The approach does
not consider semantic similarity and does not indicate to the process engineer,
where similarities and differences are located within the process models. In [19],
the authors present several general basic approaches for process comparison,
partly used in their later contributions.

Küster et al. introduce an approach for comparing different versions of one
process model in the absence of a change log [20]. For the determination of differ-
ences, the authors make use of externally provided node correspondances, and
SESE fragments. Differences and derived change operations are then grouped
by associating them to the affected SESE fragments. Based on this, a hierar-
chical change log is composed, exploiting the nesting relationship of the SESE
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Table 1. Overview of related work

Publication D C M V SB IS ES BS SR SG MR

Andrews et al. [16] × – × × – – – – – – ×
Dijkman [17][18] × – – – – – – – – × ×
Dijkman et al. [8] × – – – × × – – – × –
Küster et al. [20] × × × × × – – – × – ×
Melnik et al. [21] – – – – × – – – – – –
Ehrig et al. [22][23] – – – – × × × – – – –
Dijkman et al. [19] × – – – × × – × – × –
Li et al. [24][25] × × – × – – – × – – ×
This approach × – – × × × – – × – –

Abbrev. Meaning Abbrev. Meaning
SB string-based similarity (labels)

D differences determination IS implicit semantics (for label match.)
C change suggestions ES explicit semantics (for label match.)
V visualization SR structural similarity (SESE regions)
M (semi-) autom. merging SG structural similarity (Graph-Edit Distance)
MR manual assignment required BS behavioural similarity

fragments and their associated change operations. The change log can be used
to resolve all or parts of the differences and to obtain a consolidated model. In
general, this approach primarily considers different versions of the same process
and does not account for models designed by different parties. Explicitly, a node
correspondences matrix is required. Application across tool boundaries, i.e., an
application area other than version comparison is not intended. In contrast, the
approach at hand explicitly targets the analysis of general governance processes,
modelled by different parties using different tools. It focuses on the identification
of process regions of conformance and non-conformance, as well as on decision
support for those regions where process conformance is initially unclear. In a
governance context, the computation of change operations is not useful in ev-
ery case – process conformance might be given, although the structure or the
ordering of some activities might not be similar, respectively.

The graph matching algorithm presented by Melnik et al. in [21] performs
a mapping between the corresponding nodes of two given graphs and can be
applied to different scenarios with diverse data structures (e.g., matching of
two data schemas in data warehousing applications). As pre-processing step,
the two data structures to be compared are converted into directed labelled
graphs. A similarity matrix constitutes the input for the next step, the so-called
similarity flooding. This step represents an iterative fixpoint computation to
determine the set of similar nodes. It is based on the assumption, that if two
nodes are similar, their adjacent nodes are more likely to be similar, and thus,
their similarity increases. For the determination of node similarities a simple
string-based comparison is used. The computation results in a mapping between
corresponding nodes. No differences are considered.

Ehrig et al. introduce a (semi-)automatic approach for the detection of sim-
ilar process elements in business process models based on semantic information
using ontologies [22]. To automatically compute similarities, the authors make
use of a description of Petri net elements based on OWL-DL, the Pr/T net on-
tology, introduced in [23]. For their comparison, the authors apply text-based,
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implicit and explicit semantic similarity measures resulting in a combined sim-
ilarity measure between concept instances. The similarity values of the concept
instances are aggregated to an overall similarity of the two process models. Node
similarities and process differences are not indicated.

Li et al. [24] develop an approach (“mining process variants”) for identifica-
tion of a generic process reference model for a given set of variants for integration
into Process-Aware Information Systems (PAIS). They identify activities to be
clustered as blocks based on an aggregated order matrix. The algorithm has a
complexity of O(n3) and is validated using simulation on 7000 process models
[25]. Referring to the blocks, they investigate the behaviour (ordering) of activi-
ties. As an activity assignment matrix is required as input, the central intention
is different from the approach at hand.

5 Conclusion

In this paper, we presented an analysis technique for process models, computing
similarities between activities as well as identifying related activity groups in
terms of structure and content (related clusters pairs). A related cluster consists
of a group of activities, all having one correspondent in the other process model,
respectively. Generally, clusters abstract from the behaviour of the comprised
activities. Using this technique, we are able to provide similarity values not only
for entire processes, but also cluster level similarities. Additionally, by merg-
ing clusters, the technique determines the position of supplementary or missing
activities (location of differences) and indicates activity order differences. Dur-
ing the computation, we identify largest-possible related clusters and compute
cluster types, structural characteristics, such as identification of alternating se-
quences and complex cluster types, as well as cluster similarity levels (content-
related vs. structure-related). Based on these information, detailed reports on
the similarity of process models are generated. These are useful for governance
purposes, e.g., supporting process conformance checks. The approach supports
automated investigation of process models concerning the conformance to gov-
ernance reference models.

The overall goal is to provide decision support for process owners on how to
adjust processes in order to map reference processes in the fastest and cheapest
possible way. The approach processes EPC models modeled by different parties
using different tools (using the same data format) in O(n3) time. We realised
our approach as a proof-of-concept prototype (ProMatch.KOM [26]). We are
currently performing evaluations using 50 EPC models from the reference model
“Handels-H“ [27], currently showing 85% average accuracy and an F1-Measure
of 92%. ProMatch.KOM has been implemented as plug-in for the process mining
framework ProM1.

As part of future work, we currently develop an IT Governance ontology
for process annotation. This way, a more precise description and matching of
1 http://prom.win.tue.nl/tools/prom/
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processes and activities is possible, improving analysis quality. Further, we will
address the analysis of complex EPCs by defining and computing a third level
of cluster similarity, the “partly related cluster pair”. Clusters of this type com-
bine nodes having correspondences with a minority of unassigned ones. In order
to make our approach comparable in terms of evaluation results, we will also
perform process model search on established test data sets.

Disclaimer

The project was funded by means of the German Federal Ministry of Economy
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