
[OSStOl] Giwon On, Jens Schmitt, Ralf Steinmetz; Design and lmplementation of a QoS-awere
Replication Mechanism for a Distributed Multimedia System; 8th International Workshcp
(IDMS 2001), Lancaster, September 2001, S. 38-49.

Ucsigii arid Iiriplcinentation ofa QoS-Awarc. Replication Mechanism 39

Design and Implementation of a QoS-Aware Replication
Mechanism for a Distributed Multimedia System

Giwon Onl, Jens B. ~chmit t ' and ~ a l f ~ te inmetz ' ,~

' Industnal Process and System Cornmunications
Dept. of Electrical Eng. & lnformation Technology

Darmstadt University of Technology
Merckstr. 25, D-64283 Darmstadt, Germany

*GMD IPSI
German National Research Center for Information Technology

Dolivostr. 15, D-64293 Darmstadt, Germany
{Giwon.On, Jens.Schmitt, Ralf.Steinmetz}@KOM.tu-darmctadt.de

Abstract. This paper presents the design and implementation architecture of a
replication mechanism for a distributed multimedia system medianode which is
currently developed as an infrastructure to share multimedia-enhanced teaching
materials among lecture groups. The proposed replication mechanism suppons
the quality of service (QoS) characteristics of multimedia data and the availability
of system resources. Each Srpe of data handled and replicated are classified
according to their QoS characteristics and replication requirements. The main
conmbution of this paper is the identification of new replication requirements in
dismbuted multimedia systems and a multicast-based update propagation
mechanism by which not only the update events are signalled, but also the
updated data are exchanged between replication managers. By prototyping the
proposed replication mechanism in medianode, we prove the feasibility of our
concept for combining the QoS concept with replication mechanisms.

1 Introduction
One major problem about using multimedia material in lecturing is the trade-off
between actuality of the content and quality of the presentations. A frequent need for
content refreshment exists, but high quality presentation can not be authored by the
individual teacher alone at the required rate. Thus, it is desirable that teachers
presenting the Same or at least similar topics but work at different locations can easily
share their multimedia-enhanced lecture materials. The medianode project[l] is
intended to provide such means for sharing to lecturers at the universities of the
German state Hessen.

The design of the medianode system addresses issues of availability, quality of
service, access control and distnbution of data. To support teachers, it must allow for
transparent access to shared content, and it must be able to operate in disconnected
mode since lecturers do not have access to the network at all times during their
presentations. The medianode system architecture is intended for de-centralized
operation of a widely distributed system. Within this distributed system, each
participating host is called a medianode and conceptually equal to all other
participating nodes, i.e. a medianode is not considered a client or a server. Client or

server tasks are taken on by medianodes in the system depending on tlie their resources
and software modules.

Replication is the maintenance of on-line copies of data and other resources[2, 51.
Replication of presentation materials and meta-data is an important key to providing
high availability, fault tolerante and quality of service (QoS) in distributed multimedia
systems[2 I], and in particular in medianode. For example, when a user requires access
(readlwrite) to a presentation which comprises audiolvideo data and some resources
which are not available in the local medianode at this point of time, a local replication
manager copies the required data from their original location and puts it into either one
of the medianodes located nearby or the local medianode without requiring any user
interaction (user transparent). This function enhances the total performance of
medianode by reducing the response delay that is often caused due to insufficient
system resources, such as memory, CPU time, and network bandwidth, at a given
service time. Furthermore, because of the available replica in the local medianode, the
assurance hat users can continue their presentation in a Situation of network
disconnection, is significantly higher than without replica.

The structure of the paper is as follows. In Section 2, we give an overview of
related work. The merits and limitations of existing replication mechanisms are
discussed and a comparison of our approach with previous work is given. Section 3
presents our replication system model. We defme the scope of our replication
mechanism in medianode and present the characteristics of presentational media types,
for which we identifj a need for new replica units and granularity. We also describe the
proposed replication maintenance concept, e.g. how and when replicas are created and
how the updates are signalled and transported. In Section 4, we present our prototype
irnplementation architecture. It describes operation flows in medianode with and
without replication system. We conclude the paper with a Summary of our work and an
outlook towards possible future extensions of our replication mechanism in Section 5.

2 Related Works
Several approaches to replication have already been proposed. The approaches differ
for dismbuted file systems from those for Intemet-based distributed web Servers and
those for transaction-based distributed database systems. Well-laiown replication
systems in distributed file systems are AFS[6], Coda[7], Rumor[l3], Roam[l4] arid
Ficus[l6] which keep the file service semantics of Unix. Therefore, they support to
develop applications based on them. They are based either on a client-server model or
a peer-to-peer model. Often they use optimistic replication which can hide the effects
of network latencies. Their replication granularity is mostly the file system volume,
with a large size and low nurnber of replicas. There is some work on optimization for
these examples concerning of update protocol and replica unit. To keep the delay small
and therefore maintain real-time interaction, it was desirable to use an unreliable
transport protocol such as UDP. In the earlier phases, many approaches used uniCast-
based data exchange, by which the replication managers communicated with each
other one-to-one. This caused large delays and prevented real-time interaction. T0
overcome this problem, multicast-based communication has used recently [9, 11, 12,

D. Shepherd e(al. (Eds.): IDMS 2001. LNCS 2158. pp. 38-49.2001
0 Springer-Verlag Berlin Heidelberg 2001

40 Giwon On, Jens B. Schmitt, and Ralf Steinmetz Design and lmplementation of a QoS-Awarc Replication Mechanism 4 1

171. For Coda, the RPC2 protocol is used for multicast-based update exchange, which
provides with the Side Eflecr Descriplor transmission of large files.

For limiting the amount of storage used by a particular replica, Rumor and Roam
developed the selective replication scheme[l8]. A particular user, who only needs a
few of the files in a volume, can control which files to Store in his local replica with
selective replication. A disadvantage of selective replication is the 'full backstoring'
mechanism: if a particular replica Stores a particular file in a volume, all directones in
the path of that file in the replicated volume must also be stored.

JetFile[9] is a prototyped distributed file system which uses multicast
communication and optimistic strategies for synchronization and distribution. The
main merit of JetFile is its multicast-based callback mechanism by which the
components of JetFile, such as file manager and versioning manager interact to
exchange update information. Using the multicast-based callback, JetFile distributes
the centraiized update information which is normally kept by the server over a number
of multicast routers. However, the multicast callbacks in JetFile are not guaranteed to
actually reach all replication peers, and the centraiized versioning server, which is
responsible for senalization of all updates, can lead to a overloaded system state.
Furthermore, none of the existing replication systems supports quality of service
(QoS) characteristics of (file) data which they handle and replicate.

3 Replication System Model

3.1 Design Goals and Scope of OurReplication System

By analysing the service requirements distributed multimedia systems for the example
of medianode, we identified a number of issues that the design of our replication sys-
tem needs to address:

High availability: The replication system in medianode should enable datalservice
access in both connected and disconnected operation modes. Users can keep multi-
ple copies of their files on different medianodes that are distributed geographically
across several universities in the state of Hessen.

Consistency: Concurrent updates and system failures can lead to replicas not being
consistent any more, i.e. stale state. The replication system should offer mecha-
nisms for both resolving conflicts and keeping consistency between multiple repli-
cas and their updates.
Location and access transparency: Users do not need to know where presenta-
tion resources are physically located and how these resources are accessed.
Cost efficient update transport: Due to the limitation of system and network
resources, the replication system should use multicast-based transport mechanism
for exchanging updates to reduce resource utilization.
QoS support: The specific characteristics of presentational data, especially of
multimedia data should be supported by the proposed replication mechanism.

In medianode, we mainly focus on the replication service for accessing data in terms of
'inter-medianode', i.e. between medianodes, by providing replica maintenance in each
medianode. Consequently, a replication manager can be implemented as one or a Set of

medianode's bow instances in each medianode. The replication managers communi-
cate among each other to exchange update information through the whole medianodes.

3.2 Different I'ypes of Presentation Data
Data organization comprises the storage of content data as well as meta information
about this content data in a structured way. The typical data types which can be
identified in medianode are described in [3]. Table 1 shows an overview of these data
types with their characteristics.

Table 1: Data categories and their characteristics in rnedianode

3.3 Classification of Target Replicas
AS argued in subsection 3-1, the main goal of replication is to provide availability of
medianode's Services and to decrease the response time for accesses to data located on
other medianodes. To meet this goal, data which is characterized by a high availability
requirement (See Table 1) should be replicated among the running medianodes. We
classify different types of target replicas according to their granularity (data size),
requirement of QoS support, update frequency and whether their data Spe is
'persistent' or not ('volatile'). Indeed, there are three classes of replicas in medianOde:

Truereplicas which are persistent and of large size. Content files of any media type,
which also may be parts of presentation files are Truereplicas. Truereplicas are the
only replica type from the three types, to which the end Users have access for direct
manipulation (updating). On the other side, these are also the only replica W e
which requires the support of really high availability and QoS provision.

Metareplicar (replicated metadata objects) that are persistent and of small size. An
example would be a list medianodes (sites) which currently contain an UP-to-date

resources

User sessiont
token

high high no high small not required

4 2 Ciiwoii On. Jens H. Schrnitt. and KalfSieininct/ 1)csigii ;iiid Iiiiplciiicntaiiori ol'a QoS-Awarc Rcplicatiori Mcchanisiii 43

copy of a certain file. This list itself is replicated to increase its availability and
improve performance. A metareplica is a replica of this list.
Sqfrreplicas which are non-persistent and of small size. This kind of replicas can be
used for reducing the number of messages exchanged between the local and remote
medianodes, and thereby reducing the total service response time. I.e., if a local
medianode knows about the available local system resources, then the local repli-
cation manager can copy the desired data into the local storage bow, and the service
that is requested from Users which requires exactly the data can be processed in a
shorter response time. Information about the available system resource, user ses-
sion and the validity of user tokens are replicas of this type.
All replicas which are created and maintained by our replication system are an

identical copy of original media. Replicas with errors (non-identical copy) are not
allowed to be created. Furthermore, we also do not support any replication service for
function calls, and elementary data types.

3.4 The Replication Mechanism

3.4.1 Replication Model
Basically, our replication system does not assume a client-server replication model,
because there are no fixed clients and Servers in the medianode architecture; every
medianode may be client or server depending on its current operations. Peer-to-peer
model with the following features is used for our replication system:

(a) Every replica manager keeps track of a local file table including replica
information.

(b) Information whether and how many replicas are created is contained in the
every file table. 1.e. each local replica manager keeps track of which remote replica
managers (medianode) are caching which replicas.

(C) Any access to the local replica for reading is allowed, and guaranteed that the
local cached replica is valid until notified otherwise.

(d) If any update happens, the corresponding replica manager sends a multicast-
based update signal to the replica managers which have the replica of the updated
replica and therefore members of the multicast group.

(e) To prevent excessive usage of multicast addresses, the multicast IP addresses
through which the replica managers communicate can be organized in small replica
sub-groups. Exarnples for such sub-groups are file directories or a Set of presentations
about a Same lecture topic.

3.4.2 Update Distribution and Transport Mechanism
The update distribution mechanisms in medianode differs between the three replica
types and their conceming managers. This is due to the fact that the three replica types
have different levels of requirements on and characteristics of high availability, update
frequency and consistency QoS (see Table 1). Experience from GLOVE[4] and [SI
also shows that differentiating update distribution strategies makes sense for web and
other distributed documents. The medianode's replication system offers an unique
interface to the individual update signalling and transport protocols which are

selectively and dynamically loaded and unloaded from the replica transport manager
that IS implemented as an instance of medianode's access bow. Possible update
transport and signalling protocols are:

RPC protocol [2,10]as a simple update distribution protocol. This mechanism is
mainly used at the first step of our simple and fast implementation.
A rnulticast hased RPC communication mechanism. In this case, the updates are
propagated via multicast other replica managers which are members of the multi-
Cast group. RPC2 [7,11] is a good candidate for the fust implementation. RPC2
also offers the transmission of large files, such as the updated AV content files or
d~f-files, by using the Side Effect Descriptor. But, the RPC2 with Side Effect
Descriptor does not guarantee any reliable transport of updates.
LC-RTP based reliable multicast protocol: LC-RTP (Loss Collection-Realtime
Transport Protocol)[l2] is originally developed as an extension of RTP protocol to
support the reliable video streaming within the medianode project. Therefore, we
adopt LC-RTP and check the usability of the protocol, depending on the degree of
reliability required for the individual groups of replicas.

3.4.3 Approaches for Solving Conflicting Updates and for Resolving Conflicts

The possible conflicts that could appear during the shared use of presentational data
and files are either (a) update conflict when two or more replicas of an existing file are
concurrently updated, (b) naming conflict when two (or more) different files are given
concurrently the Same name, and (C) updatetdelete conflict that occur when one replica
of a file is updated while another is deleted. In most existing replication Systems, the
conflict resolving problem for update conflicts was treated as a minor problem. It was
argued that most files do not get any conflicting updates, with the reason that only one
Person tends to update them[9]. Depending on the used replication model and policy,
there are different approaches of which our replication system uses the following strat-
egies [7,8,13,14,15]:

Swapping - to exchange the local peer's update with other peer's updates;
Dominating - to ignore the updates of other peers and to keep the local update as a
final update;
Merging - to integrate two or more updates and build one new update table;

4 Irnplernentation
We have implemented a Prototype of the proposed replication system model on a
Linux platform (SuSe 7.0, Redhat 6.2). Implemented are the media (file) and its replica
manager (ReplVerifierBow), update transport manager (ReplTransportBow), replica
service APIs which are Unix-like file operation functions such as Open, create, read,
wnte, close (ReplFileSysBow), and a session information storage bow
(VolatileStorBow) which maintains user's session and token information.

4.1 Bow Description
Table 2 gives a short descriptions of bows which implement medianode's basic
functions and the services of our replication system.

44 Giwori On. Jens B. Schinitt, and Ralf'Stcinnictz

Table 2: A Summary of medianode's bows used for o u r replication system

Design ancl Iinplemcntaiion of a QoS-Awarc Rcplication Mcchanism 45

Bow

MNBow

MNAccessBow

ReplTransportBow

(GU1)TelnetBow

MNVerifierBow

ReplVerifierBow

MNStorageBow

FileBow

XMLBow

ReplFileSysBow

VolatileBow

4.2 Presentation Service without Replication Support
The interaction model for medianode's bows is based on a 'request-response'
communication mechanism. A bow which needs to access data or services creates a
request packet and sends it to the core. According to the request type, the core either
processes the request packet directly, or forwards it to a respective bow. The
processing results are sent to the origin bow in a response packet. The request and
response packets contain all necessary information for the cornrnunication between
bows as well as for processing the requests.

Descnption

addressible via an unique bow identifier and version number - uses request and response queues and dispatcher threads
defines request processing routine

child class of MNBow and implements access bow API
offers RPC server modules and enables RPC connection from
web server
HTML-based presentation files are provided via this bow

child class of MNBow and a variant of access bow
implements the transport managen for replication service
offers transpon protocol modules such as RPC, RPC2, and LC-
RTP (LC-FTP)

child class of MNBow and a variant of access bow
offers TCP server modules
acts as telnet server and provides information which medianode
maintains such a list of bows loaded by the core, memory usages
of a certain medianode's process mnning etc.
GUlBow implements a TelnetBBow with a graphical user inter-
face

child class of MNBow and implements verifier bow API
offen modules needed for user authentication

child class of MNBow and a variant of verifier bow
implernents the media (file) and replica managers for replication
service
maintains the three replica tables

child class of MNBow and implements Storage bow API

child class of MNStorageBow
implements functions for local file operation
no interface routine support for replication service

child class of MNStorageBow
offers modules for dynamic generation of presentation files
no interface routine suppon for replication service

child class of MNStorageBow
implements functions for local file operation
implements interface routines for replication service

child class of MNStorageBow
implements functions for maintaining volatile data such as
memory usage information
implements interface routines for replication service

MNVerifierBow

r - - - - - - - 1

I RedRespQueue I

1 @ DispatcherThread I MNFileBowlMNXML
L J

40 ciiwori Uri, Jens U. Schinitt, and Kalt' Steinmetz
Ucsign arid Iiiiplciiiciitatiori ol'a QoS-Awarc Kcplication Mechanism 47

Based on this request-response mechanism, we experimented some presentation
Scenarios with and without a replication service. Figure 1 shows one example of
presentation services without a replication system. Upon receiving a presentation
request from User via web server, the MNAccessBow creates first a request packet to
check user's authentication (steps 1 4) and sends it via the core (steps 5-7) to
MNVerifierBow which puts authentication test value into a response packet and sends
it to the origin bow, MNAccessBow (steps 8-11). In the case of a successful
authentication, MNAccessBow creates a request packet to get the required
presentation data and sends it via the core to a corresponding storage bow (steps
12-1 5) . Either MNFileBow or MNXMLBow, it depends on the requested (media) data
type, checks whether the data exists locally, and then creates a response packet which
contains either a file handle or an error message, sends it to the MNAccessBow (steps
16-18). MNAccessBow sends then to the web server a response which is either an
authentication failure message or a presentation file.

4.3 Presentation Service with Replication Support

4.3.1 Initialization of MediaList and Replica Tables
In this subsection, we descnbe the medianode's operation flow with the replication
service. Basically, the replication service in medianode begins by creating media list
and replica tables of the three replica types in each medianode. As shown in Figure 2,
ReplFileSysBow sends a request packet via the core to ReplVerifierBow for creating a
media list for media data which locate in the local medianode's file system (steps 1-2).
Upon receiving the request packet, ReplVerifierBow creates media list which will be
used to check the local availability of any required media data (step 3).
ReplVerifierBow then builds the local replica tables for the two replica w e s ,
Truereplicas and Metareplicas, if the replica information exists already. A rnedianode
configuration file can specifi the default location where replica information is stored.
Every type of replica table contains a list of replicas with the information about
organization, replica volume identifier, unique file name, file state, version number,
number of replicas, a list of replica, a multicast IP address, and some additional file
attributes, such as access nght, creation/modification time, size, owner, and file type.
The third replica table for the Sofireplicas to which the local system resource, User
Session and token information belong may be needed to be created in terms of memory
allocation, and the contents of this table can be partly filled when users request some
certain services. Once the replica tables are created, they are stored in the local file
system and accessible persistently.

4.3.2 Maintaining Replica Tables

In medianode, these three replica tables are maintained locally by the local replication
manager. So, there is no need to exchange any update-related messages for the files of
which there is no replica created. This approach increases the system resource utiliza-
tion, especially network resources, by decreasing the message numbers exchanged
between the replication managers arnong the distributed medianodes. But, when any
medianode wants to get a replica from the local replica tables, the desired replica ele-

ment.. are copied to the target medianode, and the replication manager at the target
medianode keeps these replica elemenis separate in another replica table which is used
only for the management of remote replicas, i.e. for the management of replicas for
which their original files are stored in a remote medianode.

4.3.3 Acquiring a Replica to Remote Replication Managers
Upon receiving the service requests (data access request) from users, the local
medianode attempts to access the required data in a local storage bow
(ReplFileSysBow) (step 4-5).

\

I Figure 2: medianode: internal service flow with a replication support I

48 Giwon On, Jens B. Schmitt, and Kalf Steinmetz Dcsign and Implernentariori ol a 00s-Awart: Kcplicaiioii Mcciia~ii~iii 4,)

In the case, when the data is not available locally, the local ReplFileSysBow sends
a request packet to ReplVerifierBow to get a replica for the data. The ReplVerifierBow
then start a process to acquire a replica by creating a corresponding request packet
which is passed to ReplTransportBow (steps 6-8). The ReplTransportBow multicasts a
data search request to all the peer replication managers and waits for replication
managers to respond (step 9). The list of medianodes to which the multicast message is
sent can be read from the medianode's configuration file. Whether the
ReplTransportBow waits for all responses or receives the first one is dependent on the
optimization policy which is given as configuration flag. After receiving the target
replica, the ReplTransportBow sends a response packet to the ReplVerifierBow which
then updates the corresponding replica tables, i.e. ReplVerifierBow adds the new
replica element to the Truerepiicas table and its metadata to the Metareplicas table,
respectively (steps 10-13). Finally, the local ReplFileSysBow which originally issued
replica creation request creates a response packet including the replica handle and then
sends it to the MNAccessBow (steps 14-15).

5 Summary and Future Works
In this paper, we presented the replication mechanism of our distributed media system
medianode, and descnbed the design and implementation architecture of the
prototyped replication system. The main contributions of this paper are (1) to identify
the new replication requirements for distributed multimedia systems, and (2) to build a
replication mechanism for distributed multimedia systems, which supports the
individual QoS characteristics of multimedia data and uses system resource usage
information. To achieve these targets, we fmt studied the characteristics of
presentational media types which are handled in medianode, identified replica units
and granularity. These have not been considered and not supported in existing
replication mechanisms. We then built a QoS-aware replication mechanism, in which
the decision whether and when a replica should be created from original file is made
by checking the QoS characteristics of the requested media and the current usages of
available system resources, for distributed multimedia systems based on the new
requirements and the result of feature surveys.

The next working steps would be to design other replication Services which
provide service implementations such as predictive replication to increase access
availability and to reduce latency. Similar approaches are Hoarding[7, 191, prefetched
caching and resource reservation in advance[20].

References

1. The medianode project. (web site http://www.httc.de/medianode).
2. G. Coulouris, J. Dollimore and T. Kindberg. DistributedSys(ems, 3rd Ed., Chapter

1,8,14 and 15, Addison-Wesley, 2001.
3. G. On, M. Zink, M. Liepert, C. Griwodz, J. Schmitt, R. Steinmetz. Replication for

a Distributed Multimedia System. In Proc. of ICPADS2001, pp.37-42, 200 1.
4. G. Pierre, I. Kuz, M. van Steen and A.S. Tanenbaum. Differentiated Strategies for

Replicating Web documents, In Proc. of 51h International Workshop on Web Cach-

ing and Conrenr Deliveq, Lisbon, May 2000.
5. P. Triantafillou and D.J. Taylor. Multiclass Replicated Data Management: Exploit-

ing Replication to lmprove Effciency. In IEEE Trans. on Parallel and Distribured
Systems, pages 12 1-138, V01.5, No.2, Feb. 1994.

6. R. Campbell. Managing Andrew File System (AFS), Prentice Hall PTR, 1998.
7. M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and D.C.

Steer. Coda: A Highly Available File System for a Distributed Workstation Envi-
ronment. In IEEE Transaction on Computers, 39(4), April 1990.

8. J. Yin, L. Alvisi and C. Lin. Volume Leases for Consistency in Large-Scale Sys-
tems. In IEEE Trans. on Knowledge und Data Engineering, 1 1 (4), 1999.

9. B. Groenvall, A. Westerlund and S. Pink. The Design of a Muiticast-based Distrib-
uted File System. In Proceedings of Third Symposium on Operating Systems De-
sign und Implemenfation, (OSDI'99), New Orleans, Louisiana, pages 25 1-264.
Febmary, 1999.

10. K.P. Birman and B.B. Glade. Reliability Through Consistency. In IEEE Software,
pages 29-4 1, May 1995.

1 I . M. Satyanarayanan and E.H. Siegel. Parallel Comrnunication in a Large Distribut-
ed Environment. In IEEE Trans. on Computers, pages 328-348, Vo1.39, No.3,
March 1990.

12. M. Zink, A. Jones, C. Girwodz and R. Steinmetz. LC-RTP (Loss Collection RTP):
Reliability for Video Caching in the Intemet. In Proc. ofICPADS2001: Workshop,
pages 28 1-286. IEEE, July 2000.

13. R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile
Data Access Throueh Optimistic Peer-to-Peer Replication. In Workshop on Mobile -. "

Data Access, November 1998.
14.D. Ratner, P. Reiher, and G. Popek. Roarn: A Scalable Replication System for Mo-

bile Computing. In Workshop on Mobile Databases and Distributed Systems
(MDDS), September 1999.

15. P. Triantafillou and C. Neilson. Achieving Strong Consistency in a Distributed File
System. In IEEE Transaction on SofnYare Engineering, pages 35-55, Vo1.23, No. 1,
January 1997.

16. T.W. Page,Jr., R.G. Guy, G.J. Popek, and J.S. Heidemann. Architecture of the Fi-
cus scalable replicated file system. Technical Reporr CSD-910005, UCLA, USA,
March 199 1.

17. M. Mauve and V. Hilt. An Application Developer's Perspective on Reliable Mul-
ticast for Distributed Interactive Media. In Computer Communication Review, pag-
es 28-38, 30(3), July 2000.

18. D.H. Ratner. Selective Replication: Fine grain control of replicated files. Muster's
thesis, UCLA, USA, 1995.

19. G.H Kueming. Seer: Predictive File Hoarding for Disco~ected Mobile Operation.
PhD. disserrarion, UCLA-CSD-970015. UCLA, USA, 1997.

20. C. Griwodz. Wide-Area Tme Video-on-Demand by a Decentralized Cache-based
Distribution Infrastructure. PhD. dissertarion, TU Dmstadt, April 2000.

2 1. J. Chung-I and M.A. Sirbu. Distributed Network Storage with Qualip-of-Service
Guarantees. web site http://www.ini.cmu.edd-si~bdpubs/9925 1lchuang.h

