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Abstract    Recently, it has been realized that the importance of satisfying service availability is becoming one of the
most critical factors for the success of Internet-based services and applications. In this paper, we take an availability-
centric view on QoS and focus on the issues of providing availability guarantees for distributed and replicated multi-
media services and contents. For this purpose, we develop a concept called quality of availability  (QoA) in which the
availability is treated as a new controllable QoS parameter. We especially tackle the replica placement (RP) problem
and study the effects of number and location of replicas on the achieved availability. We decompose the RP problem
into three sub-problems: (1) finding a “good” placement for a fixed number of replicas, (2) checking the reached QoA
with a selected replica placement, and (3) determining the number and location of replicas for satisfying a re-
quiredQoA. For each RP sub-problem, we review existing related work for algorithms ranging from heuristic to exact
methods as well as devise new algorithms where existing work is lacking and evaluate their achieved QoA. Based on
a simulation study, we find that (1) the location of replica is a more relevant factor than their number for satisfying the
QoA requirements by different users, and (2) the heuristic methods, in general, cannot give any guarantee for their
achieved QoA, even though they are very efficient for large size graphs. Our proposed QoA concept and model can
be used as a base mechanism for further study on the availability and reliability QoS for dynamically changing network
service environments. 

Keywords: multimedia service and content replication, availability, QoS, quality of availability (QoA), replica place-
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1 Introduction
1.1 Satisfying Availability - the Key for Successful Services in Internet 
The rapid popularization of Internet-based distributed services and applications have inspired the research
and development of technologies for providing resource assurance and service differentiation which have
motivated the development of the concept, architecture and mechanisms of quality of service (QoS). The
main focus of QoS is improving the service quality by addressing the issues of resource management, serv-
ice differentiation and performance optimization [1,2]. 
Even though there are many significant research results, technology advances and solutions in QoS since
the last 20 years, their application to commercial products or systems was not so successful, in comparison
to their attention in the research arena. One critical reason probably is that, as H. Schulzrinne pointed out in
[3] and an interview statistic mentioned in [4], the main research focus for QoS was to control transmission
characteristics like bandwidth, delay, and loss. This is because applications on the Internet typically as-
sumed in need for QoS support, such as video conference, video-on-demand, tele-teaching/learning, Inter-
net telephony, strongly motivated the development of QoS technologies. While for these the control of the
transmission characteristics is certainly important it seems likely by now that, on the one hand, for them this
may not be the most pressing need with regard to QoS requirements, and on the other hand that there are
other applications having quite different requirements. Indeed, the perceived QoS may be much more influ-
enced by how available a certain service and its data are. In the context of QoS, the availability issue has so
far seldom been mentioned, and there is no work known to us which tries to treat availability as a control-
lable QoS parameter. 
1.2 Differentiation of Service Classes and Availability Requirements
While most research efforts in high availability and fault-tolerant systems areas have their focus on achiev-
ing the so-called ‘five nines’ (99.999%) availability [5], there is a demand for service differentiation from
service consumers and providers due to costs and competitive nature of the marketplace, which derives for
the mechanisms that support different levels of services and their availability. In fact, the need for service
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differentiation can be observed from different services, such as video-on-demand (VoD) or news-on-de-
mand over the Internet, as wells as different users’ requirements which depend on the service type they de-
mand, on the service time when they access, on the peripherials they have, and on the service price they pay. 
From the service system provider’s point of view, on the other side, not all system components need to have
the same redundancy level, i.e., availability level to offer. The availability level required for individual sys-
tem components depends on the fact of how much they should be reliable and are critical for offering the
service. For example, in developing replication mechanisms for increasing availability of services and their
data in a distributed multimedia system medianode [6], we analysed the characteristics of multimedia con-
tents and their meta-data and could identify that not all service operations and not all data access functions
require the same availability level of the ‘five nines’. 
1.3 The Main Focus and Approach
The work in this paper is strongly motivated by the two aspects mentioned above. So, the main focus is
building a model and mechanisms to study the problem of how to satisfy and guarantee different availabil-
ity requirements for distributed and replicated multimedia services in a wide-area internetwork like the In-
ternet, and to evaluate the achieved availability QoS. In many existing works, it has been shown that the
availability of distributed services and their data can be significantly increased by replicating them on mul-
tiple systems connected with each other, even in the face of system and network failures. Thus, we especial-
ly tackle the replica placement (RP) problem and study the effects of number and location of replicas on the
reached availability QoS. For this purpose, we develop a concept called quality of availability (QoA) in
which the availability is treated as a new controllable QoA parameter. Based on the QoA concept, we model
the distributed multimedia system as a stochastic graph where all nodes and edges elements are parameter-
ized, statistically independently of each another, with known availability and failure probabilities. An avail-
ability requirement value is additionally assigned to each node so that the target replica placement problem
is to find replica set with which the availability requirements for all nodes are satisfied. We decompose the
RP problem in three questions: (1) finding a “good” placement for fixed number of replicas, (2) checking
the reached QoA with a selected replica placement, and (3) determining the number and location of replicas
for satisfying a required QoA with absolute guarantees. Thus, the main focus of the paper is not developing
an additional, new algorithms for the RP problem, but instead specifying the availability QoS concept and
model. For each RP question, we review some solution algorithms from heuristic and exact methods and
evaluate their achieved QoA. Based on a simulation study, we find that (1) the location of replica is a more
relevant factor than its number for satisfying the required availability QoS, and (2) the heuristic methods do
not give any guarantee for their achieved QoA, even though they are very efficient for large size graphs.
Note that we do not address the replica selection and update distribution issues in this work. These issues
are handled in our previous work [6] where we also give a comprehensive survey on existing solutions for
these problem. 

1.4 Outline 
The rest of this paper is organized as follows. In Section 2, we develop the concept of quality of availability
and describe the QoA metrics to be used in this work. Section 3 presents the replica placement problem and
details the algorithms that we reviewed and modified for our problem. In Section 4, we present our imple-
mentation methods including the experimental simulation environment and in Section 5 we evaluate the re-
sults. Section 6 discusses related work. Finally, Section 7 concludes the paper. 

2 The Concept of Quality of Availability (QoA) and its Model
2.1 Basic Idea
The basic idea of the QoA concept is that the availability can be defined as a new controllable, observable
QoS parameter . Indeed, we move the focus of the objective function for the resource and performance op-
timization problems of the QoS field from satisfying transmission-dependent characteristics such as mini-
mizing transmission delay, jitter, and/or loss to satisfying the availability requirements such as minimizing
failure time of service systems and their components and to maximizing the total time amount in which the
required service functions as expected and its data are reachable. Given a set of different levels of availabil-
ity requirements and a network topology with a finite number of possible replica locations, we are then in-
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terested in how many replicas are needed, where should they be placed, whether their placement on the
given topology satisfies the individually required availability QoS and how they affect the overall service
availability quality. In the following section we define QoA metrics and presents our methodology to study
the QoA. 
2.2 The QoA Metrics and Parameters 
A service is said to be available  when it functions as expected and its data is reachable. Commonly we dis-
tinguish between two levels of available services: basically available (BA) and highly available (HA). At
the BA level, a service delivers correct functionality as long as no faults occur, but it neither offers any re-
dundancy for its system components and data, nor fault detection and recovery mechanisms, while a HA
service, in addition to the BA level’s feature, provides a certain level of redundancy and eventually the
mechanisms for fault-tolerance support [5,11]. 
Availability is usually defined either as (a) the percentage of time during which the service is available or
(b) the probability of service systems’ reachability where each system has an independent failure probabil-
ity [11]. We use these definitions to specify our availability metrics used in both defining QoA requirements
and evaluating reached QoA for networked services. Using these availability metrics - the percentage of
successful service time and the failure probability of underlying systems and network connections, QoA
guarantees can be specified in various forms like the cases in network QoS [2,7]: 
• deterministic - a service (or its data item) is reachable all the time with an availability guarantee of

99.99 percent. This means for a service that the time duration where the service is unreachable should
be absolutely no longer than 53 minutes for a year (1 year = 525600 minutes).

• probabilistic (or stochastic) - a service availability probability is guaranteed to be at least, e.g., 90 per-
cent of the whole service access requests. 

• time average  - the available service time (or data access time) is more than 8000 hours over a year
(8760 hours). 

Actually, the exact form of QoA parameter can be specified both by applications and service providing sys-
tems. The QoA evaluation conditions that we use for evaluating satisfied QoA in the evaluation part of this
work are as follows: 
• reachedQoA(v):  = satisfied availability(v)/required availability(v),  with  (V

without R) 
• minQoA: = min { : }
• avgQoA: =  with  and n = (|V| - |R|)
• guaranteedQoA:  = ,  = set of nodes with  
Beyond the QoA parameters mentioned above, we can also take into account typical QoS parameters like
delay, jitter and data loss. Especially, taking the delay as QoS parameter into account makes the QoA model
more realistic, because service consumers usually expect to receive a service within an acceptable response
time, when they require the service, and when it is assumed that the service is available. One other QoA pa-
rameter can be the consistency parameter which can be modeled either as staleness or the total time duration
of data being inconsistent. 
2.3 Replication as Concept for Increasing Availability 
Replication is a proven concept for increasing the availability for distributed systems. Replicating services
and data from the origin system to multiple networked computers increases the redundancy of the target
service system, and thus the availability of the service is increased. Important decisions for a replication
management system are: what to replicate? (replica selection problem), where to place the replica?  (replica
placement problem), and when and how to update them? (update control problem). From these decision
problems, we especially focus on the replica placement problem, because the placement problem does not
depend only on the user’s access patterns, but also on the available, continuously changing, but limited sys-
tem and network resources and on the costs which service (or content) providers need to pay for satisfying
a required availability level.

3 The Replica Placement Problem 
3.1 Notations and Problem Formulation 
Distributed, networked service systems that consist of storage/server nodes and network connections be-
tween them can be modelled as a graph, G(V,E), where V is the set of nodes and E the set of connection

QoAs v( ) v∀ VR∈ VR

QoAmin QoAs v( ) v∀ VR∈
QoAavg 1 n⁄ QoA s v( )∑( ) v∀ VR∈

QoAg Vs V⁄ V s QoA s v( ) 1≥
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links. This graph is static  if the members and the cardinality of V and E do not change else it is dynamic .
The graph is said to be stochastic when each node and link are parameterized, statistically independently of
each other, with known failure or availability probabilities. The replica placement (RP) problem can be dis-
tinguished between constrained RP (CRP) and unconstrained RP (URP) problems: In the CRP, there are a
set of service demanding nodes D and a set of service supply nodes S, so that  and 
(empty set), and the replica set R can only be built from the nodes of the set S, . In the URP, every
node can be either a service demanding node or a service supply node, i.e., there is no D and S, and .
Concerning the RP problem, the following sections introduce three sub-problems that are explored in this
work. For all three sub-problems, we model the RP problem as a static, stochastic and unconstrained graph.
Table2 summarizes the notation used for formulating and specifying the RP problem throughout this work.

3.2 Finding a “Good” Placement for a Fixed Number of Replicas 
As input, a stochastic graph G (V, E) is given. As the second parameter, a positive integer number k may
also be given. The objective of this problem is to place the k replicas on the nodes of V, i.e., find R with |R|
= k such that a given optimization condition O(|R|, T(R), a) is satisfied for given availability requirement
for service demanding nodes. How well the optimization condition is satisfied depends on the size of |R| and
the topological placement T(R). Because the main goal associated with placing replicas on given networks
in our work is satisfying availability QoS which can be required in different levels, we take the availability
and failure parameters as our key optimization condition, i.e., O(|R|, T(R), ReachedAvailability). Thus, with
the use of 100% of all clients’, 90%-tile, and mean clients’ required availability value, the optimization con-
dition can be denoted as O(|R|, T(R), 1.0), O(|R|, T(R), .90), O(|R|, T(R), Avg), respectively. For these con-
ditions, the replica set R must be chosen such that the maximum, average or any given failure bound for
service and its data access meets the QoA requests for any demanding node (client node) of V. 

Notation Description

G (V, E) a graph with V, the set of nodes, and , the set of links

D set of service demanding nodes and a subset of nodes of G,  

S set of service supply nodes and a subset of nodes of G,  

R set of replica nodes, a subset of nodes of G, 

|V|, |D|, |S|, |R| cardinality of the node sets V, D, S, R 

T(R) topological placement of R, i.e., the location of R’s elements

availability probability of the element e (  or  ) for service supply

 failure probability of the element e (  or ) for service supply, =1- 

required service availability of service demanding node e ( ) 

a boolean variable for the state of the component e ( ): 1 if e functions else 0 

a(G) availability of G 

state of G

partial graph of G associated with  

achieved QoA for a service demanding node e of V with R: 1 if satisfied else 0 

achieved QoA for all service demanding nodes of G with R: 1 if satisfied else 0

Table 1: Notation. 

D S∪ V= D S∩ 0=
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The RP problem can be classified as NP-hard discrete location problem. In literature, many similar location
problems are introduced and algorithms are proposed to solve the problems in this category. The heuristics
such as Greedy, TransitNode, Vertex substitution , Tabu Search, etc. are applied to many location problems
and have shown their efficiency [15,16,17,18,19,21,22]. In this work, we take some basic heuristic algo-
rithms as follows. But, different variants of these heuristics and any such improvement can be used with
light modifications to enhance the efficiency and performance of our basic heuristics: 
• Random (RA). By using a random generator, we pick a node v with uniform probability, but without

considering the node’s supplying availability value, and put it into the replica set. If the node already
exists in the replica set, we pick a new node, until the given number reaches k.

• HighestFirst (HF). For each node v, we calculate v’s actual supplying availability value (in math. form
here) by taking the availability values of all adjacent edges of the node into account. The nodes are then
sorted in decreasing order of the actual availability values, and we finally put the best k nodes into the
replica set. 

• TransitNode (TR). The basic principle of the TransitNode heuristic is that nodes with the highest (in/

out) degrees, i.e., the number of connection links to adjacent nodes, can potentially reach more nodes
with smaller latency. So we place replicas on nodes of V in decending order of (in/out) degree. This is

Algorithm HF+TR 
Input: a parameterized graph G (V,E) and a number k;
Output: a replica node set R 
Initialization: replica node set R = candidate node set candSet = {}

1. forall nodes v of V 
2.  forall adjacent edges of v, 
3.  calculate max/min/mean values for demanding and supply availability values 
4. forall nodes v of V 
5.  build a candSet with nodes of which their availability value and degree are 

greater than the average values, respectively. 
6.  sort the nodes in candSet in decreasing order of the supply availability value 
7.  for nodes which have the same availability values, 
8. sort these nodes in decreasing order of the (in/out) degree 
8. while (|R| <= k)
9.  put the best k nodes from candSet into R 
10.return R

Figure 1: Pseudo-code of the HF+TR algorithm for finding a placement

Figure 2: An example stochastic graph: the demanding and supplying availability values for all nodes are 
independent and decoupled. To each edge a failure probability value is assigned. The values are in percentage. 
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due to the observation that nodes in the core of the Internet that act as transit points will have the high-
est (in/out) degrees [15,16].

• HighestFirst+TransitNode (HF+TR). This method is a combination of the HF and TR algorithms. Fig-
ure 1 detail the HF+TR  algorithm.

We applied the HR+TR algorithm to an example stochastic graph which represents a model of a virtual net-
work topology (Figure 2). In this example graph G(V,E) with |V|=10 and |E|=20, nodes and links are param-
eterized with randomly generated probability values, e.g., the demanding and supply availability values of
nodes are between 90% and 99%, and the failure probability values of links are between 1% and 10%. For
a given number k = 1, the candidate replica nodes are {4}, {9}, {8}, {3} and {0}. By considering only the
availability value (Sup.QoA), the algorithm choices {4} as the replica set.

3.3 Calculating the Reached QoA 
Given a stochastic graph G(V,E) and a replica set R with its topological placement T(R). The objective of
this problem is to check for all demanding nodes whether the reached availability satisfies the required QoA
for them, i.e., whether  is 1 or 0. In comparison to the problem of finding a good placement decribed
in Section 3.2, this problem requires a solution which exactly tests whether the result is 1 or 0. Some similar
works are introduced in the literature, which are devoted to the problem of network reliability [13]. The
methods that provide an exact reliability are called exact methods, in contrast to the heuristic methods
which provide an approximate result. 
Enumerating all possibilities without skipping any solution case requires to take exact methods for solving
this problem. From some exact methods which are proposed in the literature, we adopted the state enumer-
ation method[13] and modified it for our problem. In the state enumeration method, the state of each node
and each edge are enumerated: the state value is either 1 when it functions or 0 when it fails. Indeed, there
are states for a graph G = (V,E), i.e.,  partial graphs for G. We then check the QoA for all par-
tial graphs with the replica set given as input. Figure 3 details the StateEnumeration algorithm. 

We applied the StateEnumeration algorithm to an example stochastic graph G(V,E) with |V|=5 and |E|=5,
placement R={2}, |R|=1, as shown in Figure 4. As test node, we take the node 0 which has the availability
requirement value 97%. Figure 4 (right) presents the state matrix, the availability and the sum of availability
probability value for each partial graph. In this example, we only encounter the states of nodes to reduce the
time complexity, i.e., from  to . The first column means number of the partial graphs to be tested.
Instead of considering all partial graph cases of , we only have the half size of them by skipping the
cases in which the node 1 is ‘not available’, i.e., (the state value of the node 1 is 0), because the node state
‘zero’ of the node 1 causes no further possible connection for the test node 0 to build any path to the replica
node 2. After building a state matrix for the nodes 1,2,3 and 4 at the second column, we check whether there
is any path between the node 0 (test node) and the node 2 (replica node) at the third column. According to
the result of this check, we calculate the availability probability values for each partial graph of which the

A R( )

2 V E+ 2 V E+

Algorithm StateEnumeration
Input: a parameterized graph G (V,E) and a placement (replica set R);
Output: the QoA: either 1 (satisfied) or 0 (not satisfied)
Initialize variables:state matrix

1. for all nodes v of V/R
2. build a state martix for all partial graphs of G
3. for all states
4.  check the availability of the state, i.e., exist at least a path?
5. for the states for which the checked availability value is 1, 
6.  compute availability probability for each state 
7. sum all the availability probability values of satisfied states
8. if p_a(v) <= A_v(G) then A_v(R) =1
9. for all nodes v, 
10. if A_v(R) =1
11. then  = 1, i.e., the QoA of G with R is satisfied
12. else  = 0 
13.return QoA 

A R( )
A R( )

Figure 3: The StateEnumeration  algorithm for calculating the reached availability, QoA 

2 V E+ 2 V

2 V E+
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availability check value is 1: as shown in the fourth column, we calculated the Pr(G_m) just for the first 4
partial graphs (m = 1,2,3 and 4). The summation of the availability probability values of the four satisfied
states is: A_node0(G) = Pr(G_1) + Pr(G_2) + Pr(G_3) + Pr(G_4) = 0,97135624 , and this availability val-
ue is greater than the availability value required by the node 0. Indeed, the QoA for the node 0 is:
A_node0({2}) = 1. 

3.4 Determining the Number and Location of Replicas for Satisfying Required QoA 
As input, only a stochastic graph G(V,E) is given. It has to be determined (a) how many replicas must be
deployed and (b) where these replicas should be placed to guarantee the required QoA. 
Satisfying a certain, required QoA value with a guarantee means that we have to offer always a replica set
which fulfils the given QoA requirements in any case. Heuristics are not proper approaches for solving this
problem, because they give not always a solution with QoA guarantee. To solve this problem, we generally
can use the exact methods, one possible case may be enumeration method which is described in the subsec-
tion 3.3. For solving this third problem, we need to call the state enumeration method  times, i.e., for all
the possible replica solution sets. The algorithm complexity is then O( ). 

4 Simulation Environment
We built an experimental environment to perform a simulation study for the three RP sub-problems ad-
dressed in Section 3. Our goal in conducting an availability evaluation is to determine exactly the replica
set R for given QoA requirements, and to study the effect of changing |R| and T(R) on the required and
reached QoA which is given as the optimization condition O(|R|, T(R), a), on the other side. For our avail-
ability evaluation, we conducted simulations on random network topologies. 
By using Leda graphic library [24] several random topologies in different sizes can be generated at run
time. We also used graph files which are generated by the topology generator Tiers[25]. To reflect the ac-
tual Internet topology, we used several different network trace data from NLANR[26], which describe the
Autonomous System(AS) topology on a different day, and associated in/out-degree of the AS with each
node of the randomly generated graphs. But, because we had no access to any real data concerning the
availability or the failure parameters, we simply assign the values from a certain range to each node and
each edge. 
The availability and failure probability parameters for nodes and edges of the graphs are single values: for
example, 50, 80, 90 or 99% as availability values and 10, 5, or 1% failure probability values. We decoupled
the availability values between the demanding and supply nodes, i.e., all nodes have two availability param-
eters assigned: one value as the demanding availability parameter and the other as the supplying. Thus,

Figure 4: An example graph G=(V,E), |V|=5, |E|=5 (left). Only the node states are enumerated and the cases 
where the node 1’s state is 0 are skiped (right).
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when a node is a demanding node (client node), then its demanding availability value is used, while for sup-
plying node the actual supplying availability value is, for example, calculated by multiplicating the availa-
bility values of its supplying own and the average value of its adjacent edges. At the replica set building
phase, each node is evaluated according to its supplying availability value. Thus, to be elected as a replica
node, for example in the HA+TR algorithm, a node should have a high supplying availability value. 
As replication model, we assume the full replication in which the whole data items of an origin server sys-
tem are replicated to other nodes located within the same network. Mirroring  is a typical case of the full rep-
lication model. The simulation program is written in C/C++ and runs on Linux and Sun Solaris 2.6
machines.

5 Evaluation of Reached QoA
In this section, we present our experiment results. We evaluated the reached QoA of our heuristics and the
exact enumeration method using topologies of different sizes. We ran each basic heuristic and the exact
state enumeration method on each topology using different value ranges for the availability and failure
probability parameters of nodes and edges. The demanding and initial supplying availability values of the
nodes and the failure probability values of the edges are assigned randomly, from a uniform distribution
where we varied the parameter values as Table 3 shows. To evaluate the QoA offered by our heuristics and
StateEnumeration, we used the QoA metrics defined in Section 2.2. 

5.1 Relative Comparison of Reached QoA by Heuristics 
We evaluate at first the reached QoA by our simple heuristics. The baseline for our experiment is an initial
placement which is obtained by randomly selecting k nodes from V. We then compare the reached QoA
of each heuristic to this baseline and present the relative QoA improvement obtained with each heuristic. 

5.1.1 Effects of |R| and T(R) on Reached QoA

The first experiment was to find good locations of a replica set R with |R| = k for given graphs G with max-
imal replica number k. The conditions that we assumed for this problem were: (1)  > 0.9, 0.95, and
0.99, respectively, and (2)  > 1.0. In this case, there was no constraints on the topological location
of the replicas, i.e., S = V and replicas may be placed at any node v in G. 
Figure 5 (left) shows the results from this experiment with G2. We plot the number of k on the x-axis and
the reached QoA on the y-axis. In each graph, we plot different curves for different heuristics and different
ranges for required availability values. From Figure 5, we can see that our heuristics HA and HA+TR, al-
though they are very simple, reach significantly higher QoA in comparison to the baseline placement. Even
though the improvement of 12% QoA guarantee rate with replicas 5 to 25 (totally, 20% of the whole nodes
are replicas) may not seem much, it is important to note that the number of replicas is really a relevant factor
for improving QoA: the lager the replica number is, the better is the reached QoA. 

Type Parameter Notation Value

Graph node and edge size |V|:|E| G1(20:30), G2(100:300)

Edge edges’ failure probability 1 ~ 10 %, 0%

Node
nodes’ required availability 90~99%, 50~99%, 50-90-99%

nodes’ supply availability   

Table 2: QoA parameters and their values for our simulaiton

ql

pn R e q

pn S u p
p n S u p pn R e q≥
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QoA avg
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5.1.2 Effects of Varying Availability Requirement Value  Ranges on QoA 

In the second experiment, to study the effects of difference ranges of the required availability values on the
reached QoA, we varied the ranges of required availability values ( ) from 50~99% to 80~99% and 90-
99% for the same graph G2. We took also  as different single values like 50-80-99%. As Figure 5
(right) shows, the improvement rate of the reached QoA is better when the  is distributed in wider
ranges. 

5.2 Exact Evaluation of Reached QoA by Heuristics
We now evaluate the QoA reached by our heuristics in an exact form and check whether the reached QoA
can really satisfy the required QoA for all demanding nodes (QoA guarantee test). We test also how many
replica nodes do the heuristics need to give a QoA guarantee. For this purpose we ran our StateEnumeration
routine described in Figure 3 with replica sets produced by our heuristics HA and HA+TR as input. Due to
the exponentially growing runtime complexity and the memory requirements with growing graph sizes, we
limited our experiments for the StateEnumeration to a small graph, the test graph G1 with |V| = 20 and |E|
= 30. Table 3 shows the detailed test result from HA+TR. For the calculation of the average (AvgQoA) and
minimal reached QoA (MinQoA), we excluded the QoA values for replica nodes. 

No. of 
replicas, R

Replica locations, T(R) Avg
QoA

Min
QoA

% QoA
Guarantee

% QoA 
by exact test

1 8 1.0118 0.9100 0.75 0.80

2 8,10 1.0194 0.9100 0.75 not checked

3 8,10,12 1.0226 0.9193 0.75 not checked

4 8,10,12,11 1.0355 0.9496 0.85 not checked

5 8,10,12,11,13 1.0399 0.9496 0.85 not checked

6 8,10,12,11,13,0 1.0487 0.9591 0.90 0.95

7 8,10,12,11,13,0,16 1.0556 0.9900 0.95 1.00

8 8,10,12,11,13,0,16,1 1.0577 0.9900 0.95 not checked

9 8,10,12,11,13,0,16,1,2 1.0610 0.9900 0.95 not checked

10 8,10,12,11,13,0,16,1,2,5 1.0711 1.0000 1.00 1.00

Table 3: A detailed result for HA+TR with G1, failure probability: 0%, and req. availability range: 90-99%

pnReq

pnReq

pnReq

Figure 5: Reached QoA values by our hueristics: (left) different heuristics, (right) different ranges for re-
quired availability values 

50-99%

90-99%
80-99%
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Even though  HA+TR could reach the average QoA (1.0118) greater than 1 with one replica node, it could
not offer the QoA guarantee: 10 replicas were needed to satisfy the QoA guarantee for the small graph. 

5.3 Finding the Optimum - |R| and T(R)
In the last experiment, we considered the case of finding the optimum, i.e., the minimal number of replicas
and their geographical placement which satisfies the availability QoS with guarantee. We re-used StateE-
numeration  and the test graph G1 with the same values for availability and failure probability parameters.
We started the routine with a replica degree of 1, i.e., k=|R| = 1, and selected each node as replica node. We
then incremented the replica degree, until we reached the gQoA = 1.0 (a QoA with guarantee). Table 5
shows the reached QoA values at each k (k=1,2,3). Figure 6 plots the reached QoA that StateEnumeration
algorithm calculated exactly with each instance for the given k. The wider spectrum of the left part is for
highlighting the reached QoA from all of the instances for k=1 and the choosen instances for k=3. The right
part of Figure 6 shows how the reached QoA varies in the case of k=2, and how big is the gap between good
and bad QoA rates reached by the instances. 

5.4 Discussion 
The following observations could be identified from our experiment results: (1) the location of replicas is a
relevant factor for the availability QoS. Even though the QoA improvement could be achieved by increas-
ing replica numbers, replicas’ placement and their dependability affected the QoA more significantly; (2)
using a heuristic method is more efficient than the exact method, at least in terms of the runtime complexity,
to find a good placement for large graphs. But, the replica degree of their placement results are in most cases
higher than those of exact methods. Furthermore, the heuristics give no guarantee for availability QoA.; (3)
in opposite to the heuristic method, the exact method guarantees the availability QoS with its placement re-
sults, although the runtime complexity is very high: O( ) and O( ) for the
availability checking and the guaranteed QoA problems, respectively. 

No. of 
replicas

Best
QoA value

Worst
QoA value

Mean
QoA value

Instances achieved the best QoA value

1 0.80 0.10 0.3345 {0},{8}

2 0.95 0.15 0.8078 {0,11},{0,18},{8,11},{8,18},{11,13},{12,16},{13,16}

3 1.00 not checked not checked {0,11,16},{0,16,18},{8,11,16},{8,16,18},{11,12,16}
,{11,13,16}

Table 4: A test result from StateEnumeration  with G1, failure probability: 0%, and req. availability range: 90-99%

Figure 6: Reached QoA that was checked exactly by StateEnumeration 

VR 2 V E+⋅ 2
V

VR 2 V E+⋅ ⋅
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6 Related Work
The key ideas on which our work on QoA concept in this paper bases are (i) an availability-centric view on
QoS and (ii) satisfying different levels of QoA values required by individual users. Since the common goals
associated with placement problems in exsisting studies are reducing clients’ download time and alleviating
server load, the main feature of the problem solving approaches for this problem category is that they usu-
ally addressed the cost and resource minimization issues, but not the question how to guarantee the required
availability. Furthermore, we can find an “good” upper bound, if the selected placement meets the required
availability QoS, but it is not guaranteed that the selected placement always meets the availability require-
ment. 

7 Conclusion 
In this paper we took an availability-centric view on QoS and focused on the issues of providing models and
mechanisms to satisfy availability requirement for replicated multimedia services and contents. We devel-
oped a concept called quality of availability (QoA) in which the availability is treated as a new controllera-
ble QoS parameter. Based on the QoA concept, we modelled a distrbuted multimedia system as a stochastic
graph where all nodes and edges are parameterized with known availability and failure probabilities. We es-
pecially tackled the replica placement problem in which we specified different placement problems with
different QoA metrics such as MinQoA , AvgQoA, and GuaranteedQoA. The primary result shows already
that (1) the location of replicas is a more relevant factor than their number for satisfying the availability QoS
for different users, and (2) the heuristic methods could not give any guarantee for their achieved QoA, even
though they are very efficient for large size graphs. Our proposed QoA concept and model can be used as a
base mechanism for further study on the availability and reliability QoS with dynamic replication problems
and mobile storage planning problems. We are currently extending the simulation model to build a more re-
alistic QoA model by taking QoS and consistency parameters into account. 
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