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Abstract—Energy consumption is responsible for a large
fraction of costs in today’s content distribution networks.
In upcoming decentralized architectures based on set-
top boxes (STB), acting as tiny servers, idle times can
dominate distribution costs, since no cooling costs occurs
and the Internet access is often paid in a flat-rate manner.
The often assumed always-on property of STBs provides
high availability but might also waste up to 93% of the
baseline energy. In this paper we consider suitable standby
policies that reduce energy consumption but still allow
offloading content servers significantly. We devise optimal
and heuristic standby policies and evaluate them in a
realistic scenario to show that a near-optimal behavior can
be reached by utilizing the specific features of STBs.

I. INTRODUCTION

Streaming of video content is a major trend on today’s
Internet and some forecasts predict that by the end
of 2013 the equivalent of 10 billion DVDs per month
will cross the Internet [1]. Due to the high costs and
scalability issues of pure server-based solutions, peer-
assistance is an attractive option to combine benefits
of Peer-to-Peer (P2P) and server-based technologies [2].
Recent research suggests using end-users’ set-top boxes
(STBs), such as IP-enabled video recorders, digital re-
ceivers, or DSL modems, to build collaborative content
delivery systems [3]. Two special features make them
attractive: manageability of resources, such as disc space
and bandwidth, and their availability, since it is often
assumed that STBs are always online [4], [5], [6].
Therefore, such STB-based systems are expected to be
a more suitable platform for IPTV services, including
video-on-demand and live content, than traditional best-
effort P2P systems.

A content provider’s main goal in utilizing an STB-
based delivery network is to save bandwidth and reduce
hosting costs of its servers. Additionally, this approach
reduces the cooling costs of the servers that make up a
large part of hosting costs [6], [7]. Users contribute their
upload bandwidth and online time. As Internet access is
typically paid in a flat-rate manner, the additional load
might not result in additional costs for the users. On
the other hand, excessive online time might result in

unnecessary energy wastage, especially, if the STBs stay
always online, though being idle to a large extent.

While the baseline energy consumption of STBs is
assumed to be low (only 12-55 watt for typical devices)
compared with desktop computers, it still results in an-
nual rates comparable to electric ovens and refrigerators,
exceeding the annual consumption of desktop and laptop
computers [8]. The more powerful the STBs become, the
higher energy consumption can be expected, as in the
case of game consoles consuming easily 150 watt in the
idle state [9].

Since typical STBs consume almost the same energy
in the idle and busy mode [6], a more efficient man-
agement of online times appears promising. Assuming,
that the busy time of STBs (such as DVRs) is only
100 minutes on average [6], the theoretical savings of
up to 1 — 199 = 93% are possible. However, naive
policies might result in high load on content servers
by making the required content unavailable. Therefore,
intelligent standby policies are required to provide high
performance while reducing the idle times by turning
STBs offline in a self-managed way.

In this paper we identify the need for intelligent
standby policies for STB-based content delivery net-
works. Based on realistic data we assess the trade-
off between the performance and energy costs of such
systems. We propose an adaptive policy, which tries to
save baseline energy of dispensable STBs by putting
them into the sleeping mode. Trace-driven simulations
are used to analyze the efficiency of the proposed policy
in comparison with alternative approaches. The results
show that our adaptive heuristic policy can reach perfor-
mance similar to the optimal, while reducing the energy
consumption significantly.

The paper is structured as follows: Section II presents
the related work and our system’s architecture is de-
scribed in Section III. In Section IV describes the pro-
posed standby policy and discusses alternative solutions.
Evaluation methodology is covered in Section V and
the results presented in Section VI. Finally, Section VII
concludes the paper.




II. RELATED WORK

Laoutaris et al. proposed to replace traditional data
centers with provider-managed distributed STB networks
instead of PC-based P2P systems, since the former
expose higher security, Quality-of-Service (QoS), and
coordination, which make them useful for live and VoD
streaming [3]. Several other works deal with video
streaming by utilizing set-top boxes or home gateways,
focusing on the specifics of live streaming [5], [10], or
video-on-demand streaming [11], [12], [4], [6]. Most
works assume that a network provider controls a set
of gateways within the own network domain with gate-
ways being always-on and having plenty of bandwidth
resources [4], [5]. However, alternative deployments
require energy-aware solutions, where STBs cooperate
to deliver content on behalf of various content providers
across domain boundaries. Here the bandwidth is not
plentiful and energy costs for users are important.

A popular aspect is the pro-active content placement
on idle STBs to satisfy current and future user demand,
based on the assumption that STBs are online 80-
90% of the time [12], [6]. The resulting systems “free-
ride” on already dedicated baseline resources in order
to reduce server load [12] or energy consumption of
content servers [6]. The latter work assumes that STBs
might optionally support standby mode but consider
only a simple selfish policy (where users switch off
the STB after finishing their downloads), instead of
adaptive policies proposed in our paper. The always-on
assumption might hold for home gateways (such as DSL
modems with hard drives), but not for IP-enabled DVR,
game consoles, and other entertainment devices.

There exist also other approaches to make the content
distribution “greener”. For example, Lee et al. have
shown that the energy consumption of always-on STBs
might be even higher than that of traditional content
distribution [7]. They propose a combination of energy-
proportional computing and content-centric networking
with routers caching the content close to the users. To
make STBs more competitive we drop the assumption
that STBs must be online most of the time and show the
benefits and challenges of adaptive standby policies.

III. SYSTEM ARCHITECTURE

Though an STB-based architecture can be used to
offer various services and applications, in this work we
focus on video-on-demand streaming. The considered
hybrid content delivery network combines centralized
and decentralized entities as depicted in Fig. 1. The
architecture comprises three types of entities: indexing
server, content server(s), and peers (being STBs). The
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Fig. 1: System architecture. A video request results in
four alternative source types, where only (a) and (d) can
be successful.

system works in a cooperative manner, which means that
peers are incentivized to contribute their resources, e.g.
via video price discounts through the content provider.

The content servers initially inject new content into
the system and act as backup video sources in case the
desired content cannot be streamed from STBs. This
functionality is unavoidable to deal with unpredictable
user demand but the load on these servers must be
minimized to reduce hosting cost.

The indexing server tracks videos available in the
overlay, including the information which videos has been
already downloaded by peers, and provides information
about available video replicas to peers requesting them.
For this purpose, it collects the information about the
current load, online/offline state, and cache content of
single STBs. It also answers search requests with the list
of peers holding video replicas. Optionally, a decentral-
ized search mechanism (such as gossiping or DHT) can
be used to offload the indexing server, but in general the
search accounts for much lower traffic than the delivery
of video streams, and, therefore, is not our main focus.

Finally, the STB peers download videos on behalf of
their users’ requests, store videos in (size-limited) local
caches, and offer videos to other peers. As shown in
Fig. 1 an STB can be in several states. It can be active
while requesting and downloading a video from multiple
sources in parallel. Hereby, it can be forwarding the same
video or upload previously cached videos to other peers.
In the passive state a peer is uploading data to other peers
without downloading. It can be in the sleeping mode and
not reply to download requests. Finally, it can be in the
idle state while not downloading or uploading any videos
but being able to serve requests from other peers. This
latter state can result, for example, from the always-on
behavior of STBs, and make up a major part of their
online times and baseline energy consumption.



In order to download a video the requesting peer first
connects to the indexing server and receives a list of
peers that already downloaded this video in the past. The
video can be streamed from multiple sources (peers or
servers) by dividing the video into sub-streams that are
combined into single stream at the receiver side. If the
peers cannot satisfy the rate demand (available peers’
capacity is lower than the video bitrate) the requester
asks a content server to provide the missing substreams.

There are several reasons why a peer might not be able
to upload previously consumed video to the requesting
peer:

1) The peer might have already removed the video

from its local cache (cache miss).

2) The peer might be offline (offline miss).

3) The peer might not have free upload capacity
because it is already uploading to other peers
(bandwidth miss).

Since the main goal of the system is to offload the con-
tent servers as much as possible, different mechanisms
are applied to increase the percentage of data uploaded
by peers. This way both the total data volume to be
served by content servers and their peak load can be
reduced. For example, a cache replacement policy is used
to reduce caches misses while a proper peer selection
mechanism is applied to avoid bandwidth misses and
achieve fair load distribution.

We further aim to reduce the energy consumption of
STBs in the system by applying a standby policy that
governs when idle peers can switch into the sleeping
mode and back. This policy is used to reduce the number
of offline misses while allowing peers to save energy
if there is a good chance that it will not result in
unnecessary server load. We discuss possible policies in
the next section.

IV. ADAPTIVE STANDBY POLICIES

As explained above, standby policies govern the
switching between the idle and sleeping modes of an
STB. A properly designed policy should fulfill the fol-
lowing requirements:

1) Assure that the content available in the overlay can

be served from peers (avoid offline misses).

2) Minimize the idle time of peers by sending them
into the sleeping mode whenever their services are
not required.

At first we present a policy that achieves the optimal
behavior, though being rather difficult to implement in a
real system. Yet it allows us to establish the best case for
comparison with alternative policies. Then we present a
heuristic standby policy that tries to match online time
of STBs with the demand of the system.

A. Optimal Policy

This policy switches idle STBs into the sleeping mode
immediately after finishing downloads (and currently
running uploads). If another peer tries to download a
video and the online STBs cannot provide the required
video bitrate, the indexing server computes the missing
bandwidth and selects one or several sleeping peers
owning a replica of the desired video. The policy wakes
up those peers, which then provide the desired bandwidth
and switch back into the sleeping mode after finishing
the upload. We expect this policy to exhibit the optimal
performance since it assures that all required peers are
available when they are needed while eliminating idle
times altogether.

A possible way to wake up sleeping STBs is the
usage of the Wake-on-LAN feature. This feature allows
switching on a sleeping IP-enabled device from remote
hosts by sending a so-called magic packet — directed
LAN broadcast with the MAC address of the device and
an optional 6-byte password'.

Several issues arise with this policy, besides the re-
quired support of the Wake-on-LAN feature:

« Firewalls and routers might drop the wake-up pack-
ets as a potential security threat.

e STB’s wake-up time might delay the video startup
for the requester by tens of seconds.

e The policy cannot be applied if the STB itself,
such as DSL modems, must be running for Internet
connectivity since the Wake-on-LAN requires the
STB to be reachable over the Internet.

Therefore, we need an alternative policy that is able to
approximate this behavior without relying on the Wake-
on-LAN feature.

B. Popularity- and Supply-aware Policy (PSP)

To overcome the restrictions of the previous solution,
we propose an alternative policy that does not rely on the
Wake-on-LAN feature. Instead, it requires only the com-
mon timer functionality, where an STB can switch into
the sleeping mode for the pre-defined amount of time.
Such timers are common for digital video recorders,
digital receivers etc., and can be incorporated into other
kinds of STBs without the security limitations and wake-
up delays of the wake-up policy.

The idea behind this policy is to make the available
data match the estimated demand of the system by letting
STBs stay online as long as their resources (cached
content and upload bandwidth) might be needed by the
system. To do so an STB analyzes the global availability
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of its cached content in regular intervals, both in the
idle and in the sleeping state. In the latter case the STB
is switched on by the timer for this examination. The
decision whether to stay online or not is governed by a
heuristic that tries to mimic the optimal behavior. By be-
ing adaptive to the demand and supply of cached videos,
the heuristic tries to avoid STBs being unnecessary idle.

In the following we present the decision metric: Once
a peer p has to make a decision whether to switch (or
stay) into the idle state or not, it calculates desirability
of each cached file f as follows:

D(p, f) = maz (s R(f) = A(f,p).0) - H(.T)

Here R(f) is the bitrate of the video, s is the re-
quired supply factor, and A(f,p) is the total upload rate
available at all peers holding a replica of f, except p
itself. The latter upload availability includes only unused
upload bandwidth of online peers. H(f,T) — {0,1}
specifies whether video f was requested by any other
peer within the last 7" hours or not.

With F'(p) being all videos cached at peer p the peer’s

desirability is then:
D)= > D(fp)
fer(p)

Intuitively, this metric reflects whether the locally
cached files are sufficiently replicated in the overlay. The
limited history considered by the metric allows avoiding
STBs staying online to offer old and unpopular videos.

Only if the computed desirability is equal to zero the
STB goes into the sleeping mode for the next hour.
Otherwise it stays online for at least one hour. After
this interval the STB repeats the computation. One of
the benefits compared to the wake-up policy is that this
policy can avoid the startup delay if a peer must be
awaken, which is crucial for delay-sensitive streaming
applications.

A proper configuration of the policy parameters 1" and
s should allow PSP to achieve performance close to the
wake-up policy and outperform alternative policies. The
information about available video replicas and recent
requests can be either managed by the indexing server,
or distributed in the overlay via gossiping. Note that too
low supply factor s might result in high load at content
servers, while higher values of s will increase the online
time of STBs. On the other hand, the history length T’
is important to react on content popularity changes.

C. Alternative Policies

For the purpose of completeness, we also consider
alternative policies: We consider the always-on behavior

as one extreme policy, where an STB stays online once it
joins the system. Due to the permanent availability of all
peers, such a policy allows for the highest possible peer
contribution, and, in consequence, highest load reduction
at content servers. On the other hand, it exposes the
highest online time and, therefore, energy consumption,
becoming unacceptable for the users in a long-term. In
fact such a policy shifts the energy costs from content
provider to the end user.

Another extreme case, the so-called selfish policy,
governs STBs to stay online only as long as they are
consuming some resources from the system, i.e, watch
a video. Once a user finishes its downloads it switches
off the STB and its resources become unavailable to the
system. Though the peers can contribute their upload
resources while they are online, we expect that such
a policy results in much higher server load than the
always-on policy. On the other hand, this policy results
in a minimal idle time, in fact being zero.

The overtime policy incites or forces users to keep
their STBs online even if not using them actively. Here
STBs stay online for a fixed seeding time (e.g., one
hour) after finishing their downloads. The performance
of this policy strongly depends on the concurrency of
user requests: if most users perform requests almost in
parallel, moderate seeding might suffice to achieve high
server load reduction. However, the non-adaptive nature
of this policy might also result in unnecessary idle times
or high server load.

Table I shows an overview of considered policies,
together with their ability to fulfill the presented re-
quirements. After discussing each policy (including its
benefits and drawbacks) in detail we will evaluate them
in Section VI to verify our expectations.

TABLE I: Expected performance of considered policies.

[ Policy [ Serverload [ Idle times | Remarks
Always-on minimal high
Selfish high minimal
Overtime Depends on seeding time and request pattern
Wake-up minimal optimal Requires Wake-on-LAN
PSP moderate near-optimal Requires timer

V. EVALUATION METHODOLOGY

This section presents evaluation methodology, includ-
ing the workload, simulation environment, and metrics.

A. Workload

Realistic workloads are crucial to study the potential
of standby policies. The workload must include realistic
video popularity and request patterns, such as the diur-
nal effect. Since there are no publicly available traces



suitable for our evaluation, we use traces of the video
files being shared within the popular BitTorrent network.
The traces were collected from December 9th, 2008 to
January 16th, 2009 by subscribing to public RSS feeds
of a major BitTorrent tracker site and then continuously
asking the trackers for new peer lists [13]. The collected
data includes the torrent name and id (used as a video
identifier), the file size in MB, and the list of IP addresses
active within the swarm at the given time. Based on this
data we can reproduce the time when peers requested
certain videos.
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Fig. 2: Properties of trace content.

Fig. 2 shows an excerpt of the traces, obtained by
taking a random sample of peers that downloaded con-
tent from the category Movies during the first week
of measurements (Dec. 13-21, 2008). It can be seen
that the trace shows a strong similarity with typical
VoD workloads: the requests over time follow a clear
diurnal patter (similar to e.g. [2, Figure 7]) and the video
popularity follows the stretched exponential distribution
of typical multimedia workloads [14].

The basic scenario used for the performance evalu-
ation is shown in Table II. We use 8 continuous days
out of our traces, while the first day is used to warm-
up the system and does not contribute to the metric
computation. The minimal size of considered videos is

TABLE II: Basic setup.

[ Parameter [ Default ] Variation

Simulation duration 8 days

Video bitrate 1, 2, 4 Mbps

Peer cache size 2 GB

Peer upload bandwidth 1 Mbps 0.256 — 4 Mbps

Number of peers 60,000 10,000 - 60,000

Number of videos 2,620 1,260 — 2,620

Standby policy always-on selfish, overtime,
wake-up, PSP

200 MB and we derive the bitrate of the video depending
on the video size S according to the following rule:
S < 1GB — 1Mbps, 1GB < S < 2GB — 2Mbps,
and, finally, S > 2GB — 4Mbps bitrate. The default
peer upload bandwidth is set to 1 Mbps. The upload
bandwidth of the server is unlimited to allow for mea-
suring the server stress. We use a sample of up to 60,000
random peers from our traces (consisting of 4 Mio.
peers for the selected content category Movies for the
considered week).

B. Simulation Environment

The traces are fed into a custom discrete event-driven
simulator modeling a peer-assisted streaming system
based on set-top boxes. We implemented the delivery
network presented in Section III with the users consum-
ing videos and overlay provider’s servers offering the
initial content. The overlay peers model the STBs, in-
cluding limited-sized local caches, trace-driven requests,
and video popularity, as well as the standby policies
described in Section IV.

The data transfers happen in a multi-source manner,
which means that a single streaming request can be
served from multiple nodes (peers and/or servers), while
peers are always favored in order to offload servers.

C. Metrics

We use the following metrics to evaluate the perfor-
mance of the policies:

e Overlay hit rate HR is the data volume served by
peers relative to the totally served data. This metric
describes the performance of the system, since the
higher hit rate at STBs means higher benefit for the
content provider.

e Online time OT is the accumulated online time of
all STBs relative to the always-on case. This metric
describes the users’ costs that should be reduced by
the standby policies (we assume that the users pay
flat-rate fees for Internet access and that the baseline
energy consumption dominates the energy costs of
STBs [6]).



o Energy savings S express the relative reduction in
STBs online time achieved by policy P compared
to the always-on case. We further normalize this
value by the hit ratio of P compared to the always-

on policy A for a fair comparison, i.e.,
_ OT(A)-OT(P) HR(P)
ES(P) = OT(A) " HR(A)

VI. EVALUATION RESULTS

In this section we present the performance results
of our adaptive heuristic policy and compare it with
the performance of alternative policies. The goal of our
experiments is two-fold: to compare the performance
and costs of standby policies and to study the impact
of policy-internal parameters, such as supply factor and
history length for PSP. Hereby, we want to verify our
policy analysis summarized in Table I.

A. Comparison of Standby Policies

In the first experiment, we compare the performance
of PSP with that of other standby policies: always-on,
wake-up, overtime (seeding time = 1 hour) and selfish.
Figure 3 shows the overlay hit ratio, the relative online
time, and the energy savings (except for the always-on
policy).

Online time s
Overlay hit rate =z
1r Energy savings ¥

0.8 3 8

0.6

Ratio

0.4 |

0.2 i

Selfish  Overtime PSP WakeUp AlwaysOn

Fig. 3: Overlay hit rate, online time, and energy savings
of various policies.

We observe that our heuristic policy, PSP, results in
an overlay hit rate close to the optimal wake-up policy
(89 vs. 94%) while slightly increasing the online time
(8 vs. 4.5%). Consistently the energy savings are similar
(86 vs. 92%) as well. On the other hand, PSP clearly
outperforms the selfish and overtime policies regarding
the overlay hit rate, and always-on policy regarding
the online time. Furthermore, the always-on and wake-
up policies offer the highest overlay hit rates of 94%
with the remaining 6% accounting for the initial content
injection from the content servers. Selfish and always-
on policies result in the lowest and highest online times,
respectively.

In the next experiments we consider the impact of var-
ious system and policy parameters on the performance
of standby policies. Since the normalized energy savings
show the trade-off of performance and costs we will
focus on this metric for the workload parameter study.

1) Impact of Upload Bandwidth: We evaluate the
impact of the available peer upload bandwidth and
compare the energy savings for each policy relative to
the always-on behavior (see Fig. 4). Here, the savings
increase with the higher upload bandwidth, which can be
explained by less online peers required to serve the same
amount of requests. We observe that all policies show a
saturation effect for the bandwidth around 3 Mbps, since
here each peer can upload 1 or 2 complete streams in
parallel (average video bitrate is below 2 Mbps). But still
the PSP is able to save almost 10% more energy than
the non-adaptive selfish and overtime policies, coming
quite close to the optimal wake-up policy.
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Fig. 4: Energy savings compared to the always-on be-
havior (normalized by the overlay hit rate) with varying
upload bandwidth per peer.

For lower upload capacities the difference between
the policies is much higher, e.g, with 256 kbps per peer
resulting in more than 60% savings with the PSP but only
20% with the selfish policy. In such a low-dimensioned
scenario, streaming of a single video requires 4-12 online
STBs to cover the demand.

2) Impact of Population Size: In our next experiment
we analyze the impact of the population size. For this
purpose we generate random subsets with the different
number of peers (10,000 to 60,000) and investigate the
energy savings (see Fig. 5). We observe that for most
policies the increasing population size leads to higher
savings. This can be explained by the fact that for
our traces the number of peers grows faster than the
number of requested videos (2,620 videos for 60,000
peers vs. 1,260 videos for 10,000 peers) resulting in more
requests per video (22.9 vs. 7.9 requests for 60,000 and
10,000 peers). This yields a higher replication degree,



which allows more peers to go offline without hurting
the overlay performance. While other policies are able
to improve their performance, the wake-up policy is
again the best one and PSP offers a good trade-off
outperforming the overtime and selfish policies.
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Fig. 5: Energy savings compared to the always-on be-
havior (normalized by the overlay hit rate) as a function
of population size.

B. Analysis of Selected Policies

The previous experiments compare the performance of
best (empirical) parametrization of standby policies and
their scalability regarding the system parameters. As next
we perform a parameter study of the overtime policy and
heuristic PSP. The goal is two-fold: to understand the
impact of intrinsic parameters and to verify whether the
adaptive PSP can outperform the non-adaptive overtime
with the best parametrization (i.e., optimal seeding time).
For this purpose we vary the relevant parameters of each
policy and measure the impact.

1) Overtime Policy: In this experiment we evaluate
the potential of increased seeding time for the overtime
policy. This should allow us to estimate the potential
of this non-adaptive approach and to compare it with
the PSP. Figure 6 shows the impact of the increased
seeding times per peer on the overlay hit rate, relative
online times, and normalized energy savings. We observe
that higher seeding time up to the value of 3 hours
increase normalized energy savings. Above that level
of three hours the normalized savings are continuously
decreasing because the required online time grows faster
than the overlay hit rate.

This effect can be explained by the common flash-
crowd effect often observed in content distribution net-
works [14]. Once a new video becomes available, a lot
of concurrent requests are started. If the peers, which
download the video first, stay in the network for the
duration of the flash-crowd, they can serve the new-
comers. After these demand peaks the longer seeding

becomes unreasonable. This can be aggravated by the
diurnal traffic pattern, which typically has its load peaks
in the few evening hours (cf. Fig. 2a).
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2) Popularity- and Supply-aware Policy: In this ex-
periment, we consider our PSP policy and vary its main
parameters: history length from O to 24 hours and supply
factor between 0 and 2 (see Fig. 7). We observe that:

e Online time increases linearly with the history
length while even with increased supply factor the
total fraction is below 10% (see Fig. 7a).

o The overlay hit rate exceeds the 90% level with the
supply factor of 2.0 and history length > 8 hours
(see Fig. 7b).

The reason is that taking into account longer history
makes peers stay online to offer their content longer,
while the supply factor > 1.0 allows serving at least
one new request by the peer kept online.

Furthermore, the relative energy savings (shown in
Fig. 7c) increase with the history length and higher
supply factor but stabilize at the supply factor of 2.0 and
history length of 16 hours. Here the increase of the sup-
ply factor from 1.5 to 2 results only in marginal savings
increase. These observations suggest that further increase
in supply factor and history length is not beneficial.

3) Overtime vs. PSP: In order to compare the per-
formance of the overtime policy and PSP, in Fig. 8
we plot the overlay hit rate vs. online time for both
policies with varying policy-internal parameters (the
impact of varied parameters in indicated by the arrows).
The figure visualizes that PSP with the supply factor
> 1.0 outperforms the overtime policy regarding both the
system performance (overlay hit rate) and costs (relative
online time). The reason is the adaptive nature of the
PSP, which adjusts the online sessions to the demand
and supply, while overtime policy statically tries to find
the “one size fits all” seeding time.
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Fig. 8: Comparison of performance and costs with
varying parameters: for PSP the supply factor is fixed,
but the history length variable (1-24h), while for the
overtime policy the seeding time is varied (1-8h).

VII. CONCLUSION

This paper presents an adaptive standby policy to
reduce energy consumption of a content delivery network
based on set-top boxes. This is done by reducing idle
times. The set-top boxes can switch into the sleeping
mode and back in a self-managed way to reduce the
baseline energy consumption. To achieve this, we devise
optimal and heuristic policies and evaluate their perfor-
mance. Our results show that adaptive standby policies
can tackle the trade-off between the extensive online time
and high overlay hit rate, resulting in similar perfor-
mance as the always-on behavior at the slightly higher
costs than the selfish policy. The proposed policies also
outperform non-adaptive overtime behavior.
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