
Performance Study of Locality-Aware Peer
Selection Algorithms

Simon Oechsner, Frank Lehrieder, Tobias Hoßfeld, Florian Metzger, Dirk Staehle
Chair of Distributed Systems, Department of Computer Science, University of Würzburg, Germany

Email: {oechsner}@informatik.uni-wuerzburg.de

Konstantin Pussep
Multimedia Communications Lab,

Technische Universität Darmstadt, Germany

Abstract—Locality promotion in P2P content distribution net-
works is currently a major research topic. One of the goals of
all discussed approaches is to reduce the interdomain traffic that
causes high costs for ISPs. However, the focus of the work in
this field is generally on the type of locality information that
is provided to the overlay and on the entities that exchange
this information. An aspect that is generally neglected or only
shortly addressed is how this information is used by the peers.
In this paper, we compare the predominant approach of Biased
Neighbor Selection and compare it with Biased Unchoking which
is introduced in this paper.

I. INTRODUCTION

Peer-to-peer (P2P) networks like, e.g., BitTorrent [1], [2] are
widely used in today’s Internet for content distribution. Com-
pared to the client-server architecture, they offer significant
advantages for the content provider. Since all peers interested
in the content contribute resources, i.e., upload capacity, to
the distribution process of the content, scalability issues do
not arise. Instead, the upload capacity of a P2P based content
distribution network (CDN) increases with the number of users
(peers) interested in a specific content. However, most P2P
CDNs are oblivious of the underlying network topology and
peers choose the sources of their downloads just according
to overlay metrics or even randomly. This poses a major
challenge for internet service providers (ISPs) as it makes
traffic engineering difficult if not impossible. The fact that such
P2P based CDNs produce a large portion of today’s Internet
traffic [3] makes this even more problematic for ISPs as they
are mostly charged on basis of the amount of traffic they send
to or received from neighboring autonomous systems (ASes).

Several different attempts have been made to address this
problem. Some ISPs shut down connections they identified as
BitTorrent connections from their AS to another one or throt-
tled the bandwidth of these connections. While this reduces
the costly inter-AS-traffic, it also compromises the quality of
experience (QoE) of the users [4]. As a consequence, users
become dissatisfied with the service of the ISP because file
downloads take more time or video-on-demand (VoD) appli-
cations show the videos in an insufficient quality. In contrast
to these unilateral means of the ISP to reduce inter-AS traffic,
a lot of current P2P research focuses on a cooperation between
the ISPs and the content providers [5], [6], [7], [4]. The ISPs

provide information about the network topology to the overlay
application, e.g., which peers reside in the same AS and
which not. The peers use this information and communicate
preferentially with peers in the same AS. This is also the main
scenario discussed by the recently established IETF working
group on application layer traffic optimization (ALTO) [8]. In
[9], the authors present an approach that uses CDNs severs
like, e.g., Akamai as landmarks and does therefore not rely
on an ISP provided service for the localization of other peers.

As in the given example, the most common form of topol-
ogy awareness offered to the peers is locality awareness. Peers
are considered local if they are close in the network topology,
typically expressed by a low ping or a low number of AS
hops. Other forms of topology-awareness may relate to high-
bandwidth connections or belonging to the same VPN. In this
paper, we will mainly focus on locality awareness in terms of
AS hops, with local peers being defined as peers in the same
AS and remote peers being peers in other ASes if not stated
otherwise.

Locality-aware peer behavior consists mainly of two steps.
First, the peers need the information which other peers are
local and which are remote. Second, the peers have to integrate
that information when communicating with other peers.

The primary strategy recently investigated for this in the
literature is the Biased Neighbor Selection, which was intro-
duced in [5] and adapted or enhanced in [6], [7], [9]. With
biased neighbor selection, the peers try to adjust their set
of neighbors so that it contains at least a certain fraction of
local peers. This might be supported by the tracker if existing.
However, since only the composition of the neighbor set is
influenced by this strategy, there is no hard preference for local
peers in the data exchange process. Therefore, we introduce
the concept of a Biased Unchoking strategy in this paper and
compare it to Biased Neighbor Selection. Biased Unchoking
prefers local peers in the unchoking process implemented in
BitTorrent-based overlays, and therefore has a direct influence
on the establishment of data exchange connections.

In this study, we take the locality information as given, i.e.,
all peers know whether another peer is in the same AS or
not, and focus on the evaluation of different possibilities to
use that information. To this end, we analyze a BitTorrent

based file-sharing network and modify the neighbor selection
as well as the unchoking mechanism to incorporate the locality
information. We will present several alternatives to implement
Biased Unchoking and compare the performance of both
strategies in various scenarios and show their advantages and
drawbacks.

The paper is structured as follows: Section II gives an
overview on the existing approaches to Biased Neighbor
Selection and other mechanisms to promote locality in CDN
overlays. BitTorrent, Tribler and the mechanisms for Biased
Neighbor Selection and Biased Unchoking in these overlays
are described in Section III, while Section IV contains the
results of their performance evaluation. Finally, we conclude
the paper in Section V.

II. RELATED WORK

In the following, we give a short overview of different
proposals for locality promotion in P2P CDNs. Some of
them do not require adaptions of the P2P protocol, others
do so. Since this paper focuses on the design options for the
adaptations of P2P application, we present these approaches
in more detail.

A. Locality Promotion Strategies Without P2P Adaptations

Regarding the management of P2P traffic, the main goal of
ISPs is to reduce the costly inter-domain traffic. To this end,
they can pursue different strategies. One approach is that the
ISP closes connections to peers in other ASes. However, this
led to dissatisfied users in the case of Comcast [x]. A similiar
idea is bandwidth throttling of inter-AS peer connections. Both
approaches have in common that P2P connections must be
identified and the user experience may be degraded.

Another option for ISPs to reduce the inter-domain traffic
is to introduce caches [10], [11]. These caches save popular
content and redistribute it to local peers. However, the caches
need to be tailored to the P2P application protocol in order to
communicate with the peers. Furthermore, there may be legal
issues when copyright protected is cached by an ISP.

B. P2P Adaptations

Bindal et al. introduced the concept of Biased Neighbor
Selection, where the neighbor set of a peer is changed so that
it contains a significant fraction of peers that are close in terms
of network proximity [5]. The most extreme case featured only
one remote neighbor per peer, with the rest being local peers.
It was found that inter-AS traffic can be reduced significantly,
while the download times of peers are not influenced much
in topologies where the access bandwidth of the peers is the
bottleneck. In this approach, it was envisioned that either the
tracker responds to queries with the target number of local
peers, or that connections are artificially re-routed by traffic
shaping devices of providers.

Aggarwal et al. present an approach where the locality
information is queried from an Oracle service instead [6]. A
peer essentially asks this service which peer from a list of
potential neighbors it should connect to. Underlay information

is available at the oracle server, so that it can respond with an
optimized choice. Afterwards, the querying peer then conducts
Biased Neighbor Selection again by establishing an overlay
connection just with the recommended peer. The mechanism
was evaluated with a Gnutella network, showing that the graph
properties of the overlay graph are largely not negatively
influenced. However, most of the evaluations consider the
search aspect of the Gnutella network, for which the overlay
graph is actually used. Still, one result shows that the share
of inter-AS file exchange connections was increased to up to
40% in the observed scenarios.

The plugin Ono for the BitTorrent client Azureus/Vuze, pre-
sented in [9] by Choffnes and Bustamante, offers an alternative
to a provider-assisted loclaity service by re-using available
information from CDN name resolutions. The proximity of
peers is judged by the CDN servers that the peers are resolved
to. Since this resolution is influenced by the CDN provider
using underlay information to assign favorable servers to a
client, the resulting recommendation is also valid for overlay
connections. Again, the peers then use these recommendations
to conduct Biased Neighbor Selection, by making sure that
Ono-suggested connections are kept in the neighbor set of a
peer.

Measurements from clients using the Ono plugin show that
the biased connections established follow shorter paths w.r.t.
AS hops. Also, in case a provider offers higher bandwidth
to intra-network connections than to connections leaving the
network, the download rates of peers using Ono improve
significantly. In networks where the bottleneck is the access,
however, no great improvements, but also no large negative
impact on the download performance was seen.

The approach followed by Xie et al. [7] in the P4P project
is somewhat similar to the Oracle service in that a infor-
mation server is used to offer underlay information to the
overlay. Here, these entities are called iTracker, which may
communicate with peers themselves or application trackers
such as the BitTorrent tracker. In the evaluated scenarios,
the communication took place between iTracker and appli-
cation trackers. The evaluations range from simulations to
measurements in PLanetLab and real CDN networks and
show a significant reduction in inter-AS and bottleneck traffic
with according iTracker optimization settings, while download
times are slightly reduced in general.

III. LOCALITY-AWARE PEER SELECTION ALGORITHMS

In this section, we present different algorithms for peer
selection which take into account the location of the neighbors
of a peer. As we use BitTorrent and Tribler in this study, we
first explain their key mechanisms. Then, we explain possible
adaptations of these overlays in order to implement Biased
Neighbor Selection or Biased Unchoking.

A. Key Mechanisms of BitTorrent

BitTorrent is a P2P content distribution protocol that offers
multi-source download functionality. One overlay, also called
swarm in BitTorrent terminology, is formed per file that is

shared. A file is separated into smaller pieces called chunks
to facilitate the fast generation of new sources. Each chunk is
again divided into smaller subpieces, so-called blocks.

Peers join that swarm by contacting a tracker, which is
basically an index server holding information about all peers
participating in a swarm. The address of the tracker itself is
usually obtained from a website together with some informa-
tion about the file, in the form of a .torrent file. Once a peer
joining the swarm has contacted the tracker, it is supplied with
a number of initial contacts to establish connections to and to
start exchanging data. In a standard tracker implementation,
the contacts returned to a requesting peer are random, with no
filtering in terms of locality.

All contacts a peer has connections with are his neighbors
in the overlay. In this neighbor set, there are normally some
peers that have already downloaded pieces of the shared file
which the local peer still needs. The local peer signals his
interest to download these pieces and is thus joining the set
of interested peers at these neighbors.

The upload of data is managed by a so-called unchoking
process. Every 10 seconds, a peer allocates upload slots to a
default number of 4 interested peers. All other peers do not
receive upload bandwidth from that peer and are therefore
’choked’. This part of the peer selection process involves a
measure of the download bandwidth the local peer experiences
from each of the candidates. The more an interested peer
uploads to the local peer, the higher it is ranked. This tit-
for-tat strategy provides an incentive for peers to contribute
upload bandwidth to the swarm. To allow peers to get to know
new mutually beneficial connections, an additional optimistic
unchoking slot is given to a random interested peer every 30
seconds.

Once a peer is unchoked, it may select the piece of the file
it wants to download. This is done according to a least-shared
first or rarest-first metric, with variations at the beginning
and the end of a file download. From the eligible pieces,
i.e., the chunks that the downloader still needs and which the
uploader has stored locally, the one that is seen the least by the
downloader is selected. This mechanism is a countermeasure
to the chunk starvation problem, where one or a small number
of chunks is distributed much slower than the rest and may
vanish completely from the swarm in the worst case.

B. Key Mechanisms of Tribler

Tribler is a BitTorrent-based Video-on-Demand streaming
overlay that allows for watching a video while downloading
it. It uses many of the basic mechanisms of BitTorrent, with
the main differences being the peer and chunk selection
algorithms.

While the basic unchoking procedure is the same as in
BitTorrent, the metric used by the overlay to rank peers is
not tit-for-tat, but give-to-get. This metric measures how much
data from the local peer was forwarded by an interested peer,
and how much data was uploaded by it in total in the last
time interval. This is necessary due to the fact that peers tend
to download the file roughly in order. Thus, peers starting to

download and watch the video have little to offer to peers
that are close to finishing their download, and therefore the
reciprocity principle of tit-for-tat does not work efficiently.

The chunk selection of Tribler does not use the rarest-first
strategy, but takes into account the current playout position of
the local peer in the streamed video. It separates the remainder
of the video, i.e., the parts being played out in the future,
into three priority sets. Chunks in the first set are downloaded
in order and with high priority, the chunks in the second
and third set according to rarest-first and with medium and
low priority, respectively. The in-order part of the strategy is
used to minimize gaps in the received data during playback,
which causes stall times to occur. If a peer is offered enough
bandwidth and sources to download, the rarest-first part of the
strategy tries to forestall chunk starvation, as in BitTorrent.

C. Biased Neighbor Selection

Biased Neighbor Selection is a basic mechanism applicable
to most overlays. It tries to influence the composition of
the neighbor set of a peer by preferring local neighbors to
remote ones. A higher share of local neighbors then means
a theoretically higher probability that such a neighbor is
selected for data exchange. This is a desirable effect since
local connections are much more resource-efficient and also
mean lower costs for ISPs.

However, there are also some theoretical drawbacks to this
method. First, if the overlay contains only a small number of
peers that can be considered local, the share of local neighbors
is small even if all of them can be found. Thus, they are in
total also utilized less than remote peers which make up a
larger share of the neighbor set. We will show in this paper
that this is a realistic scenario in existing overlays.

Second, even if a significant share of neighbors is local, it
is not guaranteed that they are selected for usage. Especially
in the case of file sharing, the availability of pieces needed by
the local peer governs which neighbors are potential uploaders
and which do not have anything of interest. Thus, the actual
traffic may not be distributed in the same way as the neighbor
set is partitioned into local and remote peers.

There are two basic alternatives to implement Biased Neigh-
bor Selection in a BitTorrent overlay. The first is letting the
tracker choose a certain number of peers that are close to
the requesting peer and including them in its response. This
requires modifications at the tracker, which has to gather
underlay information about the peers, e.g., by querying a
special server such as the SmoothIT Information Service [12]
or the iTracker [7]. The advantage of this approach is that
all available local peers are considered when sending a peer
its potential contact list, since the tracker knows all peers
in a swarm. The drawbacks are a higher complexity at the
tracker, which is already a critical component, as well as a
lesser degree of freedom for the peers, which can not choose
whether to actually support biased neighbor selection or not.

The second alternative remedies this by retaining the tracker
functionality as it is and changing the peer behaviour instead.
One possible implementation lets the peers query the tracker

for a new list of neighbors after the minimum time interval
they have to wait. This interval typically is a parameter of
the tracker to prevent peers from flooding the tracker with
requests. In each time interval, a peer may learn of new
contacts in the swarm and gathers information about them
in the same manner as the tracker in the previous approach.
Ideally it then knows more contacts than necessary, and can
discard a number of non-local neighbors in favor of local ones.
However, it can not be assured that a client learns about all
existing local peers with this method, since it can not guarantee
to receive new information by the tracker with each query.

D. Biased Unchoking

The unchoking mechanism described above is generally
unaware of the underlying network topology and leads to a
lot of inter-AS-traffic. It only uses an overlay metric MO(x)
in its decision process, which is the download rate in the last
10 seconds in case of BitTorrent and the uploaded blocks in
the last 10 seconds in the case of Tribler. Biased unchoking
tries to address this problem by including information about
the location of the neighbors in the unchoking process. To
this end, we introduce an additional metric ML(x) in the
unchoking process which reflects the locality of the neighbor x

to the given peer. Examples for ML(x) are the number of IP-
or AS-hops from the peer to its neighbor x. However, ML(x)
can also be more complex and include, e.g., traffic engineering
preferences of the ISP.

This locality metric may again be obtained by the peers from
a dedicated information server, or by re-using information
primarily intended for other services, such as in the Ono
plugin. However, we assume that the complexity of computing
the locality rating is generally hidden from the peer by the
underlay information service it queries for that information.
Thus, we only have one value per peer to take into account in
the unchoking process.

There are several possibilities to include the locality infor-
mation ML(x) in the unchoking process of BitTorrent which
we present in the following.

1) Biased Optimistic Unchoking: With regBT, all interested
peers that are not regularly unchoked are candidates to be
optimistically unchoked. Biased optimistic unchoking reduces
this set of candidates to those neighbors which have a good
locality value ML(x), i.e. above or below a certain threshold.
Then, a candidate can be chosen from this reduced set. Another
option is to unchoke the peer with the best locality value
ML(x).

2) Separate Unchoke Slots: With separate unchoke slots, a
peer divides his n unchoke slots into two groups. Then, the
first group of m slots is allocated to the neighbors with the
best locality values ML(x). In case several peers have the same
locality rating, the overlay metric MO(x) may be used as a tie-
breaker. The remaining n−m slots can be assigned according
just to MO(x). Thus, a peer might reserve 2 unchoke slots
for the nearby neighbors regardless of their performance. This
might raise fairness issues and incite free-riding by local peers.

3) Combining Locality Information with Overlay Rankings:
The idea here is to combine the locality value ML(x) of a peer
with the metric of the overlay MO(x), e.g., its upload speed,
in a way so that the peer can rank its neighbors according to
a new combined metric MC(x). Then, the regular BitTorrent
choke algorithm is used with the only modification, that the
best neighbors according to MC(x) get the unchoke slots.

We can combine the two ratings (locality ML(x) and the
overlay metric MO(x)) by weighting and adding them. This
results in a new combined metric

MC(x) = α · ML(x) + (1 − α) · MO(x) (1)

of a neighbor x. It is the weighted sum of the locality value
ML(x) and overlay metric MO(x). The weight factor α

determines to which degree the two metrics impact the result.
Then, the ranking amoung the neighbors is done according to
the combined metric MC(x).

IV. PERFORMANCE EVALUATION

The performance evaluation on the different locality-aware
peer selection mechanisms was conducted by means of sim-
ulation. We will first describe our evaluation methodology
including the simulator used.

A. Evaluation Methodology

1) Simulation Model: We conduct steady-state simulations
with a stable peer population in one swarm. New peers join the
system during the whole simulation time, while peers finishing
their download or video go offline and leave the system after
an additional seeding time. There are no additional offline
times during the lifetime of a peer. In the experiments, we
vary the seeding time of a peer, i.e., the time it stays online
after receiving the complete file, from 5 to 30 minutes in order
to generate different load scenarios. Longer seeding times lead
to a higher fraction of seeders in the swarm, thus reducing the
load.

Each peer is connected via one AS in a multi-AS network. It
has a given up- and downlink capacity exclusively used for the
overlay application. We simulate a scenario with 20 stub-ASes
and one transit-AS in a star topology, i.e. the stub-ASes are
all connected to the transit-AS but not directly interconnected
with each other (cf. Figure 1). In the stub-AS we simulate a
peer arrival process with exponentially distributed inter-arrival
time A and E[A] = 10s. This arrival process is equally
distributed to the 20 stub AS in order to reduce the number
of local neighbors a peer can have.

The peers are connected to the AS with an access speed
of 2000 kbit/s downstream and 192 kbit/s upstream which are
typical values for the DSL access technology. The initial seed
(content provider) is placed in one of the stub-ASes and has
an increased upload- and download bandwidth of 1024 kbit/s,
respectively. It stays online during the whole experiment. The
transit-AS does not contain any peer. We simulate the swarm
for x hours and discard the initial warm-up phase of y minutes.

In the case of BitTorrent, the overlay protocol as described
in [13] was faithfully implemented, while for Tribler, the

Tracker

Seeder

Peer

Transit
AS

Stub
AS 20

Stub
AS k

Stub
AS 3

Stub
AS 2

Stub
AS 1

Inter-AS
Link

Access
Link

Fig. 1. The simulated topology

description in [14] was used for reference as well as the source
code.

2) Simulator: Protopeer, flow-based, . . .
3) Reasoning for Swarm Model: We present here a study

of typical swarm sizes of BitTorrent swarms, in particular
the number of lechers and seeds per swarm, which served as
a basis for our overlay model. In this study, we measured
63,867 BitTorrent swarms offering video contents, movies,
TV series, or documentary. As we sequentially measured the
number of seeders and leechers of all swarms, it took about
23 minutes to get data for each swarm. Thus, we obtain
one measurement sample per swarm every 23 minutes. The
measurements were conducted for a total duration of three
days. In order to increase the granularity of our measurement
results, especially to describe the dynamics of a swarm, we
traced the most popular movies individually. This allows us to
obtain the swarm size every 10 seconds for these large swarms.

Fig. 2 shows results from this study. On the x-axis, the x%
of the largest swarms are given, i.e. the swarms are sorted
according to their population size, while the y-axis shows
the cumulated percentage of total peers which belong to the
x% of largest swarms. We can see that more than 95% of
the observed swarms contain less than 100 peers, so that our
simulated swarm is at the larger end of realistic swarm sizes.

Furthermore, we investigate which fraction of a swarm
typically belongs to one AS. We measure this for the download
of openoffice and knoppix (Fig. 3).

This study shows that for these swarms, the number of peers
in one AS is quite small even if the swarm itself is big. The
peer population tends to be split up in the network. Therefore,
we simulate a swarm being made up of small subgroups of
close peers instead of fewer but larger local clusters.

B. Comparison of Biased Unchoking and Biased Neighbor
Selection

The focus of our evaluation is on the load scenarios where
Biased Unchoking offers an advantage over the standard BT

10
-4

10
-2

10
0

10
2

10
40.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

population size

C
D

F

seeder
leecher
total

Fig. 2. CDF of swarm sizes.
in grayscales print curves look the same

Fig. 3. CDF of the fraction of peers which belong to the same AS.

implementation or even over BNS. While Biased Neighbor
Selection has been studied intensively [5], [6], [7], [4], to be
able to compare it to the BU approach we have to expose the
mechanism to the same conditions. We compare the tracker-
based Biased Neighbor Selection to the Biased Optimistic
Unchoking and a Biased Unchoking with 3 Separate Unchoke
Slots reserved for local peers. While a client-based Biased
Neighbor Selection offers more flexibility to the peers, we
can assure that the maximum number of local neighbors is
returned with the tracker-based solution. Thus, this is the best
case for the Biased Neighbor Selection.

1) Experiment “BitTorrent”: In this experiment, we com-
pare 4 different peer behaviors: (1) regular BitTorrent (regBT),
(2) BitTorrent with biased neighbor selection (BNS), (3) Bit-
Torrent with biased unchoking (BU), and (4) BitTorrent with
BNS and BU (BNS+BU). In order to assess the performance

from an ISPs side of view, we consider the amount of inter-
AS-traffic. To assess the performance from the users point of
view, we consider the the download times of the file.
download times comparison will be added? Simon: yes

First, we take a look at the inter-AS traffic. We measured the
total bandwidth used for inter-AS connections every second of
the simulation. Figure 4 shows the mean of this bandwidth,
as well as the 5% and 95% quantiles of this value for the
different scenarios and mechanisms.

5 10 20 30
0

5

10

15

20

25

Seeding time after finished download (min)

In
te

r−
A

S
 b

an
dw

id
th

 (M
bp

s)

Reference
BNS
BU
BNS+BU

Fig. 4. Medium inter-AS-traffic between the stub-ASes (x-axis:
load/mechanism, y-axis:Barplot medium inter-AS bandwidth, 95% quantile,
5% quantile). To be revised later . . .

We can observe an effect of the system load on the effective-
ness of BU in comparison to the reference implementation and
BNS. In scenarios with higher load, the inter-AS bandwidth
saving achieved with BU alone is in the same range as BNS,
while only little gains can be made in a slightly loaded swarm.
The combination of both outperforms each mechanism in
every scenario, but also more distinctly in the scenarios with
short seeding times. A closer look reveals that the reason for
this lies with the preconditions necessary for BU to work
effectively.

Tables I shows the mean number of neighbors a peer has
during its lifetime, as well as the number of neighbors that
express interest in a peer. Table II shows how many local
neighbors it knows on average and finally how many local
neighbors are interested. While all mechanisms lead to the
same medium size of a peer’s neighborset and also to the
same number of interested peers, they differ in the fraction of
these two sets that is made up by local peers. As intended,
BNS leads to a higher number of local neighbors.

BU only is effective in the scenarios where there are enough
interested peers so that preferring local peers actually has an
effect, i.e., more interested peers than the 4 unchoking slots.
The number of interested peers grows with a higher load in
the system, leading to the observed behavior. This can also be
seen in Figure 5, where the CDF of the number of unchoke

Total Neighbors Interested Neighbors
Seeding time 5 10 20 30 5 10 20 30

Reference
BU

BNS
BNS+BU

TABLE I
TOTAL NEIGHBOR STATISTICS

Local Neighbors Local Interested Neighbors
Seeding time 5 10 20 30 5 10 20 30

Reference
BU

BNS
BNS+BU

TABLE II
LOCAL NEIGHBOR STATISTICS

slots for local peers is plotted for two load scenarios. We can
see that in the highly loaded system, BU and BNS+BU is able
to give more unchoking slots to local peers than for a low load,
although the number of local neighbors is the same.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Local Unchoked Peers

C
D

F

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Unchoked Peers

C
D

F

Reference
Separate
BNS
BNS Separate

Reference
Separate
BNS
BNS Separate

Fig. 5. CDF of unchoke slots given to local interested neighbors (x-axis:
number of slots, y-axis:CDF)

Finally, we observe no large impact of the selected mecha-
nisms on the download times of the file (cf. Figure 6). There-
fore, we assume that a user will not see any big difference in
the performance of the application, while the gains for an ISP
are potentially large.
performance of locality mechanisms for changing percent-
age of local peers? Simon: see below

2) Experiment “Tribler”: We conduct the same experiment
for the BitTorrent-based VoD overlay Tribler, which mainly
differs from BitTorrent in the peer and chunk selection pro-
cesses. Here, the peer watches the video while downloading
it. If frames needed for playout are not available in time, the
video stalls until the data has been received. These stall times
are used as the primary user performance indicator, since the

5 10 20 30
0

100

200

300

400

500

600

700

D
ow

nl
oa

d
Ti

m
es

 (s
)

Seeding time after finished download (min)

Reference
BNS
BU
BNS+BU

Fig. 6. Medium download times (x-axis: load/mechanism, y-axis:Barplot
medium download times, 95% quantile, 5% quantile). To be revised later . . .

download time is of no interest compared to the experienced
quality of the video.

Apart from these changes, we do not compute the seeding
time and consequently the load in the same way as with
BitTorrent. Since a Tribler user is watching a video, we let
each peer finish watching before adding additional seeding
time. Note that while a peer is definitely a seeder by the
time it finishes watching, the file may be downloaded much
faster than it is watched. Therefore, the seeding time is in
general longer than the online time added after a peer stopped
watching.

Again, we first consider the inter-AS traffic generated by the
swarm. Figure 7 shows the mean of this bandwidth, as well
as the 5% and 95% quantiles of this value for the different
scenarios and mechanisms.

5 10 20 30
0

5

10

15

20

25

Seeding time after finished download (min)

In
te

r−
A

S
 b

an
dw

id
th

 (M
bp

s)

Reference
BNS
BU
BNS+BU

Fig. 7. Medium inter-AS-traffic between the stub-ASes (x-axis:
load/mechanism, y-axis:Barplot medium inter-AS bandwidth, 95% quantile,
5% quantile). To be revised later . . .

We can observe the same behavior as with BitTorrent. The
mechanisms including BU work more effectively in scenarios
with higher load. The change in the peer selection shows
no effect on the consumed bandwidth, which was to be
expected since all peers in the swarm use the same unchoking
mechanism and essentially replace the G2G ranking.

Finally, we observe no large impact of the selected mecha-
nisms on the download times of the file (cf. Figure 8). There-
fore, we assume that a user will not see any big difference in
the performance of the application, while the gains for an ISP
are potentially large.

5 10 20 30
0

100

200

300

400

500

600

700

D
ow

nl
oa

d
Ti

m
es

 (s
)

Seeding time after finished download (min)

Reference
BNS
BU
BNS+BU

Fig. 8. Medium download times (x-axis: load/mechanism, y-axis:Barplot
medium download times, 95% quantile, 5% quantile). To be revised later . . .

3) Experiment “Less local neighbors”:
Simon: Scenario mit 2, 5 peers pro AS bei gleicher
Gesamtpeerzahl -¿ BNS schlechter, BU+BNS sollte gleich
gut sein

V. CONCLUSION

- We’ll see...

ACKNOWLEDGMENTS

This work has been performed in the framework of the EU
ICT Project SmoothIT (FP7-2007-ICT-216259). The authors
would like to thank all SmoothIT partners for useful discus-
sions on the subject of the paper.

REFERENCES

[1] “Bittorrent,” http://www.bittorrent.com/.
[2] Bram Cohen, “Bittorrent protocol specification,” February 2005.
[3] Ralf Steinmetz and Klaus Wehrle, P2P Systems and Applications,

Springer Lecture Notes in Computer Science, 2005.
[4] Stevens Le Blond, Arnaud Legout, and Walid Dabbous, “Pushing

bittorrent locality to the limit,” Tech. Rep., Dec 2008.
[5] Ruchir Bindal, Pei Cao, William Chan, Jan Medval, George Suwala,

Tony Bates, and Amy Zhang, “Improving traffic locality in bittorrent
via biased neighbor selection,” in Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems. IEEE,
2006, p. 66, IEEE Computer Society Washington, DC, USA.

[6] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler, “Can
isps and p2p systems co-operate for improved performance?,” ACM
SIGCOMM Computer Communications Review (CCR), vol. 37, no. 3,
pp. 29–40, July 2007.

[7] Haiyong Xie, Richard Y. Yang, Arvind Krishnamurthy, Yanbin G. Liu,
and Abraham Silberschatz, “P4p: provider portal for applications,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 351–362, 2008.

[8] “Application-layer traffic optimization (alto),”
http://www.ietf.org/html.charters/alto-charter.html.

[9] David R. Choffnes and Fabián E. Bustamante, “Taming the torrent: a
practical approach to reducing cross-isp traffic in peer-to-peer systems,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 363–374, 2008.

[10] Thomas Karagiannis, Pablo Rodriguez, and Konstantina Papagiannaki,
“Should internet service providers fear peer-assisted content distribu-
tion?,” in IMC ’05: Proceedings of the 5th ACM SIGCOMM confer-
ence on Internet Measurement, Berkeley, CA, USA, 2005, pp. 63–76,
USENIX Association.

[11] Osama Saleh and Mohamed Hefeeda, “Modeling and caching of peer-
to-peer traffic,” in ICNP ’06: Proceedings of the Proceedings of the 2006
IEEE International Conference on Network Protocols, Washington, DC,
USA, 2006, pp. 249–258, IEEE Computer Society.

[12] Hasan Hasan Tobias Hoßfeld Dirk Staehle Zoran Despotovic Wolf-
gang Kellerer Konstantin Pussep Ionna Papafili George D. Stamoulis
Burkhard Stiller Juan Pedro Fernandez-Palacios Gimenez, Maria Ange-
les Callejo Rodriguez, “A new approach for managing traffic of overlay
applications of the smoothit project,” in 2nd International Conference
on Autonomous Infrastructure, Management and Security (AIMS ’08),
Bremen, Germany, July 2008.

[13] Arnaud Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and
choke algorithms are enough,” 2006.

[14] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. J. Epema, M. Reinders, M. R. Van Steen, and H. J. Sips,
“Tribler: A social-based peer-to-peer system,” in In The 5th International
Workshop on Peer-to-Peer Systems (IPTPS’06), 2006, pp. 1–6.

TODO LIST

in grayscales print curves look the same 5
download times comparison will be added? Simon: yes 6
performance of locality mechanisms for changing per-

centage of local peers? Simon: see below 6
Simon: Scenario mit 2, 5 peers pro AS bei gleicher

Gesamtpeerzahl -¿ BNS schlechter, BU+BNS
sollte gleich gut sein 7

