Konstantin Pussep, Osama Abboud, Florian Gerlach, Ralf Steinmetz, Thorsten Strufe:
Adaptive Server Allocation for Peer-assisted Video-on-Demand. In: Proceedings of the 24th IEEE
International Symposium on Parallel and Distributed Processing IPDPS 2010, April 2010.

Adaptive Server Allocation for Peer-assisted Video-on-Demand

Konstantin Pussep*, Osama Abboud*, Florian Gerlach*, Ralf Steinmetz*, Thorsten Strufe’
*Multimedia Communications Lab, Technische Universitit Darmstadt
Email: {pussep,abboud,steinmetz} @kom.tu-darmstadt.de
8 Peer-to-Peer Networks, Technische Universitiit Darmstadt
Email: strufe@cs.tu-darmstadt.de

Abstract—Dedicated servers are an undesirable but in-
evitable resource in peer-assisted streaming systems. Their
provision is necessary to guarantee a satisfying quality
of experience to consumers, yet they cause significant,
and largely avoidable cost for the provider, which can
be minimized. We propose two adaptive server allocation
schemes that estimate the capacity situation and service
demand of the system to adaptively optimize allocated
resources. Extensive simulations support the efficiency
of our approach, which, without considering any prior
knowledge, allows achieving a competitive performance
compared to systems that are well dimensioned using
global knowledge.

I. INTRODUCTION

Peer-assisted Video-on-Demand (VoD) streaming
systems are an attractive way to distribute video content
through the Internet at low cost [1], [2]. They combine
the scalability of Peer-to-Peer (P2P) systems, where
users contribute their resources, and the service level
guarantees of server-based systems.

A common solution is to organize peers in a mesh-
based overlay where peers and servers contribute their
upload capacity. For this, the video is split into segments
that are initially downloaded from the content provider’s
servers, and later on redistributed by downloading peers.

A content provider utilizing a peer-assisted VoD
solution aims at achieving the desired user streaming
experience, while keeping the load at its servers as
low as possible. Therefore, the provider should monitor
the system behavior and adjust the contribution of the
servers depending on the system performance.

However, such systems are highly dynamic because
users arrive and depart from the system unexpectedly.
Additionally, the resources of users are heterogeneous:
some users have high bandwidth capacities and others
quite low. This especially applies to the upload ca-
pacities, that are typically much lower than download
capacities [3]. Thus, dynamic number of concurrent
viewers and fluctuating capacities of peers should be
alleviated by servers’ contribution.

Unlike in pure server-based systems, server dimen-
sioning in peer-assisted systems is more complex. The

reason is that not only the demand but also the upload
capacity of the system is dynamic. The main point is
how much bandwidth can be contributed by peers and
how much bandwidth must be provided by servers.

In this paper we address the issue of server allocation
depending on system capacity deficit or surplus with-
out knowing user behavior and capacities in advance.
Additionally, the server bandwidth must be utilized
efficiently to reduce the startup delay and stall times
for video playback, which are the main quality metrics
for the users.

To achieve this, we employ adaptive server allocation
policies that allow available servers or peers with cached
content to join and leave the overlay on demand. This
way, servers can contribute their spare upload capacity
otherwise, for example, to join other overlays with band-
width demand, pro-actively upload some files, or even
simply reduce costs if the upload is paid per volume.
By minimizing the number of active servers the costs
and overhead for the owners are reduced to the required
minimum, while the users receive the desired quality of
service as perceived in over-provisioned systems. We
propose two policies, each one with a different metric
to evaluate the streaming performance of the distribution
overlay. Our performance evaluation analyzes the per-
formance of the proposed adaptive policies, and further
compares it with the static server allocation.

The paper is structured as follows: background on
peer-assisted VoD is presented in Section II. Our system
model is presented in Section III. In Section IV we
present the adaptive server allocation approach and the
details of the proposed policies. Performance evaluation
is covered in Section V, while Section VI presents the
related work. Finally, Section VII concludes the paper.

II. BACKGROUND

We consider a typical scenario of a mesh-based peer-
assisted VoD overlay where a content provider tries to
reduce distribution costs by letting peers upload parts
of the content. A media file is divided into segments
and initially injected from content provider’s servers.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Konstantin Pussep
Konstantin Pussep, Osama Abboud, Florian Gerlach, Ralf Steinmetz, Thorsten Strufe:
Adaptive Server Allocation for Peer-assisted Video-on-Demand. In: Proceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing IPDPS 2010, April 2010.

Konstantin Pussep

Konstantin Pussep

rst
Textfeld
Konstantin Pussep, Osama Abboud, Florian Gerlach, Ralf Steinmetz, Thorsten Strufe:
Adaptive Server Allocation for Peer-assisted Video-on-Demand. In: Proceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing IPDPS 2010, April 2010.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

The servers upload segments to a subset of peers which
exchange these segments with each other and, therefore,
contribute their upload capacity. Peers exchange the
information about available and desired segments with
each other and choose segments to download depend-
ing on their playback deadlines, that means, segments
closer to the current playback position are prioritized.
Typically, most urgent segments are managed in a high
priority set whose size can range from few seconds to a
minute of the video. Since the high priority set roughly
corresponds to the playout buffer of the video player,
peers are interested in keeping it full.

For the startup time we assume that peers start the
playback once their playout buffer is filled and the
remaining download time is lower than the duration
of the video, to avoid playback stalling that occurs if
segments close to the playback deadline are missing.

Peers are free to join and leave the overlay at any time
and sometimes desired segments are not available in the
neighborhood. Because of this, it is difficult to guarantee
continuous segment supply for the whole download
duration. Prefetching is a technique to smooth the
streaming experience of users by downloading segments
out of order. This way better segment distribution and
bandwidth utilization are possible.

A special indexing server is utilized to track the
active peers and to provide the peer lists for contact
management. While the indexing server has the global
view of the system, the information might be partially
outdated due to the reporting intervals.

A. Give-to-Get Protocol

In order to utilize high capacity peers efficiently we
utilize the Give-to-Get (G2G) system [4], a mesh-based
protocol for VoD streaming. Here, uploaders prefer
peers that turn out to be good forwarders. The video
segments are divided into 3 sets: high, mid and low
priority. The first one is the most crucial, since it
corresponds to the playout buffer. Therefore, the main
objective of the system is to fill this buffer fast and keep
it filled during the playback, while segments from other
sets are downloaded to enable prefetching.

Unlike the original G2G approach, we do not skip
delayed segments of the video, but rather stall the
playback until the playback buffer can be filled. This
appears to be more suitable for a VoD application, since
most users would prefer to see parts of the movie with
delay instead of skipping them completely.

III. SYSTEM MODEL

We assume that the content provider has access to
a pool of servers, that can be either run by himself or

rented, such as Amazon Elastic Compute Cloud (EC2)".
In such a scenario the content owner typically pays for
the total volume of data uploaded from its servers, while
Amazon also charges for usage time. Therefore, the
provider is interested to avoid unnecessary uploads if
the segments can be served by other peers. Uploading
too few segments will result in unsatisfied users, while
too much segments uploaded by the servers will result
in unnecessary high costs. Furthermore, the reduction of
unnecessary server online times allows content provider
to reduce their energy consumption.

In order to estimate the bandwidth supply and de-
mand in peer-assisted streaming we use the following
notation:

« S: totally available servers (passive and active)

o S’: active servers (subset of S)

e u,: upload capacity per server

o L: peers active in distribution overlay

e uy,d;: upload and download capacity of peer [(in
homogeneous case also denoted as u and d)

e 1: video bitrate (r < d;)

e d. = fxr: required download speed (r < d, < d),
where f is the prefetching factor of the system

« g = peer upload utilization factor

As already explained in Section II prefetching is
required to speedup the startup time and pre-load fu-
ture segments. A suitable prefetching factor can differ
depending on the utilized protocol. For example, in the
G2G protocol f should be > 1.2 [4].

On the other hand, the peer upload utilization factor g
is the ratio of the average upload speed of peers to their
upload capacity. Ideally, this values should be close to
1 but peers might be not able to exploit their upload
capacity due to the lack of segments required by other
peers (content bottleneck). In real systems utilization
values around 0.8 have been reported [5].

We can easily compute the total required upload
capacity as Riota; = |L| - d and the total available
upload capacity as Usptar = |L| * g % u + |\S| * us.

For acceptable streaming performance we then need
Uiotal = Riotar and therefore

dr—g-u
(1L} ———

S

|S| > max ,0) (D

While the above model applies for homogeneous
upload and download capacities, in the heterogeneous
case, we obtain:

Usotal = Y Ui+ g+ Y Us)

leL seS’

Thttp://aws.amazon.com/ec2/

Rigar =Y - f=|L|- f-r 3)

leL

Our goal is to find the minimal subset S’ C S with:

Z Ugr > max(Z(dr —u;-g),0) 4)
s'es’ leL

Here the right side expresses the missing upload
capacity of the peers (under assumption that they cannot
provide enough upload capacity) while the left side is
the total contribution of the selected active servers.

We can immediately see from Equation 4 that in
systems with the upload capacity of peers being very
high (say w; > %) the server contribution becomes
marginal. They are only needed to assure content avail-
ability and catch up with fluctuations in user demand
and upload supply. However, even for the upload utiliza-
tion factor g = 0.8 and low prefetching factor f = 1.2
we obtain that u; > 1.2-7/0.8; so even for a moderate
video playback rates of 512 kbps the average upload
capacity of peers must be almost 800 kbps.

Ideally, the servers could contribute just enough up-
load capacity to balance out the available bandwidth
in the system. Since this situation can change any
time due to departure or arrivals of peers, the content
provider must allocate server bandwidth to avoid serious
degradations in user experience.

IV. SERVER ALLOCATION POLICIES

In order to provide high Quality of Experience (QoE)
for the users, our system utilizes the architecture shown
in Figure 1. The indexing server monitors the peers’
performance (step 1), determines the required upload
capacity, and allocates servers (step 2) to join the
overlay (step 3) and provide the missing upload capacity
to peers in the most efficient manner (step 4).

Since users might abort the playback without watch-
ing the whole video, too aggressive prefetching might
waste upload capacity. Therefore, exploiting the down-
load capacity far beyond the video playback rate is
not reasonable. Such peers can consume too much
bandwidth and leave fast without contributing enough
capacity in return. In order to avoid such unfair resource
utilization, we limit the utilization of download capacity
to a reasonable threshold, e.g, 2 or 4 times the video
playback rate. On the other hand we limit the maximum
upload utilization for high capacity users to the level of
2 times the playback rate.

A server allocation policy optimizes S’ C S accord-
ing to the system parameters: the current number of
peers L(t), their upload and download bandwidth w; and
dy, video bit rate r, and peer upload utilization factor g.
These factors are measured by the indexing server, but

Passive
Servers

- 3
Index - “u Active
Server i Servers

Figure 1.

System Architecture.

might not be up-to-date due to the overlay dynamics.
The factor f depends on the utilized streaming overlay
and must be also taken into account while choosing S’.

An actual resource allocation policy is defined as P =
(M, A, C) with the following components:

1) Monitoring mechanism M: this one collects the
information about the overlay performance and
state of single peers. This is done by the index-
ing server which is otherwise used for contact
management. While the plain contact membership
information is normally reported at a scale of
several minutes, the streaming quality information
must be updated more often to allow fast reactions
on performance degradation.

2) Decision metric A: Different metrics can be used
to decide when a server should join or leave the
overlay. The candidate list includes the current
server-to-peer ratio, missing upload bandwidth
(difference between the total demand and the
total available upload capacity), current download
speed, and buffer states. We consider the (global)
average download speed and playout buffer states
as the most promising metrics.

3) Connection management C: Once a server decides
to leave the overlay it can be done (1) imme-
diately once the bandwidth excess was detected,
(2) after finishing current transfers, or (3) once
the connected peers are able to find new neigh-
bors to replace the departing server. For the join
procedure, the question is to which peers a new
server should connect to. A possible improvement
is also the decision to which peers to allocate the
bandwidth.

Note that our system is managed by a provider, who
controls the servers and the client software. In order
to utilize the same architecture with open software
and protocols, additional measures must be applied to
prevent false reports from the users.

A. Global Speed Policy

The goal of this policy is to allocate minimal server
resources necessary to balance the global overlay per-
formance. To achieve this, the indexing server monitors
the global speed G — the average download speed across
all active peers. When the global speed falls below
the desired level, additional servers are allocated to the
overlay. On the other hand, if the measured speed is too
high some servers are removed from the overlay.

Thereby, the target speed is defined accordingly to the
desired prefetching factor f’ as: Gygrger = - f' Note
that this value is independent from the actual number of
the online peers | L(t)|. The actual demand for additional
servers can be expressed as (Giarget — Gmeasured) *
|L(t)| based on the recent peer reports.

In order to achieve good accuracy, peers must report
their download performance frequently. We found one
report in five seconds being sufficient for an appropriate
estimation of the global speed. Then the indexing server
computes the average global speed G eqsureq OVer the
last five seconds, compares it with the target speed
Giarget, and allocates servers according to their differ-
ence. The indexing server performs this computations
in short periods and adds or removes only one server at
once, to avoid too big performance oscillations.

A server that receives an instruction to leave, waits
until the transmission of current segments is finished to
avoid upload of incomplete segments. Contrary, a join
action can be performed immediately.

The indexing server must process |L(t)|/5 client
reports per second, that might become a bottleneck in
case of thousands of files and ten thousands of users.
Another possible drawback of this solution is that some
peers might experience bad performance even if the
global speed is balanced.

B. Supporter Policy

While the previous policy uses the average overlay
performance as a metric to allocate server upload ca-
pacity, the supporter policy concentrates on the peers
experiencing bad performance. Therefore, it addresses
the possible drawbacks of the previous solution in order
to avoid

« bad experience for a subset of users, even if the
average performance is fine and

o too frequent status reports to the indexing server

from too many peers.

Instead of periodic reports, a peer sends only the
starving status message to the indexing server in the
case when it cannot download high priority segments
fast enough. Once the indexing server receives a certain
amount of such requests in a given time, a passive server
is selected to become a supporter (see Figure 1).

A supporter accepts only a reduced number of neigh-
bors, so that it can provide segments at a speed greater
or equal to the playback rate. In order to supply starving
peers as fast as possible, a supporter exclusively serves
the peers assigned to it. As long as the supporter has free
upload slots, additional suffering peers can be assigned.

A naive approach could consider peers as suffering in
the stall state only. Instead we try to identify suffering
peers before the actual stalling happens. Therefore, we
start watching peers if they miss segments in the playout
buffer. A peer that enters the watched state sends a
suffering report to the indexing server. Since missing
segments in the playout buffer can have a transient
nature, watched peers are considered as starving only if
they were not able to fill their buffer in the time interval,
(called suffer time) being an important parameter of
the mechanism. In the starving state a peer will be
connected to active supporters that currently serve less
than maxPeers. If no free supporter can be found, a
new supporter is allocated, but only if the number of
unserved starving peers reaches the minPeers threshold.
Note that this condition also covers peers being too long

in the startup phase.
\ WATCHEDJ

CDEFAU LT |
[= sufferTime in WATCHED]

[2 recoveryTime "buffer full"]
supporter disconnects peer get scheduled for support

[buffer not full] send starving

[buffer full]

[2 minPeers are STARVING or
active supporter has < maxPeers

Connections]
SUPPORTED supporter connects to peer STARVING
Figure 2. Downloader states in the supporter policy.

The algorithm to decide when and which peers should
be considered as starving and receive help from support-
ers can be described as a peer state diagram with the
following states (see Figure 2):

o Default: peer’s playout buffer is full.

o Watched: peer is missing segments in the playout

buffer recently.

e Starving: peer time in the watched state reaches

the sufferTime threshold.

e Supported: total number of starving peers reaches
the minPeers threshold.

Connected peers that left the suffering state and do
not fall back in the recover time interval, are discon-
nected from the supporter. Finally, if all assigned peers
have been served and no new peers have been assigned,
the supporter leaves the overlay.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
allocation policies, we implemented them in in an ex-
tended version of OctoSim simulator [6]. This discrete
event-based simulator models data transfers at the level
of file segments. As the underlying streaming protocol,
we implemented in the simulator the G2G protocol (see
Section II-A). All simulation runs were repeated ten
times and provide average values together with their
standard deviation unless mentioned otherwise.

A. Goal and Metrics

In order to show the feasibility and benefits of the
proposed approach we conduct two groups of experi-
ments: (1) performance and sensitivity analysis of policy
parameters and (2) comparison of adaptive policies with
static server allocation. We expected our policies to
eliminate stall times and to perform at least as good as
the static allocation policy with perfect predictions of
user behavior. Furthermore, the supporter policy should
be able to avoid too many outliers experiencing much
worse performance than average users.

We use the following QoE metrics to evaluate the
performance of the streaming overlay: startup delay
until the video can be played and stall times during
the playback. Thereby, we apply the startup solution
proposed for G2G: the playback starts after the initial
playout buffer (which corresponds to the high priority
set) is filled and the remaining download time plus 20%
overhead is smaller than the video duration. We consider
especially the 50th and 95th percentiles of the delays,
expressing the maximum delays experienced by 50% or
95% of users, respectively.

B. Basic setup

The basic scenario used for the performance evalua-
tion is shown in Table I. It models a Video-on-Demand
scenario where a content provider offers short clips,
such as trailers or news reports, and tries to reduce
its costs and increase system scalability by deploying
a peer-assisted system. The content provider can decide
in advance how many servers to allocate to a particular

Table I
BASIC SETUP.

Parameter | Value
Simulation duration 30 minutes
Video length 5 minutes
Video bitrate 512 kbps
Available servers up to 10
Server capacity (up) 2048 kbps
Peer capacity (up) 256, 512, 1024 kbps
Peer capacity (down) 2048 kbps
Peer distribution 0.3, 0.5, 0.2
Arrival rate (exp.) 6 peers/min
Playout buffer size 10 seconds
Departure rate 50% of video length on average

video or use our adaptive allocation policy. The pa-
rameterization of policies is described in the respective
Subsections V-C and V-D.

The peers are divided into three groups based on their
upload capacities, representing slow (DSL), moderate
(high-speed DSL or Cable), and fast (Ethernet) Internet
connections similar to [7]. The relative size of these
user groups is 0.3, 0.5, and 0.2, respectively. We also
limit the maximum download capacity of peers to 2048
kbps to avoid fast peers consuming too much download
bandwidth. In any case the download limit is four times
the video playback rate and, therefore, sufficient even
for an aggressive segment prefetching. Similarly, we
limit the maximum upload capacity of Ethernet users
to 1024 kbps to avoid too unfair resource utilization.
Typically, even for high-end users greedy utilization of
the upload capacity might result in throttling through the
network operator. Each server has a upload capacity of
2048 kbps.

We model the session length of peers as follows:

Tsession = min(Tstartup+Tplayback+Tstall7 Tdeparture)

Here, users might stop the session without watching
the complete video and, therefore, Tpiaypack < video
length. The peers are enforced to upload the content as
long as they watch it. We model the departure rate by
letting peers on average abort the playback and depart
from the overlay after 50% of video length after they
start playing.

C. Global Speed Policy

In this subsection we analyze the performance of
the speed-based adaptation policy with respect to the
desired target speed. As already explained in Section
IV-A this policy tries to keep the global speed close
to the desired target where the target is defined as f’
times video bitrate. If f’ is set too low, some nodes
might experience undesired playback delays. If f/ is
chosen too high, too many servers will join the overlay.

50

Startup (95%) =-sweees

talli 9
w0l stalling (95%)

N - ,}i_{,} bt

20 | ""}""i i

playback delay (sec)

1 1.2 1.4 1.6 1.8 2
target speed (x times video bitrate)

(a) Stall and startup delays (95th percentiles).

25 r : . ‘
server load ==w====== -}
—_ 2 r - o]
g ___}...-}-""I‘ {'
- 15¢ {r-i‘ |
© _{,c
o i}
5 10 { |
> o
o] ¥
@ 0.5]
0 L— : ‘ ‘ ‘ ‘
1 1.2 1.4 1.6 1.8 2

target speed (x times video bitrate)

(b) Server load.

Figure 3. Impact of target speed factor on playback delay and upload.

We expect to find a suitable value in the range [1 : 2],
where 1 corresponds to no capacity for prefetching and
2 allows fast prefetching.

The basic parameterization of the policy lets clients
report their performance to the indexing server once
every five seconds. The indexing server then calculates
the average speed over the five seconds interval.

In order to find suitable values of f’ in the utilized
VoD system, we run a series of experiments with vary-
ing parameter values. Fig. 3 shows the 95th percentiles
of startup delay and stall times (Figure 3(a)) and the
relative upload contribution of servers (Figure 3(b)) for
different values of f’. We observe that f’ values close
to 1 results in higher delays and unstable performance
(high standard deviation), while keeping the server’s
contribution low. Here peers whose average upload
rate is close to the playback rate provide most of
the resources but cannot keep up with the arrival and
departure rates. On the other hand, high f’ result in
much lower playback delays, while the server load
grows significantly. We further see that f’ equal to 1.5
is sufficient to avoid stalling, and achieve low playback
delay while avoiding unnecessary load at servers.

D. Supporter Policy

For the supporter policy we are interested in under-
standing the impact of the following parameters:

1) minPeers: How many suffering peers must be
present to allocate an additional server,

2) maxPeers: Maximum number of peers a supporter
can take care of,

3) sufferTime: Time interval with not full playout
buffer to consider a peer as suffering,

4) recoveryTime: Time interval with filled buffer af-
ter which a previously suffering peer is considered
as recovered.

To evaluate the impact of these parameters, we fix
the default configuration as follows: minPeers = 1,
maxPeers = 4, sufferTime = 5 seconds, and recoveryTime
= 20 seconds. Then we subsequently modify single
values.

Figure 4(a) shows the impact of the minimum
number of suffering peers to allocate an additional
server. We observe that the median is quite insensitive
regarding this parameter, while the values around 2 and
3 peers prevent too bad performance for outliers. This
can be explained by the fact, that waiting for too many
suffering peers results in bad performance for single
peers in the suffering state.

The impact of the maximum number of peers to be
handled by one supporter is presented in Figure 4(b).
We can observe that the best delays are achieved if the
supporter handles only 2-4 peers. Beyond 6 peers per
supporter the 95th percentiles increases dramatically. At
the first spot the performance increase when going from
1 to 2 peers per supporter might appear counterintuitive.
However, allocating the whole supporter capacity to a
single peer results in too fast prefetching of segments
and, therefore, wasted upload capacity, since a peer
might depart without consuming and uploading them
to other peers.

Another interesting point is how long a peer should
try to fill its buffer being considered as suffering by the
the indexing server. It turns out that values around 4
seconds are optimal (see Figure 4(c)). This is roughly
the half of the playout buffer size and, therefore, cor-
responds to our expectation that supporter should react
on the suffering state before playback stalls occur.

We also analyzed the impact of the recovery period
with values between 1 and 20 seconds, but did not found
a significant impact in our scenario. Both the server load
and the startup delays were very close among the setup.

E. Comparison of Static and Adaptive Policies

In this subsection we compare the performance of
adaptive policies with the static server allocation in
order to see if there are static setups that can outperform
them. For the static policy we let 1 to 10 servers stay in
the network for the whole duration of the experiment.

50 : 50 ——— 50 :
95% 95% 95% ——

@ 50% s |50% @ |50%

S 40 > 40 1 > 40 B

z z Z

S S S

S a0f {2 af 1 % af 1

[} [$] [}

© © ©

Qo Q Q

520,/7 s wf 1 5 = 1

= 1 = B : = . I

S o0f momcroct T e 1 % 10frrre= 1

= = I~

0 2 4 6 8 10
Minimum number of peers to be supported

(a) minPeer threshold.

0

0 2 4 6 8 10 12 14 16
Maximum number of peers per supporter

(b) maxPeers per supporter.

0 . .

0 5 10 15 20
Suffering state threshold (seconds)

(c) Suffering time interval.

Figure 4.

Impact of various parameters on the supporter policy performance.

The adaptive policies can allocate up to 10 servers on
demand. For the supporter policy we use the default
parameters as specified in Subsection V-D and for the
global policy the target speed factor is set to 1.5.

100 T T
90 | startup (static)
80 | startup (global)
70 L startup (supporter)
60 stall (static)

50
40
30
20
10
0

-10 I I I I I
2 4 6 8 10

Allocated servers (static policy only)

Playback delay (s)

(a) Stall and startup delays (95th percentiles).

3.5 T
3
g 25
g 2
o 2
[
o
= 15
2
5] 1r - 7
N static e
05 = global (f'=1.5) +=++=1" 1
0)) supporter (dgf))
2 4 6 8 10
Allocated servers (static policy only)
(b) Data upload.
Figure 5. Comparison of static and adaptive policies.

The results for the playback delays are reported in
Figure 5(a). The figure shows startup and stall times for
the static policy, and only startup delays for adaptive
policies, since no stalling took place (standard devi-
ations for adaptive policies are the same as in V-C
and V-D). We can observe that with the static allocation,
the system performs best with 4 servers, though some
peers still experience playback stalling. With too few
servers the delays are high while with many servers the
delays go down due to bandwidth overprovisioning. We

also observe that the adaptive policies exhibit compara-
ble performance, while the supporter policy outperforms
the global speed policy (50% smaller startup delay). The
probable reason is that supporters upload to suffering
peers in the first place, while the global speed and static
policies allocate the bandwidth to random peers. Table 11
additionally summarizes the average values for all three
policies with the optimal configuration.

In Figure 5(b) we also show the data volume uploaded
by servers. We can see that in the static configuration the
server contribution grows almost linearly with the server
count. With four static servers, they have to upload
roughly the same amount of data compared with the
adaptive policies. Though, the supporter policy uploads
slightly more data than the global speed policy, it is able
to achieve much lower startup delays (cf. Table II).

Table II
COMPARISON OF VARIOUS POLICIES (AVERAGE VALUES).

servers [server load stalling (95%) startup (95%)

static (4 servers) 1,75 GB Os 31.0s
global (f/ = 1.5) 1,60 GB 0Os 29.0s
supporter (default) 1.78 GB 0Os 15.5s

In summary, we observe that an adaptive policy
allows a content provider to reduce costs by allocat-
ing available resources according to the overlay per-
formance. This allows to achieve the performance of
a well-dimensioned system without knowing the user
demand and upload supply in advance. Even if the
demand can be well estimated (here with 4 servers) the
supporter policy deals better with the system dynamics
and provides better streaming performance than the
static and global policies.

VI. RELATED WORK

Recent work on how to deal with temporary under-
capacity in P2P systems can be classified into two cate-
gories: (1) server allocation policies and (2) alternative
proposals that do not allocate additional servers.

Regarding the allocation of servers in peer-assisted
systems, different proposals have been done for file
sharing (mostly BitTorrent) and live streaming sys-
tems [8], [9], [10], [11]. In case of BitTorrent, Das
et al. [8] propose to estimate the server demand in
order to guarantee minimal download speed to users.
Similarly, Rimac et al. [9] consider the dimensioning
of servers for single and multiple BitTorrent swarms. In
AntFarm [10] a coordinator allocates peers and servers
to swarms to provide minimal service level. However,
such systems concentrate only on the download speed of
peers, that is not constrained by the playback positions
and buffer states. Therefore, they don’t deal with the
issue of startup delays and stall times. Wu, Li and
Zhao present a prediction algorithm to estimate server
bandwidth demand for peer-assisted live streaming [11].
Their streaming quality metric counts the number of
peers that have a buffer count > 80%. Differently to
us, they don’t address the delay and startup delays
explicitly. Unlike in VoD, live streaming does not deal
with the issue of prefetching and its interplay with the
streaming quality.

Alternative approaches to avoid undercapacity start
with advanced network coding, segment scheduling, and
peer-matching algorithms to improve the throughput
and capacity utilization for P2P streaming, e.g, [12].
Kumar et al. [13] state that the ratio of slow and fast
users determine the P2P VoD performance and propose
admission control and scalable video coding to deal with
system’s undercapacity. Garbacki et al. [14] propose
the usage of helper peers in order to avoid bad user
experience. However, they do not provide a metric
how to calculate the desired number of helper peers.
Huang et al. [1] analyze the impact of prefetching on
peer-assisted VoD in surplus and deficit modes. They
show that prefetching can significantly reduce the server
load, especially when the bandwidth demand is close
to the supply. Inspired by these results we propose to
combine prefetching and adaptive server allocation to
keep supply slightly higher than demand.

VII. CONCLUSION

We consider adaptive allocation of servers in peer-
assisted Video-on-Demand streaming in order to avoid
undercapacity and service degradation. To achieve this,
we provide a simple demand model, and design two
policies covering the demand monitoring, allocation de-
cisions, and connection management for the servers. We
show, by means of simulations, that adaptive policies
can handle unknown user demand and provide high
service level to the users while keeping the server
load at a low level. On the other hand, focusing on

suffering peers and supporting them preferentially can
additionally improve service quality.

ACKNOWLEDGEMENTS

This work has been performed in the framework of
the EU ICT Project SmoothIT (FP7- 2007-1CT-216259).
The authors would like to thank all SmoothlIT partners
for useful discussions on the subject of the paper.

REFERENCES

[1] C. Huang, J. Li, and K. W Ross, “Peer-Assisted VoD:
Making Internet Video Distribution Cheap,” in Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), 2007.

[2] Yan Huang, Tom Z.J. Fu, Dah-Ming Chiu, John C.S. Lui,
and Cheng Huang, “Challenges, design and analysis of
a large-scale p2p-vod system,” in SIGCOMM, 2008.

[3] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S.
Saroiu, “Characterizing Residential Broadband Net-
works,” in Internet Measurement Conference, 2007.

[4] JJ.D. Mol, J. A. Pouwelse, M. Meulpolder, D.H.J.
Epema, and H.J. Sips, “Give-to-Get: An Algorithm for
P2P Video-on-Demand,” in MMCN, 2008.

[5] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and
X. Zhang, “Inside the New Coolstreaming: Principles,
Measurements and Performance Implications,” in INFO-
COM, 2008.

[6] A. R. Bharambe, C. Herley, and V. N. Padmanabhan,
“Analyzing and Improving a BitTorrent Networks Per-
formance Mechanisms,” in INFOCOM, 2006.

[7] C. Huang, J. Li, and K. W. Ross, “Can internet video-
on-demand be profitable?,” ACM SIGCOMM Computer
Communication Review, 2007.

[8] S. Das, S. Tewari, and L. Kleinrock, “The case for
servers in a peer-to-peer world,” in IEEE International
Conference on Communications, 2006.

[9] I. Rimac, A. Elwalid, and S. Borst, “On Server Dimen-
sioning for Hybrid P2P Content Distribution Networks,”
in Peer-to-Peer Computing, 2008.

[10] R.S. Peterson and E.G. Sirer, “Antfarm: Efficient Content
Distribution with Managed Swarms,” NSDI, 2009.

[11] C. Wu, B. Li, and S. Zhao, “Multi-channel live p2p
streaming: refocusing on servers,” in INFOCOM, 2008.

[12] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawar-
dena, and P.R. Rodriguez, “Is high-quality VoD feasible
using P2P swarming?,” in WWW, 2007.

[13] R. Kumar, Y. Liu, and K.W. Ross, “Stochastic fluid
theory for P2P streaming systems,” INFOCOM, 2007.

[14] P. Garbacki, D.H.J. Epema, J. Pouwelse, and
M. Van Steen, “Offloading servers with collaborative
video on demand,” in IPTPS, 2008.

