
"accepted for the 27th EUROMICRO Conference, Workshop on Multimedia and Telecommunication;
Warsaw, September 4-6,200 1"

Replication with QoS support for a Distributed Multimedia System

Giwon Onl, Jens ~chrnitt I , Michael ~iepert ' , and Ralf ~teinmetz' .~

I: Darmstadt Universiv of Technology 2: Fh G-IPSI
Merckstr. 25 64283 Darmstadt Germany Dolivostr. 15 64293 Darmstadt Germany

Email: {Giwon.On, JensSchmitt, MichaeLLiepert, Ralf.Steinmetz)@KOM.tu-darmstadt.de

Abstract

Replicating data und services at multiple networked com-
Puters increases the service availability, fault-tolerante
und quality of service (QoS) of distributed multimedia sys-
tems. In thispaper, we discuss some relevant design und im-
plernentation issues of a replication mechanism for a
distributed multimedia system medianode[l] which is a
software infrasrructure to share multimedia-enhanced
teaching materials among lecture groups. To identijy new
replication requirements, we firsi study the characteristics
ofpresentational media types which are handled in median-
ode, then extract new replica rrnits und granularities which
have not been considered und not supported in existing rep-
lication mechanisms. Based on the new requirements und
the result ofleature surveys, we implemented a replication
mechanism for medianode. The next working step is to eval-
tiate the efjiciency of our replica maintenance mechanism.

I. Introduction

For practical use of a distributed multimedia system such
as medianode[l] in a multimedia-enhanced teaching envi-
ronment in which a fast and consistent accessibility of the
teaching material for all accepted users of the system should
be provided, the availability of the material must be in-
creased by bypassing a variety of potential error sources.
Replication ofpresentation materials and meta-data is a fun-
damental technique for providing high availability, fault tol-
erance and quality of service (QoS) in distributed
multimedia systems[2], and in particular in medianode. For
example, when a User requires access (readlwrite) to a pres-
entation which comprises audiolvideo data and some re-
sources which are not available in the local medianode at
this point of time, a local replication manager copies the re-
quired data from their original location and puts it into ei-
ther one of the medianodes located nearby or the local
medianode without requinng any User interaction (user
transparent). This function enhances the total performance
of medianode by reducing the response delay that is often
caused due to insufficient system resources at a given serv-

ice time. Furthermore, because of the available replica in the
local medianode, the assurance that users can continue their
presentation in a situation of network disconnection, is sig-
nificantly higher than without replica.

In this paper, we discuss some relevant design and imple-
mentation issues of a replication mechanism for a distribut-
ed multimedia system medianode[l] which is currently
developed as an infrastmcture to share multimedia-en-
hanced teaching materials among lecture groups. With the
replication mechanism, medianode provides enhanced ac-
cess to presentation materials in both connected and discon-
nected operation modes.

The structure of the paper is as follows. In Section 2, we
identify new replication requirements. After analyzing the
characteristics of presentational media types, we classify
three different types of target replicas according to their
granularity (data size), requirement of QoS support, update
frequency. Section 3 presents the design and implementa-
tion issues for our replication model. We describe the pro-
posed replication maintenance mechanism, e.g. how and
when replicas are created and how the updates are signalled
and transported. In Section 4, we give an overview of relat-
ed work. The merits and limitations of existing replication
mechanisms are discussed and a comparison of our ap-
proach with previous work is given. We conclude the paper
with a Summary of our work and an outlook towards possi-
ble future extensions of our replication mechanism in Sec-
tion 5.

2. Identifying New Replication Requirements

2.1. Different Types of Presentation Data

In medianode, data organization comprises the Storage of
content data as well as meta information about this content
data in a structured way. For the purpose of QoS-based gen-
eration of presentation files and replication, the system re-
source usages information such as the used memory number
of the loaded medianode components is collected and man-
aged.

The typical data types which can be identified in median-

Table 1 : Data categories and their characteristics in medianode

ode are the following:

Presentation contents: this type of data comprises text,
image, audiolvideo files and can be stored in file Systems
which should handle automatic data distribution and
access, and also support the multimedia characteristics of
this content type.
Presentation description data, e.g. XML files.
Meta-data of user, system, domain, and organization
information. User's title, group, system platform, and
university are examples for this meta-data category.
Meta-data of system resource usage information such as
memory usage, number of threads running within medi-
anode process, number of loaded bows.
Meta-data of User session and token information.
Meta-data of user, system, domain, and organization
information. User's title, group, system platform, and
university are examples for this meta-data category.
Meta-data of system resource usage information such as
memory usage, number of threads running within medi-
anode process, number of loaded bows.
Meta-data of user session and token information.
Table I shows an overview of these data types with their

characteristics.

target data

presentation
description

organizational
data

fileldata
description

multimedia
resources

system
resources

user sessionl
token

2.2. Classification of Target Replicas

persistency

YeS

YeS

YeS

Yes

no

no

The main goal of our replication system is to increase the
availability of medianode's Services and to decrease the
response time for accesses to data located on other median-
odes. To meet this goal, data which is characterized by a

availability
requirement

high

high

high

high

middle
(1 0 ~)

high

high availability requirement, as shown in Table I , should
be replicated among the running medianodes. We classify
different types of target replicas according to their granu-
larity (data size), requirement of QoS support, update fre-
quency and whether their data type is 'persistent' or not
('volatile'). Indeed, there are three classes of replicas in
medianode:

update
frequency

low

low

middle

middle

high

high

consistency
requirement

middle
(high)

high

middle

middle

middle

high

Metareplicas (replicated metadata objects) that are per-
sistent and of small size. An example would be a list of
medianodes (sites) which currently contains an up-to-
date copy of a certain file. This list itself is replicated to
increase its availability and improve performance. A
metareplica is a replica of this list.
Softreplicas which are non-persistent and of small size.
This kind of replicas can be used for reducing the num-
ber of messages exchanged between the local and
remote medianodes, and thereby reducing the total ser-
vice response time. I.e., if a local medianode knows
about the available local system resources, then the
local replication manager can copy the desired data into
the local Storage bow, and the Service that is requested
from users which requires exactly these data can be
processed in a shorter response time. Information about
the available system resource, User session and the
validity of User tokens are replicas of this type.
Truereplicas which are persistent and of large size.
Content files of any media type, which also may be
parts of presentation files are Truereplicas. Truereplicas
are the only replica type, to which the end users have
access for direct manipulation (updating). On the other

data size

smalll
middle

small

small

large

small

small

QoS
playback

not required

not required

not required

required

not required

not required

global
interest

yes

yes

yes

Yes

not strong

no

- - - J - - - - - -

- - - - - - _

r - - -

medianode 3
L - - - - - - - _I

Figure I: medianode architecture with replication service

side, these are also the only replica type which requires
the support of really high availability and QoS provi-
sion.

All replicas which are created and maintained by our
replication system are an identical copy of original media.
Replicas with errors (non-identical copy) are not allowed to
be created. Furthermore, we do not support any replication
service for function calls, and elementary data types.

2.3. Concept of Logically Centralized Database

For a technical realization of our proposed replication
system in medianode, we use the concept of a so-called
"logically centralized database (LCDB)" which especially
enables the transparent access to presentation materials.
Similar to the concept of location-independent identifiers in
distributed database system[3], LCDB enables a mapping

between logical and physical resources. So users do not
need to know where presentation resources are located
physically and how they are accessed. Requests from users,
either for reading or writing any presentation materials, are
first sent to the Access Bow of the local medianode that runs
on the user's local machine. After successful check of the
accessibility for the user and the availability of the request-
ed resources, the corresponding storage bows send the tar-
get data to the users. Figure 1 illustrates the interface point,
the bows building the LCDB and the interactions between
the bows. Some additional remarks on LCDB are in order:

According to the data types, all of the presentation con-
tents and their meta-data are stored in corresponding
storage bows.
The 'front-end' of the storage bow API provides unique
interface functions, independent of the data types: this is
similar to the VFS (virtual file system) interface in UNIX
Systems.

Replication has to be supported for most Storage bows,
although the number of replicas and the update fre-
quency may differ between the individual bows.
For the update propagation between replication manag-
ers, a multicast RPC (remote procedure call) communi-
cation mechanism is used.

MNBow

I
1

3. Design and Implementation Issues

MNAccessBow

3.1. Scope of our Replication System

In medianode, we mainly focus on the replication service
for accessing data in terms of 'inter-medianode', i.e. be-
tween medianodes, by providing replica maintenance in
each medianode. Consequently, a replication manager can
be implemented as one or a Set of medianode's bow instanc-
es in each medianode. The replication managers communi-
cate among each other to exchange update information
through the whole medianodes. A replication service within
a medianode, i.e., 'intra-medianode', is not considered for
the first Stage of our implementation. However, the replica-
tion concept in this paper is straightforwardly applicable to
the replication service for intra-medianode scope.

MNVerifierBow

3.2. The Replication Mechanism

MNStorageBow

Basically, our replication system does not assume a cli-
ent-server replication model, because there are no fixed cli-
ents and Servers in the medianode architecture; every

medianode may be client or Server depending on its current
operations. peer-to-peer model with the following features
is used for our replication system:

(a) Every replica manager keeps track of a local file table
including replica information.

(b) Information whether and how many replicas are cre-
ated is contained in every file table. I.e., each local replica
manager keeps track of which remote replica managers
(medianode) are caching which replicas.

(C) Any access to the local replica for reading is allowed,
and guaranteed that the local cached replica is valid until
notified otherwise.

(d) If any update happens, the corresponding replica
manager sends a multicast-based update signal to the replica
managers which have the replica of the updated replica and
therefore members of the multicast group.

(e) To prevent excessive usage of multicast addresses,
the multicast IP addresses through which the replica manag-
ers communicate can be organized in ma l l replica sub-
groups. Examples for such sub-groups are file directories or
a Set of presentations about the Same lecture topic.

-

-

-

3.3. Implementation Architecture

FileBow

XMLBow

ReplFileSysBow

-

-
(GU1)TelnetBow

To show a 'prove of concept', we have implemented a
Prototype of the proposed replication system model for
Linux platform (Suse 7.0, Redhat 6.2). Implemented are the
replica manager (ReplVerifierBow), update transport man-
ager (ReplTransportBow), replica service APls which are

VolatileStorBow

ReplVerifierBow

-

Figure 2: The medianode bow (MNBow) class hierarchy

ReplTransportBow

Unix-like file operation functions such as Open, create, read,
write, close (ReplFileSysBow), and a Volatile storage bow
which maintains user's session and token information. Fig-
ure 2 shows a class hierarchy of medianode's basic bows
and of extended bows for the replication system. MNBow is
the root class and the three bow APIs, MNAccessBow, MN-
VerifierBow and MNStorageBow are implemented as MN-
Bow's child class. 6141 gives a detailed description of the
implemented bows.

The interaction model for medianode's bows is based on a
'request-response' communication mechanism. A bow
which needs to access data or services creates a request
packet and sends it to the core. According to the request
type, the core either processes the request packet directly, or
forwards it to a respective bow. The processing results are
sent to the origin bow in a response packet. The request and
response packets contain all necessaty information for the
communication between bows as well as for processing the
requests. Based on this request-response mechanism, we
experimented some presentation scenarios with and without
a replication service.

3.4. Initialization of Replication Service

In this subsection, we describe the medianode's operation
flow with the replication service. Basically, the replication
service in medianode begins by creating media list and
replica tables of the three replica types in each medianode.
As shown in Figure 3, ReplFileSysBow sends a request
packet via the core to ReplVerifierBow for creating a media
list for media data which are located in the local
medianode's file system (steps 1-2). Upon receiving the
request packet, ReplVerifierBow creates media list which
will be used to check the local availability of any required
media data (step 3). ReplVerifierBow then builds the local
replica tables for the two replica types, Truereplicas and
Metareplicas, if the replica information exists already. A
medianode configuration file can specify the default
location where replica information is stored. Every type of
replica table contains a list of replicas with the information
about organization, replica volume identifier, unique file
name, file state, version number, number of replicas, a list
of replica, a multicast IP address, and some additional file
attributes, such as access right, creation/modification time,
size, owner, and file type. The third replica table for the
SoJreplicas to which the local system resource. User
session and token information belong may be needed to be
created in terms of memory allocation, and the contents of
this table can be partly filled when users request some
certain services. Once the replica tables are created, they
are stored in the local file System and accessible
persistently.

3.5. Maintaining Replica Tables

In medianode, these three replica tables are maintained
locally by the local replication manager. So, there is no
need to exchange any update-related messages for the files
of which there is no replica created. This approach
increases the system resource utilization, especially net-
work resources, by decreasing the message numbers
exchanged between the replication managers among the
distributed medianodes. But, when any medianode wants to
get a replica from the local replica tables, the desired rep-
lica elements are copied to the target medianode, and the
replication manager at the target medianode keeps these
replica elements separate in another replica table which is
used only for the management of remote replicas, i.e. for
the management of replicas for which their original files
are stored in a remote medianode.

3.6. Acquiring a Replica to Remote Replication
Managers

Upon receiving the service requests (data access request)
from users, the local medianode attempts to access the re-
quired data in a local storage bow (ReplFileSysBow) (step
4-5). In the case, when the data is not available locally, the
local ReplFileSysBow sends a request packet to ReplVerifi-
erBow to get a replica for the data (step 6). The ReplVerifi-
erBow then start a process to acquire a replica by creating a
corresponding request packet which is passed to ReplTrans-
portBow (steps 7-8). The ReplTransportBow multicasts a
data search request to all the peer replication managers and
waits for replication managers to respond (step 9). The list
of medianodes to which the multicast message is sent can be
read from the medianode's configuration file. W hether the
ReplTransportBow waits for all responses or receives the
first one is dependent on the optimization policy which is
given as configuration flag. After receiving the target repli-
ca, the ReplTransportBow sends a response packet to the
ReplVerifierBow which then updates the corresponding rep-
lica tables, i.e., ReplVerifierBow adds the new replica ele-
ment to the Truereplicas table and its metadata to the
Metareplicas table, respectively (steps 10-13). Finally, the
local ReplFileSysBow which originally issued replica crea-
tion request creates a response packet including the replica
handle and then sends it to the MNAccessBow (steps
14-15).

3.7. Update Distribution & Transport Mechanism

The update distribution mechanisms in medianode dif-
fers between the three replica types and their managers.
This is due to the fact that the three replica types have dif-
ferent levels of requirements on and characteristics of high

d DispatcherThread

TransportPolicyLib L- - - - - -_]

MaintainMediaListO

Figure 3: Service flow showing the internal bow interaction mechanism in medianode: with replica-
tion support

availability, update frequency and consistency. Experience
from [4] and [SI also shows that differentiating update dis-
tribution strategies makes sense for web and other distribut-
ed documents.

The medianode's replication System offers a unique in-
terface to the individual update signalling and transport pro-
tocols which are selectively and dynamically loaded and
unloaded from the replica transport manager that is imple-
mented as an instance of medianode's access bow. The up-
date transport and signalling protocols used are:

RPC protocol [2] as a simple update distribution proto-
col. This mechanism is mainly used at the first step of
our simple and fast implementation.

A multicast based RPC communication mechanism. In
this case, the updates are propagated via multicast other
replica managen which are members of the multicast
group. RPC2 [6,9] is used for the first implementation.
RPC2 offers the transmission of large files, such as the
updated AV content files or diff-files, by using the Side
Effect Descriptor. But, the RPC2 with Side Effect
Descriptor does not guarantee any reliable transport of
updates.

3.8. Approaches for Resolving Update Conflicts

The possible conflicts that could appear during the
shared use of presentational data and files are either (a) up-

date conflict when two or more replicas of an existing file
are concurrently updated, (b) naming conflict when two (or
more) different files are given concurrently the Same name,
and (C) updateldelete conflict that occur when one replica of
a file is updated while another is deleted. In most existing
replication systems, the conflict resolving problem for up-
date conflicts was treated as a minor problem. It was argued
that most files do not get any conflicting updates, with the
reason that only one Person tends to update them[8]. De-
pending on the used replication model and policy, there are
different approaches to resolving update conflicts, of which
our replication system will use the following strategies [2,
6, 7, 1 I]:

Swapping - to exchange the local peer's update with
other peer's updates;
Dominating - to ignore the updates of other peers and to
keep the local tentative update as a final update;
Merging - to integrale two or more updates and build one
new update table;

4. Related Work

There are many works and approaches to replication. The
approaches differ for distributed file systems from those for
Intemet-based distributed web Servers and those for
transaction-based distributed database systems. Well-
known replication Systems in distributed file systems are
Coda[6], Roam[l I], Rumor[l3] and Ficus[l7] which keep
the file service semantics of Unix. Therefore, they support
to develop applications based on them. They are based
either on a client-server model or a peer-to-peer model.
Often they use optimistic replication which can hide the
effects of network latency. Their replication granularity is
mostly the file system volume, with a large size and low
number of replicas. There is some work on optimization for
these examples concerning of update protocol and replica
unit. To keep the delay small and therefore maintain real-
time interaction, it was desirable to use an unreliable
transport protocol such as UDP. In the earlier phases, many
approaches used unicast-based data exchange, by which
the replication managers communicated with each other
one-to-one. This caused large delays and prevented real-
time interaction. To overcome this problem, multicast-
based communication has used recently [6, 8, 15, 161. For
Coda, the RPC2 protocol is used for multicast-based
update exchange, which provides with the Side Effect
Descriptor transmission of large files.

For limiting the amount of storage used by a particular
replica, Rumor and Roam developed the selective
replication scheme[l2]. A particular User, who only needs a
few of the files in a volume, can control which files to Store
in his local replica with selective replication. A

disadvantage of selective replication is the 'full
backstoring' mechanism: if a particular replica Stores a
particular file in a volume, all directories in the path of that
file in the replicated volume must also be stored.

JetFile[8] is a prototyped distributed file system which
uses multicast communication and optimistic strategies for
synchronization and distribution. The main merit of JetFile
is its multicast-based callback mechanism by which the
components of JetFile, such as file manager and versioning
manager interact to exchange update information. Using the
multicast-based callback, JetFile distributes the centralized
update information which is normally kept by the server
over a number of multicast routers. However, the multicast
callbacks in JetFile are not guaranteed to actually reach all
replication peers, and the centralized versioning server,
which is responsible for serialization of all updates, can lead
to a overloaded system state. Furthermore, none of the ex-
isting replication systems supports quality of service (QoS)
characteristics of (file) data which they handle and replicate.

5. Summary an8 Future Work

Replication of presentation materials and meta-data is a
fundamental technique for providing high availability, fault
tolerante and quality of service (QoS) in distributed multi-
media systems. In this Paper, we discussed some relevant
design and implementation issues of a replication mecha-
nism for a distributed multimedia system medianode. After
analyzing the characteristics of presentational media types,
we classified three different types of target replicas accord-
ing to their granularity, requirement of QoS support, update
frequency. We also described the proposed replication
maintenance mechanism, e.g. how and when replicas are
created and how the updates are signalled and transported.

We are currently in the process of implementing the con-
flict resolving mechanism and versioning and storageltrans-
port load levelling mechanisms, which are integrated with
the replication manager. With the forthcoming implementa-
tion we will be able to build medianode as a highly availa-
ble, scalable and cooperative, distributed media server for
multimedia-enhanced teaching. The next working steps are
to evaluate the efficiency of our replica maintenance mech-
anism and to design other replication service components.
We are intensively investigating for the following issues for
extension of our replication system:

Reliable multicast-based update distribution mechanism:
in the multicast-based replication environment, the repli-
cas and their updates should be propagated 100% cor-
rectly to avoid any inconsistency between replicas.
Although the RPC2 offers the multicast-based transmis-
sion, it does not guarantee any reliable transport of
updates. LC-RTP (Loss Collection RTP)[IO] is one of

reliable rnulticast protocol which is originally developed
as an extension of RTP protocol to support the reliable
video strearning within the rnedianode project. We adopt
LC-RTP and check the usability of the protocol, depend-
ing on the degree of reliability required for the individual
groups of replicas.
QoS-aware replication for distributed rnultirnedia sys-
terns: the decision problems of (a) whether a replica
should be created from original file and if then which
files should be replicated (replica selection problern) and
(b) to which systern replicas should be put (replica place-
rnent problern) are rnade by checking the current usages
of available systern resources. [I81 gives a survey on the
works related two these problerns and their performance
rnodels.

References
The medianode project. (http://www.httc.de/medianode).
G. Coulouris, J. Dollimore and T. Kindberg. Distribzrted
Systems, 3rd Ed., Addison-Wesley, 2001.
A. Eickler, A. Kemper and D. Kossman. Finding Data in the
Neighborhood. In Proc. of the 23rd VLDB Conference, Ath-
ens, Greece, 1997.
P. Triantafillou and D.J. Taylor. Multiclass Replicated Data
Management: Exploiting Replication to Improve Efficien-
cy. In IEEE Trans. on Parallel und Distribzrted Systems,
pages 12 1 - 138, Vo1.5, No.2, Feb. 1994.
G. Pierre, I. Kuz. M. van Steen and A.S. Tanenbaum. Dif-
ferentiated Strategies for Replicating Web documents, In
Proc. of 5th International Workshop on Web Caching und
Content Delivety, Lisbon, May 2000.
M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steer. Coda: A Highly Available File
System for a Distributed Workstation Environment. In
IEEE Transaction on Computers, 39(4), April 1990.
J. Yin, L. Alvisi, M. Dahlin and C. Lin. Volume Leases for
Consistency in Large-Scale Systems. In IEEE Transactions
on Knowledge und Data Engineering, 1 1(4), July 1999.
B. Groenvall, A. Westerlund and S. Pink. The Design of a
Multicast-based Distributed File System. In Proceedings of
Third Symposium on Operating Systems Design und Imgle-
mentation, (OSDI'99), New Orleans, Louisiana. pages 25 1 -
264. February, 1999.
M. Satyanarayanan and E.H. Siegel. Parallel Communica-
tion in a Large Distributed Environment. In IEEE Trans. on
Computers, pages 328-348, Vo1.39, No.3, March 1990.
M. Zink, A. Jones, C. Girwodz and R. Steinmetz. LC-RTP
(Loss Collection RTP): Reliability for Video Caching in the
Internet. In Ptvceedings of ICPADS'OO: Workshop, pages
281-286. IEEE, July 2000.
D. Ratner, P. Reiher, and G. Popek. Roam: A Scalable Rep-
Iication System for Mobile Computing. In Workshop on
Mobile Databases und Distributed Systems (MDDS). Sep-
tember 1999. (web site http://lever.cs.ucla.edu~project-
members/reiher/available-papers.html)
D.H. Ratner. Selective Replication: Fine grain control of

replicated files. Master's thesis, UCLA, USA, 1995.
[I31 R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G.

Popek. Rumor: Mobile Data Access Through Optimistic
Peer-to-Peer Replication. In Workshop on Mobile Datu Ac-
cess, November 1998. (web site http://lever.cs.ucla.edu/
project-members/reiherlavailablegapers.html).

[I41 G. On and M. Liepert. Replication in medianode. Technical
Report TR-2000-03, Darmstadt University of Technology,
Germany, September 2000.

[I51 C. Griwodz. Wide-Area True Video-on-Demand by a De-
centralized Cache-based Distribution Infrastmcture. PhD.
dissertation, Darmstadt University of Technology, Germa-
ny, April 2000.

[I61 M. Mauve and V. Hilt. An Application Developer's
Perspective on Reliable Multicast for Distributed In-
teractive Media. In Computer Commirnication Re-
view, pages 28-38, 30(3), July 2000.

[I71 T.W. Page,Jr., R.G. Guy, G.J. Popek, and J.S. Heidemann.
Architecture of the Ficus scalable replicated file System.
Technical Report CSD-910005, UCLA, USA, March 199 1.

[I81 M. Nicola and M. Jarke. Performance Modeling of Distrib-
uted and Replicated Databases, in IEEE Transactions on
Knowledge und Data Engineering, 12(4), pages 645-672,
JulyIAug. 2000.

