
Comparison and Retrieval of Process Models using Related Cluster Pairs

Michael Niemann, Melanie Siebenhaar, Stefan Schulte, Ralf Steinmetz

KOM – Multimedia Communications Lab, Technische Universität Darmstadt, Rundeturmstr. 10, 64283 Darmstadt, Germany

Abstract

Although increasingly IT-supported, effective techniques for process model retrieval and identification of process model differences
or changes – needed for a variety of management and conformance purposes – are still challenging problems in business process
management. Performing automated process comparison and finding relevant reference processes are not routine procedures for
today’s operational process repositories. Efficient combinations of similarity measures for various process model characteristics can
still improve the performance of process comparison and retrieval. The approach at hand introduces the concept of related cluster
pairs, parameterises it with semantic, string-based, and novel hybrid metrics for comparing process models, and defines a novel
similarity notion for process model retrieval. Evaluations with process data from the SAP reference model show that our approach
outperforms current related work and established text search engines.

1. Introduction

In times coined by constantly changing market conditions,
new competitive threats and increasing numbers of legal reg-
ulations, companies and their process management face new
challenges. The resulting flexibility challenges and the required
continuous adaptation of internal processes often exceed the re-
action and implementation capabilities of process repositories
at companies. The ability to react quickly and efficiently to
environmental changes by adapting strategy and procedures to
new conditions in a sustainable manner is considered to be a
crucial competitive factor [1]. Companies with high internal
flexibility potential are believed to more probably prevail in the
long term [2].

In recent years, companies have increasingly specified their
procedural knowledge as process models. Challenges that in-
volve the management of large process model repositories are,
however, manifold. Today, immense amounts of process mod-
els cause isolated storage of different versions or variants of
process models, models with overlapping application scopes,
and models at different granularity levels [3]. Efficient process
portfolio management that can cope with these increasing flex-
ibility challenges requires extended and improved functionality
of process model repositories. Common challenges cover, for
example, the realisation of process reuse, efficient storage of
large process model numbers, successful process comparison
and retrieval for various purposes, operation of effective variant
and version management, and implementation of reference pro-
cesses as well as conformance management [3]. The efficiency
of exploitation of procedural knowledge contained in a com-
pany’s process models bears improvement potential. However,
tool support addressing these challenges is yet scarce [4].
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Over the past years, a number of improvements for process
model matching and retrieval have been introduced. Amongst
others, contributions cover detailed investigations of various
node similarity metrics [5, 6], variant identification based on
structural decomposition [7], metrics based on graph matching
algorithms (e.g., [8, 9]), semantic approaches (e.g., [10]), and
behavioural similarity of process models (e.g., [11, 12]).

The approach at hand applies the concept of related clus-
ter pairs on both comparison and retrieval of process models.
We developed a technique to determine node-based differences
between two process models by disaggregating them into sub-
graphs that are related by similarity. The focus of the presented
approach is the investigation of node labels, rather than in-depth
analyses of structural or behavioural aspects. For the determi-
nation of word and node label similarity, we apply a number
of existing and novel node label similarity metrics. While the
resulting node assignments are used to identify the delta be-
tween two process models, we also use related cluster pairs to
calculate process model similarity. We apply this measure in
the context of process model retrieval and compare our results
to those achieved by established text search engines as well as
current related work. For both application scenarios, we per-
form evaluation experiments using the SAP reference model.

The remainder of this paper is structured as follows. We
discuss related work in Section 2. In Section 3, we introduce
the utilised similarity metrics and the word preprocessing tech-
niques we use. We outline the computation of related cluster
pairs and present a novel process model similarity measure in
Section 4. The evaluation of the approach in the first scenario,
comparison of process models, is presented in Section 5. In
Section 6, we test the process model similarity measure in the
context of retrieval of process models, which is evaluated us-
ing a second annotated test case that has kindly been provided
by the authors of [5]. Further, we discuss the used test case.
Section 7 concludes the paper.
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Table 1: Overview of related work
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Andrews et al. [13] – – – – – • – • •

Dijkman [14, 15] – – – – • • – – –
Dijkman et al. [5, 6] • • • – • – – – –
Ehrig et al. [10, 16] • • • • – – – – –
Küster et al. [7] – • – – • • • • •

Li et al. [12, 17] – – – – • • • – •

Lu and Sadiq [18] • – – – • – – – –
Madhusudan et al. [19] • • – – • • – – –
Melnik et al. [9] • • – – – – – – –
Minor et al. [20] • – – – • • – – –
Related Cluster Pairs • • • • • • – – •

2. Related Work

In this Section, we provide an overview of related approach-
es focusing on approaches that target structural and node label-
based similarity, as we can compare our technique with these
approaches in particular.

Andrews et al. [13] present an approach for visual graph
matching. The prototype analyses similarities of graphs and
suggests a merged graph, visualising the results. It provides
means to the user for final visual assessment and manual node
assignment in order to adjust the results. The user can manu-
ally edit the resulting graph by, for example, replacing labels or
changing a node’s position. The approach assumes the external
provision of node similarities.

Dijkman [14] outlines an approach to determine process
model differences of Event-driven Process Chains (EPC). A de-
tailed computation of differences is conducted, where the type
of a difference using the difference topology introduced in [15]
as well as the exact position of the differences is determined.
For the computation, formal semantics are utilised. The ap-
proach has exponential computation complexity and thus re-
quires repeated scoping of the process models. Manual node
assignments are required as input.

In [5], Dijkman et al. propose and compare three different
similarity metrics for the problem of retrieving business pro-
cess models in a given repository. In detail, they utilise label
matching similarity to determine the similarity of node labels,
structural similarity, and behavioural similarity to consider the
node labels and causal relationships in the model. For the se-
mantic node similarity, they consider word synonyms. The ap-
proaches determine a final similarity score, but do not indicate
the location of similarities and differences.

Ehrig et al. [10] propose a (semi-)automatic approach to
detect similar elements in business process models. The au-
thors compute similarities based on semantic information. They
make use of the Pr/T net ontology, which represents a descrip-
tion of Petri net elements based on OWL-DL introduced in
[16]. The actual comparison considers semantic and string-

based node similarity measures, which are combined to a sim-
ilarity measure for concept instances. The concept instances
are compared to each other and the similarity values are aggre-
gated to an overall similarity for the two process models. Node
similarities and process differences are not explicitly identified.

Küster et al. [7] introduce an approach for process model
comparison that compares different versions of a process model
in the absence of a change log. The authors use single-entry-
single-exit (SESE) fragments and assume externally provided
node correspondences based on string-based node similarity.
Based on the computation of differences, they derive change
suggestions. The differences and change operations are then
grouped and associated to the affected SESE fragments. The
information about the structural similarity and its association to
the SESE fragments permits to create a hierarchical change log
that can be applied to resolve all or parts of the differences in
order to obtain a consolidated model. The approach was de-
signed to consider different versions of the same process model
and has not been evaluated.

Li et al. [12] introduce an approach for a Process-Aware
Information System that identifies a generic process reference
model for a given set of variants. Based on an aggregated order
matrix, they determine activities to be clustered as blocks. Re-
ferring to the blocks, they investigate the behavioural similarity
(ordering) of activities. The algorithm is validated using simu-
lation on 7000 process models in [17]. The activity assignment
matrix, however, is an external requirement.

Lu and Sadiq [18] propose a search approach for retrieving
process variants based on the identification of process model
fragments. Given a process query, they use three basic struc-
tural similarity measures (equality, subsumption, and implica-
tion). They consider a number of features per process model
and define a similarity function for each of them. The authors
do not evaluate their approach.

Madhusudan et al. [19] propose a case-based reasoning ap-
proach for workflow modelling and design support. Their ap-
proach is based on the so-called similarity flooding by [9]. It
consists of a structural process similarity for retrieval, and is
based on initial similarity values. The authors state that these
values are based on “Natural Language Processing and string-
matching techniques”. They do not provide an evaluation of
their approach.

Melnik et al. [9] present a further graph matching algorithm
that determines a mapping between the corresponding nodes
of two given graphs. The approach is applicable in different
scenarios with diverse data structures, such as matching of two
data schemas in data warehousing applications or comparison
of process model graphs. The similarity flooding represents an
iterative fixpoint computation to determine the set of similar
nodes. It is based on the assumption that two nodes are more
likely to be similar if their adjacent nodes are similar. For the
determination of node similarities they use a string-based node
similarity. A computation of differences is not performed.

Minor et al. [20] propose an index-based retrieval approach
for workflows. The approach targets the search among past or
changed workflows to assist authoring of recent workflow in-
stances. They apply structural similarity using graph-edit dis-
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tance and do not provide an evaluation.
Generally, for process models, the notions of node label

similarity, structural similarity, and behavioural similarity are
distinguished. Van der Aalst et al. [11] provide an approach for
comparing a process model with a set of event logs based on
a behavioural similarity measure. Further approaches consider
behavioural similarity for process models [5] and state charts or
finite state machines [21, 22]. The problem of correct node as-
signments, however, represents a fundamental requirement for
fully automated process comparison and retrieval approaches,
which in turn consider, for example, structural or behavioural
process characteristics. Further, it can directly affect the re-
sults of these relying approaches, if improved. For this purpose,
amongst others, we investigate the integration of semantic node
label similarity metrics

Mendling et al. [23] provide interesting related fundamen-
tal research in this respect, although their intention is slightly
different from the one at hand. They classify verbs occuring in
node labels of the process models in the SAP reference model
using two established verb classification schemes. Based on
the most frequently occuring verb classes, they propose a set of
icons to support process modelling practice. Performing a gen-
eral classification of node labels using the two schemes, their
approach achieves a coverage of 0.68 and 0.44, respectively. As
a general problem, they identify missing specificity of node la-
bels (e.g., by frequent usage of the verb “to process” in labels).
The authors do not aim at investigating the quality of the clas-
sification nor do they provide details of the approach. Differing
from their approach, we use (amongst others) a technique from
natural language processing (NLP), lemmatising, and test it, on
annotated test sets, aiming at improving current classification
result quality.

The approach at hand combines a variety of label-based
similarity approaches to tackle this problem. We apply string-
based and semantic similarity measures, and by their combina-
tion create hybrid similarity measures. It is the general focus
to improve the exploitation of label meanings using consider-
ate word preprocessing and reduction techniques in order to
improve assignment quality. Additionally, we simultaneously
consider node label similarity and structural characteristics of
process models. In contrast to Ehrig et al. [10], we do not de-
mand explicit semantic description (e.g., using ontologies), but
rely on and exploit the meaning of words in the context of their
label(s). As a core part of our approach, we compute word and
node label similarities for process model comparison and re-
trieval, where a node label is a sequence of words. Based on
these, we determine node assignments, region differences, sim-
ilarities of process model fragments, and the similarity of pro-
cess models.

3. Similarity Measures and further Preliminaries

In this section, we outline the fundamentals of our approach.
In particular, we introduce the node label similarity measures
and word preprocessing techniques we use. For each measure,
we provide an example calculation including nodes from the

process model pair shown in Figure 2 (on p. 6). Further, we
introduce a definition for process model graphs.

Throughout our approach, we consider process models as
graphs we call process model graphs (PMG).

Definition 1 (Process Model Graph). Let G be a graph G =

(V, E), Λ be a set of labels and Θ be a set of types. A process
model graph P is a directed, weakly connected graph defined
as tuple P = (V, E, λ, τ, α), where:
− V is a finite set of nodes,
− E ⊆ (V × V) is a finite set of edges,
− λ is a labelling function: λ : (V ∪ E)→ Λ that assigns

labels to nodes and edges,
− τ : (V ∪ E)→ Θ assigns types to nodes and edges, and
− α : (V ∪ E)→ (A→ Λ) assigns attributes to nodes and

edges, where A is a set of attributes that are assigned
labels.

In particular, the sets A,Θ and Λ all include ε (the NULL ele-
ment).

This definition (adopted from [5]) for process model graphs is
applicable to describe a variety of graph-based process descrip-
tion languages, including EPC.

3.1. Word preprocessing
In all cases, we perform preprocessing of words. Gener-

ally, we transform labels to lower case and remove punctuation
(.,-;/) as well as single-character-words, and perform stop
word removal. Stop words are frequent function words (such
as “the”, “as”, “in”, “over”, “by”, ...). We decided, however,
not to remove words like “with”, “without”, “needs”, “not” or
similar ones that are part of common stop word lists, as these
can influence and essentially coin the meaning of the activity
label they are part of. The intention is to avoid turning node
labels with conflictive meaning using similar words into sen-
tences with similar meaning, e.g., “Capacity is available” and
“Capacity is not available”1. This is a common problem in NLP
that must be coped with.

When applying string-based measures, we optionally use
Porter’s stemming algorithm [24]. Stemming is a rule-based
method to reduce similar words to a simple stem. For the words
“orders”, “warehousing”, “adjusting”, and “receive”, the results
of Porter’s algorithm are “order”, “wareh”, “adjust”, and “re-
ceiv”, respectively. Further, we consider the usage of a more
advanced method than stemming for word reduction, lemma-
tising, useful. The lemma of a word is its actual base form.
This reduction techniques preserves the word meaning. Lem-
matising, however, requires and depends on the part-of-speech
(POS) of a given word. For example, “purchasing” can be lem-
matised to the verb “purchase” or the noun “purchasing”, de-
pending on the context. If these information are given, words
can be automatically reduced to their base form, such as “are”
to “be”, “communities” to “community”, and “warehousing” to
“warehouse”. We use the lemmatising approach introduced and
realised by Schmid (1994) [25].

1This is the case in process model ID 1In b7s7 in the SAP reference model.
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3.2. String-based node label similarity

String-based metrics calculate the similarity of given words
or sentences based on their syntactic elements (characters) with-
out regarding their meaning. In the following, we introduce the
measures we use. For each one, we provide an example us-
ing nodes from the examplary process model pair provided in
Figure 2.

A common string-based similarity measure is Levenshtein’s
string-edit-distance. For two strings, or node labels L1 and L2,
it computes insert and deletion operations required to transform
L1 into L2. Each operation is assigned a cost of 1. The sum is
the result of the metric lev(L1, L2) [26]. We apply the metric
simLev defined as

simLev(L1, L2) = 1 −
lev(L1, L2)

max(|L1|, |L2|)
, (1)

where |L1| designates the length of string L1 in terms of charac-
ters. The strength of this metric is the identification of the same
characters for words occurring in the same sequence. Simple
plurals, word variants, or verb conjugations are generally well
recognised by this measure. Referring to the example in Fig-
ure 2, the similarity value for the labels “transfer to warehouse”
(node g) and “warehousing” (node y) is 0.33 (using stop word
removal).

In order to address its deficiencies, e.g., in case one of the
two labels to be compared contains long additional words, or
when processing alternating words (e.g., “transferring to ware-
house” and “warehouse transfer”, where lev = 0.11), we use
the Jaccard distance measure [27, 28] simJac as set metric. A
set is assumed to be a sequence of words, divided by a common
separator. A set A of length |A| = n is supposed to consist of
n words referenced as Ai. Especially, the union A ∪ B does not
contain identical words. simJac divides the number of identical
words by the number of all (differing) words:

simJac(L1, L2) =
|L1 ∩ L2|

|L1 ∪ L2|
. (2)

For example, the labels “transferring to warehouse” and “ware-
house transfer” are assigned a similarity value of 0.25, using
stop word removal and lemmatising even 1.0. Referring to Fig-
ure 2, the similarity simJac( f , x) equals to 2

3 .
As this measure proceeds from word level, simple word

variants are not understood as the same word. The labels “trans-
fer to warehouse” and “warehousing”, e.g., are not recognised
as similar. Word preprocessing or the combination with other
metrics normally remedy this deficiency (cf. Section 3.1).

3.3. Semantic node label similarity

However, string-based similarity metrics for node compa-
rison can lead to significantly wrong similarity interpretations.
Comparing “goods” to “good”, as well as “procurement” to
“purchasing”, for example, leads to undesired results. Automati-
cally revealing relationships in these cases requires the consul-
tation of word corpora or lexicons. These are mostly repre-
sented as graphs based on word senses like, e.g., the Word-

Net corpus [29]2, or Wikipedia3. Semantic measures that can
be used for label comparison are amongst others introduced in
[10, 29, 30]. As semantic measures generally compute the sim-
ilarity for two words, word similarity values need to be aggre-
gated on node label level. For this, we use additional aggregat-
ing functions.

As semantic similarity indicators, we use three metrics: a
word synonym and a word distance metric both based on Word-
Net, as well as the “distributional semantic first order” based on
Wikipedia. Again, we provide examples referring to the process
model pair provided in Figure 2.

WordNet contains the most frequent English words, organ-
ised in synsets. A synset is a collection of synonymous words.
As a word can have more than one meaning, each word can be
contained in several synsets. So, using WordNet, we can sys-
tematically derive a set of words that share any of the meanings
of a given word. By simws

a (w1,w2), we calculate the similarity
of two words (w1,w2) based on their WordNet synsets:

simws
a (w1,w2) =


1 if w1,w2 are identical words
a if ∃ synset S with w1,w2 ∈ S
0 otherwise

(3)

The metric assigns two identical words the value 1.0, while the
similarity of synonymous words is indicated by the parameter
a (with 0 < a < 1). However, this definition does not provide
the aggregation of word similarities to node label similarities.
In preliminary experiments, we identified two scenarios with
acceptable results, depending on the aggregation function and
the parameter a.

In the first one, we choose a = 0.75 and aggregate by taking
the mean value of the word similarity values. This metric has
also been specified in [6]:

simSmean (L1, L2) =
|L1 ∩ L2| +

∑
(v,w)∈L1\L2×L2\L1

simws
0.75(v,w)

max(|L1|, |L2|)
(4)

In the second scenario, we use the Monge Elkan similarity
metric simME as aggregating metric. It is defined as

simME(A, B, simM) =
1
|A|

|A|∑
i=1

|B|
max

j=1
simM(Ai, B j), (5)

where simM can be any metric that operates on words [31]. This
metric also uses the dissection of labels into words as outlined
prior to Equation 2. As above, the metric distinguishes atomic
strings and subfields. An atomic string is either a single word
or an abbreviation, while a subfield is a part of a field (or word
set) containing atomic strings, i.e., an atomic string represents
the smallest, possible subfield. In order to determine the degree
of similarity between two given fields A and B, a subfield wi

of the first field A is compared to every subfield of the second
field B. The metric returns the mean of the maxima of all w j.
For computation of the similarity, the metric wraps the metric
simM(Ai, B j).

2http://wordnet.princeton.edu
3http://wikipedia.org
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We choose the Monge Elkan as the aggregating metric and,
based on the results of preliminary experiments, define a = 0.5
for the second synonym metric:

simSME (L1, L2) = simME(L1, L2, simws
0.5) (6)

As an example, consider the two node labels “client order
processing” and “handling of customer order”. Using stop word
removal, the result using simSmean is 1.0+0.75+0.0+0.0+0.0

3 = 0.583,
and using simSME it is 0.5+1.0+0.0

3 = 0.5. In the process model
pairs given in Figure 2, for example, the nodes g and y are as-
signed a similarity value of 0.50 by both metrics (using stop
word removal and lemmatising). Again, slight word variants
such as plural forms, are not recognised as identical words un-
less word preprocessing is performed.

However, for example, the relationship between “purchas-
ing” and “procure” is not identified by these measures. Terms
that are not synonyms but still relate, such as hypernyms or hy-
ponyms, are not considered. Therefore, we use a further metric,
the word distance. Based on WordNet, it refers to the length of
the shortest path between two words w1 and w2 in the WordNet
taxonomy (δWordNet(w1,w2)). In order to process label pairs, we
define ∆WN(L1, L2) as

1
|L1 \ L2|

∑
w1∈L1\L2

min
{
δWordNet(w1,w2) | w2 ∈ L2 \ L1

}
. (7)

The metric removes identical words from both labels. We con-
sider all possible POS and word relations (e.g., hyponym, hy-
pernym). The metric calculates the mean of the minimum val-
ues of the distances per word in L1 and all words in L2. We
define the inverse WordNet distance as

simWND(L1, L2) =
1

∆WN(L1, L2)
. (8)

A strength of this metric is the recognition of definite word rela-
tionships that are not identified as being synonyms. The short-
est path between the words “procure” (node b in Figure 2a) and
“purchasing” (node n in Figure 2b), e.g., is 4, leading to a sim-
ilarity value of 0.25.

WordNet is a collection of selected word meanings, whose
relationships are professionally maintained. Thus, its cover-
age of word meanings is limited. As a valuable resource for
word meanings, Wikipedia, in contrast, is constantly updated by
thousands of volunteers. Word relationships are not explicitly
defined in Wikipedia. Therefore, we compute the corpus-based
similarity of words using the so-called “distributional semantic
first order similarity” measure by Lin [30]. Two given words
w1 and w2 are compared by their dependency triples using a
context window size of ±3 words. Moving the window over the
corpus results in a set of dependency triples for a given word
wx. A dependency triple is of the form (wx, r,w′), where wx

represents the word whose context is examined, w′ is a word
occurring in the context of wx, and r refers to the relationship
between wx and w′ (i.e., the relative position of w′ with respect
to wx) [30].

simLin(w1,w2) =

∑
(r,w′)(w1, ∗r, ∗w′ ) + (w2, ∗r, ∗w′ )∑
(r,w′)(w1, ∗, ∗) +

∑
(r,w′)(w2, ∗, ∗)

(9)

Cluster 
Determination

Correspondences
Determination Determination 

of Related
Cluster Pairs 

Computation of
Process Model
Similarity

A

B C D

Related
Cluster
Pairs 

Node
Assignments

Clusters

Figure 1: Computation of Related Cluster Pairs

The measure is based on the assumption that the similarity bet-
ween two words can be expressed as the amount of information
contained within the dependency triples which are common to
both words, divided by the amount of information contained in
all the dependency triples of w1 and w2 that match the pattern
(w1, ∗, ∗) and (w2, ∗, ∗), where ∗ is a wildcard for r and w′, re-
spectively. For application on node labels we define simSFO:

simSFO(L1, L2) = simME(L1, L2, simLin) (10)

The metric identifies word similarities exceeding synonym re-
lationship, based on the linked context in the Wikipedia corpus.

Using this measure, for example, the node labels “deter-
mine level of significance” and “assess relevance” have been
correctly matched in our experiments, although only two out
of six words are synonyms. Further, the example provided in
Figure 2 has been computed using this measure. The computed
similarity values are provided in Table 2.

4. Related Cluster Pairs

Related cluster pairs represent mutually assigned (as well as
unassigned) subgraphs of graph-based process models (PMG)
containing pairwise assigned nodes (cf. [32]). Their computa-
tion consists of three major steps (cf. Sections 4.1, 4.2, and 4.3)
and a fourth step (cf. Section 4.4) that covers the computation
of the process model similarity (cf. Figure 1). Additionally, we
outline these steps along an example provided in the Figures 2
and 3, as well as Table 2. In Section 4.5, we discuss the com-
putational complexity and limitations.

4.1. Correspondences Determination

In step A, node correspondences are determined. We apply
a number of measures covering word similarity and node label
similarity, as well as word preprocessing techniques (cf. Sec-
tion 3). In order to achieve optimal unique node assignments (in
terms of calculated similarity), the resulting matrix is optimised
by solving the assignment problem. Hence, this step consists of
two inner steps: determine potential match candidates per node
(A1), and solve assignment problem (A2).

As part of A1, per node type, all nodes of one graph are
compared to all nodes of the other graph. We compute simi-
larity values for node pairs using the introduced word prepro-
cessing techniques (cf. Section 3.1), the measures outlined in
Sections 3.2 and 3.3, as well as combinations of them (hybrid
measures). All measures calculate a value for a given label pair
(λ(n1), λ(n2)) for nodes n1 and n2. Generally, we consider two
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Figure 2: Example pair of process models: visualisation of determined clusters (grey rectangles)

nodes similar concerning a metric simi, if the similarity value
of their label pair exceeds a threshold ti: simi(λ(n1), λ(n2)) ≥ ti.
Further, in this case, we call node n1 correspondent of node n2.
For the hybrid measures, we use the following weighting (⊕):

sim(n1, n2) = wSem simSem(n1, n2) + wStr simStr(n1, n2), (11)

where wSem + wStr = 1 and 0 ≤ wSem,wStr ≤ 1.
Node pairs with a similarity value above a threshold t are

added to a match list which is specified for each single node.
We learn the thresholds for the measures by cross-validation
(cf. Section 5.1). All other nodes are added to a list of unas-
signed nodes. After computation, every node’s match list con-
tains all potentially corresponding nodes of the other process
model graph in terms of similarity. Combining these match lists
results in an m × n-assignment matrix (with m and n indicating
the respective node counts).

In the second step (A2), the node assignment matrix is opti-
mised by solving the assignment problem. We use it for maxi-

Table 2: Similarity values and node assignments for process
models P1 and P2 (cf. Figure 2) using the measure simSFO

n ∈ P1 List of match candidates from P2

a m: 0.6806 w: 0.0288 r: 0.0268 q: 0.0242 o: 0.0232
z: 0.0211

b n: 0.0332
c r: 0.3402 w: 0.0337 z: 0.0276 o: 0.0215
d q: 0.5040 x: 0.3352
e t: 0.0208
f x: 0.6685 u: 0.5155 q: 0.5168 w: 0.0246
g y: 0.5065
h z: 0.6701 p: 0.3422 w: 0.0254 r: 0.0226 m: 0.0221
i u: 0.5155
j v: 0.5121 t: 0.0216
k w: 0.5030 u: 0.0360 q: 0.0258 r: 0.0257 z: 0.0238

m: 0.0231 x: 0.0208
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mising the overal sum of similarity values of selected node as-
signments. We further assume, without loss of generality, that
the larger process model contains n nodes, i.e., n ≥ m. Fur-
ther, when comparing two process models based on nodes, node
counts most probably differ. As the original assignment prob-
lem deals with square assignment matrices, we modified the
problem model to fit rectangular matrices according to the pro-
posal by Bourgeois and Lassalle [33, 34]. This way, the re-
sult of the algorithm – additionally to the optimal assignments
concerning similarity values – indicates all nodes that are not
assigned a correspondent in the other process model. To al-
low unassigned nodes in the smaller model, we ignore all as-
signments between nodes with a similarity value of zero that
have been selected by the algorithm. According to Bourgeois
and Lassalle [33], the mean execution time of this algorithm is
O(cn2m), where c is a constant (and n ≥ m).

As an example, Table 2 provides the similarity values and
node assignments determined for the process model pair shown
in Figure 2. For this example, we used the measure simSFO

(cf. Equation 10). Nodes from P2 that do not appear in the lists
have been assigned a similarity value below the threshold (here
t = 0.02) for the respective combination. Underlined node IDs
indicate that the correspondig node from P2 has been assigned
to the respective node from P1.

4.2. Cluster Determination

In parallel to step A, in step B, we consider structural pro-
cess fragments, i.e., SESE regions and clusters. SESE regions
are subgraphs of a process model graph having but one incom-
ing and one outgoing arc. They were originally introduced for
the construction of program trees in compiler analysis [35, 36],
and have also been applied to process model variant analysis of
process models [7]. The basis for related cluster pairs are the
the so-called clusters that are, intuitively, typed SESE regions.
Clusters are defined as follows.

Definition 2 (Cluster). Let P = (VP, EP, λP, τP, αP) be a PMG
and Θ a set of cluster types. A cluster L in P is a connected
subgraph (V, E, λ, τ, α, t) such that
− V ⊆ VP (nodes) and E ⊆ EP (edges)
− S = (V, E) is a SESE region:
|{(u, v) | (u, v) ∈ EP ∧ v < V}| = 1 ∧

|{(u, v) | (u, v) ∈ EP ∧ u < V}| = 1
− λ = λP, τ = τP and α = αP are functions as in Def. 1
− the function t : {L} → Θ assigns a type to the cluster

The set of cluster types Θ covers clusters that contain single
nodes, node or cluster sequences, node or cluster loops, and
split/join constructs of nodes or clusters. Trivially, each node
that is not a gateway represents a cluster. Further, clusters are
typically part of parent clusters, i.e., represent nested clusters.

Figure 2 shows all clusters that have been identified for an
exemplary process model pair. Clusters are shown as grey rect-
angles and are either nested or disjoint. In the next step, these
structural information are combined with the node similarity
values computed for each node pair.

4.3. Determination of Related Cluster Pairs
Based on the determined node assignments and identified

clusters, in step C, related cluster pairs are determined. For
their computation, the information about node similarity and
process regions are combined.

Definition 3 (Related Cluster Pair). Let L1 and L2 be clusters
L1 = (V1, E1, λ1, τ1, α1, t1) and L2 = (V2, E2, λ2, τ2, α2, t2), and
VQ ⊆ (V1 × V2) a set of nodes. A related cluster pair Q is de-
fined as Q = (VQ, simNode, t), where simNode is a node similarity
function and t a similarity threshold t ∈ R with 0 ≤ t ≤ 1.
For all (x, y) ∈ VQ, the following conditions must hold:
− simNode(λ1(x), λ2(y)) ≥ t (Similarity of nodes)
− @(v,w) ∈ VQ : v = x ∨ w = y (Unique node assignments)
− τ1(x) = τ2(y) (Equality of node types)
− tL1 (L1) ∼ctSim tL2 (L2), (Similarity of cluster types)

where ∼ctSim is a binary relation specifying the similarity of the
cluster types contained in Θ (cf. Def. 2).

Initial related cluster pairs consist of two smallest possible sub-
graphs (clusters) in different models, each consisting of at least
one node (e.g., “Cluster 12” in Figure 3). In order to form the
largest possible related clusters pairs, clusters are merged in a
hierarchical as well as sequential manner. Adjacent initial re-
lated clusters pairs and unrelated clusters are simultaneously
enlarged, respectively. As result, all unassigned nodes are also
organised in clusters. While the latter are merged per model, the
merging of the first ones is model spanning and adheres to con-
ditions. The first condition demands from an adjacent node B to
node A in model P1, that its corresponding node B′ in model P2
is adjacent (on the same side) to A′, which is the correspondent
to A. The second condition is, that the resulting node groups
must in turn be (related) clusters.

The aggregation of neighbouring clusters creates sets of lar-
gest possible related clusters. The result of the computation of
related cluster pairs contained in the process model pair from
Figure 2 are shown in Figure 3. Referring to P1 in Figure 3a,
cluster 11 has been constructed from three one-node-clusters.
The size of three nodes could be realised, because three similar
nodes have been found in P2 (Figure 3b). For clusters 3 and 4
in P1 (cf. Figure 3b, cf. also Figure 2a), for example, this is not
the case.

Using this technique to decompose process models, we are
able to identify differences between the models, to determine
the similarity of cluster subgraphs, and to infer an overall simi-
larity notion for process models (cf. Section 4.4). The compu-
tation and results visualisation (cf. Figure 3) has been realised
as a plug-in for ProM4.

4.4. Process Model Similarity
Based on the information gathered throughout the compu-

tation of related cluster pairs, we define a novel process model
similarity measure (step D). The related cluster pairs used for
the computation of the similarity of process model graphs P1
and P2 are shown in Figure 3.

4cf. http://www.promtools.org/prom5/
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Figure 3: Identification of related cluster pairs: computation results.

Let N be the set of all nodes of P1 and P2, i.e., N = VP1 ∪

VP2 . Based on the identified related cluster pairs, we classify all
nodes in N into two disjoint node sets A and U, i.e., A∪U = N
and A∩U = ∅. The set of nodes with assigned node correspon-
dents is denoted as A =

{
n ∈ N | simNode(n, ·) ≥ t

}
. For simNode

and t we refer to Definition 3, while we define simNode(n, ·) as
the similarity value for node n, calculated by simNode for the as-
signment to its correspondent. Analogously, U is the set of all
unassigned nodes from N, i.e., all nodes residing in unrelated
clusters: U = N \ A. For a related cluster pair consisting of
clusters L1 (in P1) and L2 (in P2), we refer to the number of
nodes contained in cluster L1 (n ∈ VL1 ) with

∣∣∣VL1

∣∣∣ (cf. Def. 3).
Further,

A =

mmax⋃
i=1

Ai and Ak = {n | n ∈ VL ∧ |VL| = k} (12)

where i, k ∈ N and mmax indicates the size of the largest related
cluster pairs of the current comparison, and VL is the node set

of a cluster L. Each node n ∈ Ak is contained in a related cluster
L with node size |VL| = k. Accordingly, for example, A3 refers
to the node set that is part of related cluster pairs with size 3.

Based on these definitions, we define the node-based simi-
larity simNode

PM (P1, P2, simNode) of two process models P1 and P2
as follows:∑

ni∈A1
simNode(ni, ·) +

∑mmax
m=2 (1 + q(m))

∑
n j∈Am

simNode(n j, ·)

|A| + |U | +
∑mmax

m=2 q(m) · |Am|

(13)
As weighting function q : N → N, we use q(m) = m + 1,
where m is the index of A, i.e., the number of nodes the cur-
rent cluster contains. While smallest clusters (with size 1) are
generally weighted with 1, all other clusters are weighted ac-
cording to their node size. The larger a cluster is, the higher are
the weights for the contained node similarity values; q specifies
the intensity of the weighting. The overall similarity measure
represents a dynamic weighted average based on q. Our metric
hence emphasises large similar node sequences.
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As an example, let P1 be the model shown in Figure 3a
and P2 be the one outlined by Figure 3b. We use the simi-
larity metric simNode = simSFO, i.e., the distributional seman-
tic first order based on Wikipedia (cf. Eq. 10) and the thresh-
old t = 0.02 (that has been learned using cross validation).
Note that the metric does not consider gateways of EPCs, the
numbers of nodes hence refer to functions and events only.
While their total number is |N | = 25, we see that |A| = 22
nodes have correspondents and |U | = 3 do not. With, obvi-
ously, mmax = 3, we retrieve |A1| = 6, |A2| = 4, and |A3| = 12
(cf. Eq. 12). With q(m) = m + 1, we calculate for the metric
simNode

PM (P1, P2, simSFO) =
1.73+(1+3)·1.4276+(1+4)·6.7518

22+3+3·4+4·12 = 41.1994
85 ≈

0.4847. Generally, the two related cluster pairs containing 3
nodes in each model are strongly emphasised, i.e., weighted
five times higher than single assigned nodes. Cluster 5 with a
very low similarity value and the 3 unassigned clusters decrease
the overall similarity value.

4.5. Computational Complexity and Limitations

Generally, the primary intention of this approach is to im-
prove node assignment quality, rather than to provide a very ef-
ficient approach. As also experienced in [5], the computation of
string-based metrics is “very fast”. Additionally, in our imple-
mentation, the runtime of dictionary lookups for the semantic
metrics could be significantly improved by implementing sim-
ple cache mechanisms. For example, the runtime for the com-
putation of the related cluster pairs in the process model pair
shown in Figures 2 and 3 took 217 ms. While the runtime of
a specific computation heavily depends on the available com-
putational power and the efficiency of the implementation, the
O-Notation provides general comparability.

Concerning the computational complexity of this approach,
the calculation of the correspondences matrix is O(mn) for n
and m nodes of the two models, respectively, where n > m,
without loss of generality. The implementation solves the as-
signment problem, whose processing costs O(n2m) [37, 38].
The complexity of the computation of the clusters (and initial
SESE regions) is O(e), where e refers to the number of edges of
a graph [36]. Graphs of business process models are typically
weakly connected, so the number of edges in a graph with n
nodes should not exceed n2.

Summarising, the worst case computational complexity of
our approach is polynomial and depends on the complexity of
solving the assignment problem, which is a requirement for the
computation of node mappings.

Concerning limitations, process behaviour has, so far, not
explicitly been considered. We include structural investigations
that, e.g., demand the same order of activities in clusters and
distinguish cluster types. However, gateway semantics, for ex-
ample, are not considered so far, although their inclusion is
thinkable. On word level, we experience common NLP chal-
lenges such as stopwords as “not”. Further, often words refer
to meanings that are too specific such that they are not covered
by word lexica (WordNet or Wikipedia). For process models
including many gateways compared to the node count, the de-
termined related cluster pairs tend to be of small sizes (scattered

node assignments), which affects the results of the process sim-
ilarity measure. In this case, the process similarity considera-
tions for the retrieval scenario are reduced to pure node label
similarity, neglecting parts of structural information. As coun-
termeasure, the weighting function q(m) can be set to an ex-
tended linear (e.g., q(m) = cm + d) or polynomial variant (e.g.,
q(m) = cmd), in order to increase the emphasis on clusters of
size 2 (assuming there are very few clusters that are larger).

5. Process Model Comparison

In the first scenario, we assess the approach’s quality of
identifying (correct) node assignments.

5.1. Evaluation Setup

We evaluated the approach using the 604 processes from the
SAP reference model. We randomly selected 48 processes from
the collection. For the evaluation, we modified each of them,
forming 48 pairs of process models. We applied the following
modification types:

(LC) Node labels of the original process model were changed
such that, to a person (non-expert), the meaning remains
the same. This variation is intended to challenge the ap-
proach’s label matching ability.

(LS) Additionally to LC, nodes have been randomly deleted
or new ones have been inserted. Nodes are reordered by
randomly swapping two functions and/or two events, re-
spectively.

We perform these modifications in three modification intensi-
ties r1, r3, and r6. While in r1, 10% of the nodes (not consider-
ing gateway nodes) of a process model are subject to modifica-
tion, in r3 and r6 we change 30% and 60%, respectively. This
results in 6 evaluation classes. In LCr3, for example, 30% of
the nodes’ labels are modified.

In order to produce unbiased results, we perform a 3-fold
cross-validation for each metric. Each fold contains 16 process
pairs. The training set consists of 32 process pairs (2 folds), and
we test the learned configuration on the remaining test set of
16. As baseline for our consideration, we use the Levenshtein
distance (Eq. 1).

To assess the quality of the matching approach, we make
use of match accuracy for automated matching tasks [9]. This
metric evaluates the quality of matching algorithms that require
human quality assessment. The metric is based on the effort a
user needs to convert an automatically created matching result
S = {(s1, t1), ...(sn, tn)} suggested by the matching algorithm
into the correct result P = {(p1, r1), ...(pm, rm)}, where s, t, r, p
are nodes, and n the number of predicted matches and m the
number of right matches. The required effort is measured in
terms of adjustment operations (additions and deletions) pro-
ceeding from S . The match accuracy is defined as [9]:

AccMatch = 1 −
(n − c) + (m − c)

m
=

c
m

(
2 −

n
c

)
, (14)
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Figure 4: Cross-validation results (accuracy per metric)

where c = |S ∩P| is the number of correct suggestions. (n−c) is
the number of false positives (to be deleted from S ), and (m−c)
the number of false negatives (to be added to S ). If the matching
process would be performed manually, m add operations would
be required.

In this context, the recall of a metric ( c
m ) is the number

of correctly predicted matches by the number of all matches.
Precision ( c

n ) corresponds to the amount of correctly suggested
matches in the set of predicted matches. A way to consider both
qualities is the F1-measure, calculated as the harmonic mean of
precision (Prec) and recall (Rec) [27]: F1 = 2·Prec·Rec

Prec+Rec .

5.2. Evaluation Results

We performed a cross-validation evaluation on the described
test data for each of the following single metrics: the Leven-
shtein string-edit distance simLev, the Jaccard coefficient simJac,
the synonym measures simSmean and simSME , the WordNet word
distance simDist, and the semantic first order measure simSFO

based on Wikipedia.
The results show that the baseline, the Levenshtein distance

at 85.33% accuracy, is outperformed by all of the other metrics
(cf. Figure 4 and Table 3). Among the string-based metrics,
the Jaccard coefficient simJac performs best with an accuracy
of 87%. The WordNet distance does not perform much bet-
ter than the baseline. In contrast, the synonym functions based
on WordNet reveal clearly better results than the string-based
metrics. Best performing among the semantic metrics, and far
better than the Jaccard metric, is the synonym measure simSME

using the synonym constant 0.5 and the Monge Elkan metric as
aggregating metric (92% accuracy). The other synonym mea-
sure simSmean follows closely at 91% accuracy. However, it is
not as stable as simSME concerning the similarity threshold.

In order to achieve further improvements, we combine string-
based and semantic metrics, that performed best in these exper-
iments. Accordingly, we created the following hybrid metrics

using the weighted combination ⊕ specified in Eq. 11: simJSME ,
simJF, simLSME , and simLF (cf. also Table 3).

Clearly, the metric simLSME outperforms all other metrics at
an accuracy value greater than 94% on unseen data as average
of three folds. Second ranks simJSME (92.61%). As part of the
results of simLSME , concerning the modification type LS , the
average accuracy (of the 24 contained pairs) is at 93%, while for
LC it equals to 97%. For the modification classes LS r1, LS r3,
and LS r6, the average accuracy values are at 97%, 95%, and
87%, respectively. With increasing modification intensity, the
accuracy decreases. However, increasing the count of changed
nodes by 50% only results in about 10% performance loss.

The threshold and weight values for the string-based part
(wStr) that were learned for each metric during the evaluation
are outlined in Table 3. Apart from the mean values (across
folds), the standard deviations indicate the stability of the met-
ric concerning its parameters. For half of the single metrics,
the threshold and the weight have been determined unambigu-
ously (standard deviation of 0.0). In particular, all metrics that
performed best (simJSME , simLSME , simSME ), excel concerning pa-
rameter stability.

Concluding, the evaluation shows that the metrics provide
promising results concerning work assisstance compared to man-
ual comparison. The accuracy values of the best metrics are
clearly beyond 90%, the F1-measure clearly greater than 95%.
Our hybrid metrics clearly improve the results achieved by the
respective single metrics. The top metrics (simJSME and simLSME )
provide reliable results, independent on their training data. Fur-
ther, the hybrid metrics we specified do not only reveal the best
results, but also are the most stable metrics on unseen data.

6. Process Model Retrieval

In the second scenario, we apply the related cluster pair
approach on retrieving similar process models given a query
model. For the selection of the metrics, we use information
concerning performance and parametrisation learned during the
first scenario’s evaluation.

6.1. Evaluation Setup

We performed the evaluation using the same set of 604 pro-
cess models as described above. In particular, we used the same
test case as used in [5], consisting of 100 randomly selected
process models that form the process repository and 10 query
models (taken out of the 100). Pairwise, two query models have
been changed according to 5 modification types. Two models
(1+2) have not been changed at all. Models 3 and 4 have been
subject to label change. Labels are changed without changing
the meaning for a human reader, challenging the label matching
ability. Two further models have been reduced to approximately
50%-subgraphs of their own (5+6) as a structural variation. In
two models (7+8), the connectors of the original model were
randomly changed to different connectors, affecting at most the
model’s behaviour. The last two models have been modified by
randomly swapping of function pairs and event pairs (9+10) to
create structural and behavioural changes.
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Table 3: Cross validation results for process model comparison

Accuracy F1 Mean values for
Metric Id. Eq. [%] [%] Threshold Weight wStr

Single string-based metrics
Levenshtein distance simLev (1) 85.33 92.93 0.10 (±0.0000) –
Jaccard coefficient simJac (2) 86.68 93.23 0.10 (±0.0000) –
Single semantic metrics
Semantic first order simSFO (10) 86.21 93.35 0.02 (±0.0125) –
WordNet distance simWND (8) 85.62 93.03 0.05 (±0.0471) –
Synonym (ME) simSME (6) 91.62 95.88 0.21 (±0.0000) –
Synonym (mean) simSmean (4) 91.41 95.76 0.25 (±0.0613) –
Combined metrics
Levenshtein distance/ Synonym (ME) simLSME (1) ⊕ (6) 94.81 97.48 0.18 (±0.0000) 0.10 (±0.0000)
Jaccard coefficient/ Synonym (ME) simJSME (2) ⊕ (6) 92.61 96.41 0.05 (±0.0000) 0.40 (±0.0000)
Levenshtein distance/ Semantic first order simLF (1) ⊕ (10) 90.04 95.19 0.16 (±0.0283) 0.23 (±0.0943)
Jaccard coefficient/ Semantic first order simJF (2) ⊕ (10) 90.43 95.38 0.02 (±0.0047) 0.43 (±0.0624)

Standard deviation provided in parentheses; wStr indicates the weight of the string-based part measure

The models contained in the collection of 604 process mod-
els do not only specify disjunct procedures; in fact, some de-
scribe similar activity flows. For each of the 10 query models,
all 100 process models of the test case have been annotated by
process model experts. This way, a list of relevant models per
query has been determined.

As a baseline for our comparison, we consider the results
of the Indri text search engine (cf. [5]). As second search en-
gine, we use the well-known and widely used Apache Lucene
engine5. For the text search, the node labels of all 110 process
models have been extracted into text files. Further, we com-
pare the results to the results of the Label Similarity metric by
Dijkman et al. [5].

For each metric, we perform one search experiment per
query model. We measure the performance of these experi-
ments in terms of average precision, R-Precision, as well as
first-n-Precision for n = 5 and n = 10. The average preci-
sion characterises the quality of a single search query. For one
search query, it equals the mean average precision (MAP). For
their calculation we use the following metric. Q is the set of
searches that are performed. For each query q j ∈ Q, the set
of relevant documents is defined as {d1, ..., dm j }, and R jk as the
ranked list of retrieval results from the best result until and in-
cluding document dk. MAP is defined as follows [27]:

MAP(Q) =
1
|Q|

|Q|∑
j=1

1
m j

m j∑
k=1

Precision(R jk) (15)

R-Precision is the precision of a query calculated after the
first R documents have been found, where R is the number of
relevant documents for this query. So R varies with the query
[27]. The first-n-Precision provides the query precision after a
cut-off after the nth predicted document.

During the evaluation, we investigate two metrics: simLSME

and simJSME . They are set up (concerning weight and threshold)
as indicated in Table 3. We use the node-based process model

5http://lucene.apache.org/

similarity simNode
PM (QMi,MP j, simSME ), where QMi refers to the

10 query models, and MP j represents all 100 models of the
process model pool (cf. Eq. 13) . simJSME is used analogously.

6.2. Evaluation Results

The results of the retrieval evaluation are shown in Figure 5
and Table 4. Generally, concerning the results shown, we out-
lined only the best performing metrics. In 90% of the queries,
our result clearly outperforms the baseline as well as the Label
Similarity approach by Dijkman et al. [5].

For process model 3, simLSME performs better than the la-
bel similarity approach. Both search engines, however, per-
form better. In case of query 4, the performance of simLSME

is slightly worse than label matching. However, a definite im-
provement concerning Indri is obvious. In case of query 4 and
5, Lucene outperforms all other specialised approaches. For all
remaining queries, our approaches represent a clear improve-
ment compared to all both text search approaches and related
work.

Referring to the mean average precision values (cf. Ta-
ble 4), our approaches outperform all others. Regarding the
first-10-precision, the approaches perform comparably, show-
ing in average 79% of the relevant documents in the first 10
results. In terms of the first-5-precision, our approach simLSME

outperforms Lucene Text Search. However, if the number of
relevant documents is low, say 5, the first-n-precision metric (at

Table 4: Overall results of process retrieval metrics

Mean R- First-10- First-5-
Metric MAP precision precision precision
simLSME (node-based) 0.8609 0.7774 0.7900 0.9600
simJSME (node-based) 0.8591 0.7708 0.7900 0.9400
Label Similarity [5] 0.8000 – 0.7900 –
Lucene Search Engine 0.8211 0.7491 0.6800 0.9400
Indri Text Search [5] 0.7611 – 0.7000 –
Structural Similarity [5] 0.8300 – 0.7800 –
Behavioural Sim. [5] 0.8000 – 0.7400 –

11



0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
P
re
c
is
io
n

Query Model ID

Indri Text Search [5]

Lucene Text Search

Label Similarity [5]

Rel. Cluster Pairs simJSME

Rel. Cluster Pairs simLSME

Figure 5: Average precision per query model

n = 10) is limited to indicate low precision values6 – in that
case to a maximum of 5/10 = 0.5. This is not the case for the
R-precision measure. The results show that, at a point where all
relevant process models could have been found for one query,
more than two third of the models have been identified by our
approaches in average, which is a promising result.

We summarise the overall results of this evaluation in an
interpolated precision-recall curve ([27], cf. Figure 6).7 The
values for the Indri search engine, as well as for the Label Sim-
ilarity have been taken from [5]. Overall, the metric simLSME ,
as combination of the Levenshtein distance and the synonym
metric simSME performs best. In particular, at a recall level of
0.5 (i.e., having reported 50% of the relevant process models as
part of the result list) 100% of the listed models are relevant.
After having reported more than the half of relevant documents
(at 0.6 recall), the precision for simLSME is still clearly beyond
90%. For a search engine, this indicates a very good result.

Concluding, our approach outperforms the current related
work as well as established search engines. Concerning the
Indri search engine, this shows that the additional computa-
tion complexity of more sophisticated search approaches is re-
warded.

Concerning related work, we assume that word preprocess-
ing is a major reason for the improvement. Lemmatising has,
to the best of our knowledge, not been utilised in related ap-
proaches. In preliminary experiments we found, that using stem-
ming did not improve results in all cases. Especially for seman-
tic measures, improvement by stemming mostly fails, as dictio-
naries mostly cannot cope with stemmed strings. This is why
we did not employ Porter’s stemming algorithm for the met-
rics simLSME and simJSME . Further, we carefully revised the stop

6The overall minimum number of relevant process models per query in this
test case is 5 (for query model 4).

7The x-axis represents the recall intervals [0.00, 0.05), [0.05, 0.10), ...,
[0.95, 1.00].
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Figure 6: Process model retrieval: Precision-recall curve

word list. In traditional stop word lists, “needs”, “omitted”, or
“part” and similar ones are considered function words. How-
ever, for processing of operational process models, we found
that many of these can have high impact on a label’s overall
meaning, and in particular improve results, especially when
using semantic similarity. In fact, we used lemmatising for
all metrics. For semantic similarity metrics, reducing labels
and words to a meaningful form is an unconditional technique
for preserving information and meaning. It ensures reasonable
lookups and obviously improves the overall performance.

As part of future work, the label meanings per node can be
investigated in more depth. Using current community mining
approaches from NLP, for example, the basic notion (positive
vs. negative) of a node’s meaning can be analysed and made
processable to further improve the matching process.

6.3. Discussion

Generally, as the selected test case is completely indepen-
dent from the work at hand, we meet the requirement of “fair
testing” as we do not make use of an artificially created test
case that meets the requirements of the presented approach [39].
Further, to the best of our knowledge, in this paper, we provide
one of the few quantitative evaluations in this area whose results
can be directly compared to other approaches as the test case is
available. However, even though the evaluation approach and
test case used in this paper were suitable to perform the eval-
uation of the related cluster pair approach, further evaluations
could be performed to assess its performance in other contexts.
In particular, the approach could be evaluated on a test case
other than the SAP reference model, i.e., a test case consisting
of more heterogeneous models – process models covered by the
used reference model are aligned concerning terminology and
modelling style.
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Concerning taxonomy, our approach covers techniques that
can be used to tackle different modelling taxonomies. As con-
siderations of semantic node similarity, apart from the best per-
forming synonym measures, we investigate a variety of seman-
tic word relations (from used language via Wikipedia and from
a linguistic viewpoint via WordNet) and apply them together
with a well-approved and established word reduction technique
from the NLP domain, lemmatising. It avoids loss of word
meaning and yields results that can always be further processed
(in contrast to, e.g., stemming).

The utilised string-based measures are well-known reliable
measures that achieve good results in a variety of application
areas. As we could show, hybrid measures (i.e., efficient com-
bination of string-based and semantic measures) clearly yield
improvements compared to the respective single measures’ re-
sults. From our viewpoint, an impairment of their results when
applied to heterogeneous process models is improbable.

Concerning modelling style, as mentioned before, in case
of scattered node assignments, our measure of process model
similarity is reduced to a function of node similarities, which
still yields good results (cf. Section 5.2). In this case, the weight-
ing function can be adjusted (as outlined in Section 4.5). As
our approach does primarily target the determination of correct
node assignments, we consider changes in modelling termino-
logy to have a higher impact on the results than different mo-
delling styles.

Summarising, we use a variety of techniques to address
different modelling terminologies. Given these details of our
approach, the achievement of comparable or better results is
thinkable. Unfortunately, appropriate test cases (especially for
the heterogeneous case) are hardly available in the research
community so far.

7. Conclusion

The problem of determination of correct node assignments
represents a fundamental requirement for fully automated pro-
cess comparison and retrieval approaches that consider, e.g.,
structural or behavioural characteristics. In our approach, we
target the improvement of solutions to this problem. Using re-
lated cluster pairs, we apply both string-based similarity and
semantic similarity metrics and create hybrid measures from
these, and combine these information with structural process
characteristics. The application of this concept in two scenar-
ios, process model comparison and process model retrieval, has
been evaluated using the SAP reference model.

In the first scenario, we focused on identifying the delta of
two process models. Based on the calculation of related cluster
pairs, we set up a metric to identify changes made to particu-
lar process models. We performed a cross validation evaluation
for a number of semantic, string-based, and hybrid metrics and
learned the metric threshold as well as the weighting in case
of hybrid metrics. As results, most of the metrics show accu-
racy values of beyond 90%, which refers to an according work
assistance compared to manual work. The best hybrid mea-
sure performed at 94.8% accuracy and an F1 score of 97.5%
on unseen data. Further, the best performing metrics are stable

concerning all their parameters. Generally, these are seman-
tic measures and in particular, a synonym measure based on
WordNet. As these results were achieved based on a test case
consisting of activities from practice, the practical applicability
of this approach is emphasised. In a further evaluation, the best
performing measures have been tested in the context of process
model retrieval on a second test case based on the SAP refe-
rence model. In particular, we tested a novel similarity notion
for process models based on related cluster pairs. We com-
pared our results with the results of two established text search
engines as well as related work. At a mean average precision of
86%, our approach, parameterised with one of our hybrid mea-
sures, clearly outperforms text search engines as well as related
work.

In our experiments, we generally considered a particular
word preprocessing technique. Additionally to stop word re-
moval, we reduced words to their base forms, preserving their
word meaning, which thus can still be looked up by consul-
tation of word lexica. Further, the concept of related cluster
pairs combines node similarity with structural process charac-
teristics. We assume that the combination of these techniques
contributed to the realised improvement.

Even though the evaluation approach and test case used
in this paper were suitable to perform the quantitative evalu-
ation of the process similarity measure based on related cluster
pairs, further evaluations could be performed to assess its per-
formance in other process model contexts. The base test case,
the SAP reference model, is not stringently representative for
typical process models, although they are applicable for a qual-
ity assessment of similarity measures. For a test case of hetero-
geneous models, however, our approach seems well equipped
with semantic word processing techniques.

As future work, the related cluster pairs concept can be fur-
ther enhanced. Currently, the approach does not explicitly pro-
cess behaviour or process structure. In particular, the consid-
eration of gateway semantics could be included. However, the
improvements yielded in this approach in the area of node as-
signments can be used as basis for other approaches focussing
on behavioural and structural process similarity.
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