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Abstract—The availability of Service-oriented Architectures
(SOA) depends on two factors. These are firstly the availability
of the services that provide a certain business functionality
and, secondly, the availability of the components or services
that make up the underlying SOA platform. For platforms
that are supposed to form the core of mission-critical service-
oriented applications, this implicates the need for mechanisms
that can regulate the availability levels of the core services
in changing conditions. In this paper, we handle open issues
about the kind of monitoring functionalities and adaptation
mechanisms that should be integrated in SOA infrastructures.
In our proposed solution, we integrate concepts of event-
based systems to enhance the dynamicity of the SOA platform
monitoring, as well as concepts from peer-to-peer computing
to achieve an efficient distribution of the SOA platform core.
By prototypically implementing the concepts as extensions
of Apache Tuscany, which is a realization of the Service
Component Architecture standard, we show in an experiment-
based evaluation how the availability of the core services
of SOA infrastructures has been improved. Additionally, we
explain further benefits that can be achieved with adaptation
mechanisms other than replication, which are also enabled by
our extensions.

Keywords-

I. INTRODUCTION

As has been also described in [1], the success of Service-
oriented Architectures (SOA) is normally not credited to
the strict technical features or Quality of Service (QoS)
levels offered by the underlying technologies. However,
along with their established advantages, such as high flexi-
bility, extensibility, and interoperability [2], Service-oriented
Architectures are now also expected to achieve performance
and availability levels that are as high as these of tradi-
tional, platform-dependent solutions. Approaches that aim
at improving the availability of SOA are usually built on
the assumption that a number of service alternatives can
be invoked ad hoc, if a service fails. These approaches
use techniques like process replanning with dynamic service
substitution (as in [3], [4], and [5]), or dynamic enforcement
of governance guidelines [6], and are usually applied at the
level of service consumption or business process execution.
Still, when the availability of the applications that use these

techniques is measured, there is an upper bound that can
be achieved. It is the maximum availability level that the
used service platform can support. This platform can vary
from a simple enabling infrastructure, i.e., a simple service
registry with any accompanying components, to a complex
Enterprise Service Bus (ESB) [7].

The challenge is that current service platforms can support
limited availability levels, because of vulnerabilities or single
points-of-failure inside their core. Such a basic vulnerability,
which we address with our approach, is the centralized
access to functions of the domain and the deployment, i.e.,
centralized access to interfaces that are used for address
resolution, dynamic launching of services, and more. Even if
the services are available, the availability experienced by the
user declines if the machines that provide these interfaces
under-perform. Similar problems exist with service registries
and search functions. Furthermore, current solutions use
static monitoring approaches (cf. also Section II), which
cannot support quick enforcement of healing mechanisms,
e.g., replication of overloaded services.

Some techniques, such as Web service replication [8],
appeared in order to solve some of the aforementioned prob-
lems. These techniques have sometimes high costs and must
be supported by monitoring mechanisms and by an adequate
decision logic. This monitoring-supported enforcement of
such techniques, as well as related research, are normally
positioned under the fields of adaptation mechanisms and
self-organization. How this can be optimally applied on SOA
infrastructures has not been thoroughly examined from a
technical perspective, and depends on the nature of the used
platform. Different service platforms (e.g., ESBs) are used
in different application domains, and each of them presents
different challenges concerning its enrichment with adapta-
tion or self-organization capabilities. This work presents a
concept which, in its general form, can be used for such
enrichment of many different SOA platforms. Its main ideas
are the distribution of the core parts of a SOA platform and
the employment of event-based monitoring in the platform
core for supporting self-adaptation. This general concept
of enhancing the service platform by distributing its core
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parts in a peer-to-peer way and by making its monitoring
capabilities dynamic is then implemented as an extension
of the Service Component Architecture (SCA [9]). The
work is presented and evaluated on the state-of-the-art SCA
platform, Apache Tuscany [10].

With this regard, the paper is outlined as follows: Section
IT examines the related work and states our contributions.
Section III identifies some additional challenges that are
present in our particular scenario of a mission-critical SCA
platform. Sections IV and V form the core of this paper
by describing our solution and its evaluation results. As the
concept could enhance different platforms, the description
of the idea (Subsection IV.A) will be as independent of
the implementation as possible. Still, the detailed desription
of the different service lifecycle phases (Subsection IV.C)
sometimes needs to refer to implementation details in order
to better support the reader’s understanding. Section V
presents the results of a well defined evaluation scenario
with our extended Apache Tuscany platform and Section VI
offers implementation-related examples of further adaptation
mechanisms that can be integrated due to our extensions.
Our conclusions and plans for future work are summarized
in Section VII.

II. RELATED WORK AND CONTRIBUTIONS

The decision to use concepts from peer-to-peer (p2p)
computing and event-based systems were taken after a
careful analysis of all the phases that a self-adaptive SOA
platform has to go through. Therefore, the best way to
present the related work is to explain where these concepts
have been already used or proposed in order to enhance
SOA platforms. This way we come to new ideas and
propose their usage for further possible enhancements. So,
we look into related work in three main directions, where
we also identify and position the three partial contributions
of our work. First, we look at the research towards third-
generation, self-adapting service platforms. Second, we see
attempts of enhancing service platforms by using peer-to-
peer technologies. Last, we examine monitoring aspects of
up-to-date service platforms.

In accordance to the nature of service-oriented software,
some tasks exist, which must be fulfilled in almost all SOA
solutions. The most important of them are:

o The service registry mechanisms (service advertise-
ment, service look-up, etc.).

o The address resolution (mapping of name-based service
calls to exact addresses/endpoints).

o The service deployment (loading, configuration, start-
ing, and stopping of services).

o The management and monitoring, usually in the form
of auditing and logging, with focus on QoS parameters
such as service response times or hardware metrics such
as CPU load.

Depending on the scale at which these tasks are automated or
undertaken by middleware components, there are tradition-
ally two approaches for building SOA infrastructures: the
point-to-point integration and the hub-and-spoke approach
[2]. While the first is simpler and more static, the latter
includes a service bus and/or other related middleware that
dynamically undertakes the aforementioned tasks, as well
as their subtasks, such as the routing and addressing of
the used services, or the support and transformation of the
used protocols. Other functionalities can also be present,
letting the hub-and-spoke approach be considered as more
advanced and, in essence, as the successor of the point-to-
point integration [2]. Nevertheless, research in the field of
SOA self-adaptation ( [11], [12]), lets us assume that we
are heading for a third generation of SOA infrastructures,
in which the service platform, i.e., the service bus with the
accompanying middleware, will offer even more automation
and further functionalities, namely more sophisticated, inte-
grated monitoring, adaptation mechanisms, and more. As the
enrichment of service platforms presents different challenges
and opportunities depending on the exact paradigm, we con-
tribute in these attempts towards “third-generation” service
platforms by presenting an idea of what these extensions
should include, and by showing how it is implemented
in the case of SCA. As the SCA paradigm dictates the
existence of certain components in the service platform, our
contribution is the identification of the exact points where
these SCA-specific components could be enriched with self-
adaptiveness, as well as our corresponding implementation,
performed as an extension of Apache Tuscany.

Main intension of the adaptation mechanisms is to keep
the QoS above certain limits. A recent survey [13] already
placed peer-to-peer mechanisms among the most highly
suitable solutions for the substrate of future service plat-
forms that go in the direction of QoS-guarantee and self-
adaptation. Approaches that use peer-to-peer mechanisms
for the enhancement of service platforms have focused until
now either on special-purpose service orchestration [14], or
on service discovery and group collaboration [15]. Believing
that the enablement of self-adaptation dictates that these
mechanisms lie deeper inside the platform and support all
or most of the functionalities of a service bus, we contribute
by using peer-to-peer mechanisms to distribute the service
bus and enhance the availability of the services of an SCA
platform. Furthermore, unlike most of such new frameworks,
we provide an evaluation scenario and some measurements
to demonstrate the availability enhancement.

Aspects of our integrated platform monitoring can be seen
as a further contribution of this work, given that almost all
state-of-the-art monitoring components of service platforms
are not integrated in the platform logic and cannot serve
the goal of supporting self-adaptation optimally. Instead,
they normally perform centrally-controlled measurements
for hardware modules or service invocations. In the next



sections it will be further clarified how this differs from
our decentralized, event-based, adaptation-enabling platform
monitoring approach. Strengthening our argument, we men-
tion that almost all theoretical SOA Maturity Models (e.g.,
[16]) define five possible maturity levels for a SOA and
they place the feature of event-based platform monitoring
in the maturity level 4. Related studies (e.g., [17]) prove
that almost no current SOAs achieve that maturity level,
but they rather lie on lower levels, usually levels 2 and 3.
The referenced study was done among software departments
of the german banking industry, which are supposed to be
among the leaders of SOA adoption.

III. FURTHER CHALLENGES OF OUR SCENARIO

The purpose of our extended platform is to serve as
the SOA substrate for our project [18], which supports
the management of disastrous events. In such a scenario,
the availability of the services not only needs to be high
when the disaster occurs but it is also expected to be
suddenly endangered, because of an ‘“explosion” of the
system usage at that point. This system usage pattern will
be reflected in the test cases of our evaluation in Section
V. The use of our platform in such a scenario indicated a
long list of requirements. In the following, we list how these
requirements can be summarized or translated to technical
challenges for our platform:

« No single point-of-failure is acceptable for any critical
core service.

e Control mechanisms must provide the possibility of
defining different, application- or situation-dependent
algorithms that determine the minimum number of
instances of particular services. These algorithms will
be designed based on the needed availability levels and
the expected usage patterns.

o Consistent and detailed information about the running
services is needed in order to provide enhanced control.
This means that all services have to be registered with
the same procedure before they are started, and there
must be mechanisms that find out which services, and
how many instances of them are registered / active, and
on which nodes.

We have found no service bus, but also no conceptual
or architectural approach, which addresses these needs (cf.
Section II). As for the implementation, the extensions that
will be presented were necessary also because of the fol-
lowing lacking capabilities, which are absent from Apache
Tuscany, but also from all other examined platforms:

o The platform enables the development of distributed
applications but it is almost impossible to distribute all
the core modules in the way that our challenges dictate.
Normally, the Tuscany domain and deployment service
is centralized and it also lacks many of the desired
capabilities and functionalities that we mentioned.
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Figure 1. Overview of the p2p-based distribution of the core parts

o There are no service monitoring mechanisms that could
support self-organization or absolute control of service
instances. The monitoring modules can only support
static logging and not the dynamic monitoring logic
that we will describe in more detail in the next sections.

o There are no replication or maintenance mechanisms
for the internal application services.

IV. SERVICE PLATFORM AVAILABILITY EXTENSIONS

With regard to the described challenges, we present in
this section a generally applicable idea of how they could
be handled inside a service platform, and then we briefly
describe how we implemented most parts of the concept
by modifying the Apache Tuscany service platform. In the
third part, we go into more detail in order to explain how our
extensions work. This part mentions implementation details
only when this is helpful for the understanding.

A. Concept

We define as core parts of the service platform those parts
that are responsible for the main platform functionalities,
as we mentioned them in Section II (registry mechanisms,
address resolution, service deployment, and monitoring).
Our main idea was to re-define these core parts so that:

o They are distributed, consisting of many co-operating
instances, supporting fault-tolerance in the classical
p2p manner, i.e., being able to operate despite the
unavailability of some instances.

« They offer an extended set of functionalities that enable
self-organization/adaptation mechanisms and support
the fulfillment of our availability requirements.
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Figure 2. Component interrelations in a node of the modified platform

o All the extended functionalities are offered through the
interfaces of a p2p overlay, so that no centralized parts
of the service bus have to be addressed when core
functionalities are requested by any node of the system.

The choice of p2p is driven by our striving for fault-
tolerance. The failure of peer nodes, on which instances
are running in order to provide core mechanisms, will now
not mean that the mechanisms will not be available any
more. At the same time, a flexible cooperation of the core
part instances is needed. Few technologies can support this
fault-tolerance and this cooperation as good as the p2p
technology does. On this basis we designed a platform
where all participating nodes, i.e., all providers/consumers
of application-level services, can also carry instances of core
parts, participating in a common p2p network that connects
their core part instances (Figure 1). We re-define, extend
and distribute four core parts, while a lot of accompanying
platform parts/functionalities are abstracted in our concept
and taken from the used platform in our implementation. A
description of these four core parts follows, focusing on the
features that are normally absent in current solutions, like
Apache Tuscany.

Our distributed domain service is addressable through
the overlay (so that one instance of it might be enough)
and offers the extended possibility of returning multiple
endpoints to service-lookups. This supports the usage of
service replicas that are generated by our self-organization
mechanisms, as well as a more reliable address resolution,
given that any node may be able to perform this resolution.
The service registry can also be seen as part of the domain
service and it has the form of a distributed database with
its entries being transparently and redundantly distributed
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Figure 3. Adaptation-enabling event processing of the platform monitor

among those nodes that carry domain service instances.

Our distributed deployment service enables the local or
remote starting/stopping of services. It is assumed that the
services store their resources when they are registered in
the domain and that these resources are sufficient in order
to start/replicate them on other nodes. Nodes also use the
deployment service in order to register themselves as capable
of hosting particular services.

Our distributed system manager takes care of pre-defined
numbers of instances of other core services and offers
additional interfaces for system information that is important
to other core parts, especially to the platform monitor.

Our distributed platform monitor has major differences
from usual service monitoring components or tools. Its goal
is to support adaptation, so it engages the Event Stream
Processing (ESP) concept [19] and a push-approach for
(developer-defined) monitoring events, rather than a database
where simple observations are stored. Furthermore, it is
integrated in the platform logic, so that no direct or indirect
interaction with the monitored services or their “callers”
is needed in order to gather information about the service
calls. In the evaluation scenario, we will see an exemplary
usage of the monitor that would not be achievable with other
approaches.

B. Design and Implementation

All these conceptual extensions pose new challenges
when it comes to their implementation as extensions of
existing service platforms like Tuscany. For example, some
features can be added “on-top” while others may present
incompatibilities with existing mechanisms. We distinguish
three approaches for enhancing the service platform with
new features, which are generally valid when it comes to
middleware enhancement:

e As new platform modules, i.e., developed and built

additionally to the existing modules of the platform.



o As external libraries, which can be either special-
purpose libraries, i.e., software developed for these
extensions, or ready, possibly third-party, software.

« As modifications in the core of existing platform mod-
ules, when incompatibilities appear.

Before listing what we implemented in these three direc-
tions, we present in Figure 2 a compact SCA representation
of a node of our modified platform, providing a view of
the interrelations of the core parts of the service platform,
as well as their relation to the p2p overlay and the normal
application components.

We had to define a new node type, the CoreNode, which
merges an SCA node with a p2p node. While the extended
domain, deployment, and system manager are based directly
on the p2p node, the platform monitor is built on the
(modified) service invocation mechanisms of the platform,
enabling the binding of queries (posed by any monitoring
component) to particular services, in order to retrieve the
data that it needs about the corresponding service invoca-
tions. This is again compactly depicted in Figure 3.

The API of each core part corresponds to the functionali-
ties described in Section IV-A. We provide here an overview
of the implementation with regard to the three categories that
we distinguished in this section:

e New platform modules: The module that defines the
CoreNode and includes the implementations for the
deployment and the system manager instances is the
distributed-core. It is implemented as a new module
but depends on some core modifications, as well as on
an external library for the p2p overlay. The platform-
monitor is also a new module, also depending on core
modifications and on an external library for the Event
Stream Processing.

o External libraries: freepastry is used for the p2p overlay
and esper for the Event Stream Processing. Both are
third-party, open-source libraries.

e Core modifications: The Tuscany module core was
modified in order to implement our domain instances.
Inside the assembly module of the core, we had to
modify the runtime component implementation. Some
other modules, e.g., the java-runtime-implementation,
also had to be modified in order to support dynamic
invocation and other features needed by our modified
platform.

C. Service lifecycle phases for redundancy and self-
adaptation

With regard to the presented concept, design and
implementation of our service platform extension, we
present a more detailed view of the lifecycle of a service
with the focus on self-adapting and self-organization.
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Phase 1 - Service Registration and Distribution of
Service Resources:

The most important aspect of the domain service is the
transparent distribution of its database, which holds redun-
dantly all the information needed for a service, e.g., its name,
its configuration, and its resources. In order to coordinate
the self-organization tasks, there is only one instance of the
domain service which is responsible for the registration and
for any modifications of a particular service X. The same
instance is also responsible for returning multiple endpoints
to service look-ups of the service X.

To understand the nature of the responsibilty of an in-
stance of the domain service for a service X, it is important
to know the structure of the used p2p overlay. Our service
platform extension uses freepastry, which is an open-source
implementation of Pastry [20]. Pastry uses a ring structure
for the peer-to-peer overlay, where every node of the ring
is identified by an unique address. The address of a node
is a hash value randomly allocated by the freepastry library
during the bootstrap process, i.e., when the node enters the
overlay. An example ring structure is presented in Figure 4,
where the name and the address of every node are illustrated
among other information.

To address a node of the ring it is not necessary to
know the accurate address of it, but one hash value part
of the range of addresses which “belongs” to the node.
For the example of Figure 4, this means that node C with
the hash value (9a37..) is addressable by any hash value
from (3741..) + 1 to (9a37..). Thus, every node of the
ring is responsible for the hash values from the address of
its predecessor (node Y in the example) to its own. For
more details about this kind of hash-based addressing in
p2p networks, we refer to [21].

The responsibility of a domain service instance is the
range of hash values which belong to the node where
the instance is located. To find out which domain service
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Figure 5. Registration of a service X

instance is responsible for the deployment of a service
X, the name of the service will be transformed to a hash
value as well. The domain service instance responsible
for the hash value obtained from the service name is then
addressed in order to deploy the service.

For the registration of an internal service, i.e., for a service
that has been created within our platform and is running on
it, it is important to know which information must be saved
and how the domain service will distribute this information
inside the platform. Before explaining the sequence of this
information distribution, the Distributed Hash Table (DHT)
entry is introduced. A DHT entry contains the name of
the service, the data files needed in order to deploy the
service on the extended service platform, and information
about the nodes where the service is already deployed. In
our implementation, the mentioned data files are stored as a
JAR file of the service X in its DHT entry. This offers the
possibility of remote deployment of the service. This feature
will be explained in more detail in the next phase.

The information of the DHT entry includes the status of
the service on each node as well. This status can have the
values “started”, “running” and “stopped”. “started” stands
for the phase when a service is registered on the domain
service but not yet deployed. After a successful deployment,
the status is changed to “running”, while an undeployment
of the service switches the status to “stopped”, until the in-
formation about the node where the service was undeployed
is deleted.

The different steps of the registration process are pre-
sented in Figure 5. The process starts with the registration
of service X at the instance of the domain service where
the DHT entry of the service was built and the hash value
of the service name was calculated. Then the hash value
is used to address the responsible instance of the domain
service over the peer-to-peer overlay and the DHT entry is
transmitted to it. The responsible instance puts the entry into
the DHT, which stores the entry locally and also distributes

’ Remote deployment of service X at node C ‘

'

’ Local deployment of service X at node C over P2P overlay ‘

!

Node C gets over the domain service the current DHT entry
of service X with deployment information and resources

'

’ Node C stores locally the information and files temporarily ‘

'

’ Deployment of service X to local node of service platform ‘

'

’ Update the DHT entry over the responsible domain service ‘

Figure 6. Remote deployment of a service X

it over the peer-to-peer overlay to other nodes. The number
of replicas of the entry is predefined at startup of the peer-
to-peer overlay.

The distribution of the DHT entries is illustrated in Figure
4, where the domain service instance which is responsible
for the example service X is running on node G. The service
itself is running on nodes G and M, while the DHT entry
is stored locally on node G and transmitted to nodes C and
A as replicates. It is important that the information about
a service must not be stored locally where the service is
running. The information can be somewhere else inside the
peer-to-peer network.

Through this redundant storing of the DHT entries, there
is no single point of failure for getting information about
services whenever this information is needed. Even more
important, the resources that are needed to start the service
are also available on more than one node, together with the
rest of the information.

Phase 2 - Local or Remote Service Deployment:

The nodes of the extended service platform have an
instance of the deployment service running, thus providing
the possibility of deploying a service locally and remotely.
With the remote deployment function, it is possible to deploy
a service X on any other node inside the service platform.
This requires the cooperation of the deployment service
instance that “wants” to start service X with the domain
service instance that is responsible for service X. However,
this is performed seamlessly, as the deployment service only
addresses its local domain service instance. The latter locates
then the domain service instance which is responsible for
modifying and re-registering service X.

The procedure of a local deployment includes the regis-
tration process described in Phase 1. If the service to be
deployed is already registered, the information that other
nodes have about the status of the service is updated. After



the registration, the deployment continues by adding the
service to the platform, using the locally stored data. In the
case of Apache Tuscany, the only resource needed for the
deployment of a service is a JAR file. Then, the status of
the service in the DHT entry is updated to “running”. Again,
for this update, the deployment service seamlessly addresses
the responsible domain service instance.

The detailed procedure of a remote deployment for a
pre-registered service X is presented in Figure 6. To deploy
service X on another node C of the platform, a deploy
message will be sent over the peer-to-peer overlay. The
node C receiving this message gets the DHT entry from the
domain service and saves the information and the resources
locally. Then the local resources are used to deploy service
X with the local deploy method, including the update of
the status of service X over the responsible instance of the
domain service.

Phase 3 - Static or Dynamic Service Replication:

Another important additional feature of the extended
service platform with regard to self-adaptation is the static
or dynamic replication of a service. The part that mainly
enables this feature is the system manager. This is performed
by a mechanism called Service Instance Control Mechanism
(SICM), which works in strong cooperation with the domain
service and the deployment service. The dynamic replica-
tion, i.e., the replication as a self-adaptation action, is, of
course, also supported by the platform monitor.

The SICM can be started for a service X directly after its
successful deployment (static replication), or it can be called
later by any other node of the extended service platform
(dynamic replication). The number of deployed instances of
service X with the status “running” is read from the DHT
entry. This number is compared to a threshold (minimum
number of needed service instances). This threshold has been
passed to the SICM as a parameter.

Depending on the result of the comparison, the SICM
terminates if enough instances are running. Otherwise, it
uses the domain service in order to search for nodes where
additional instances of service X could be deployed. If there
are not enough nodes, the SICM will be idle for a predefined
time and then start again. Otherwise it will start to deploy
more instances of service X on nodes with enough resources
that had no running instances of service X.

Additional to the SICM, the system manager provides
interfaces for getting system information, or other
information that support self-adaptation.

Phase 4 - Maintenance and Monitoring of a Deployed
Service:

As already mentioned, a distributed, event-driven platform
monitor has been added. The modules used by such monitors

in order to capture and forward specific information, are
called software sensors. The main features of the platform
monitor, which will be described in more detail in the
following, are the possibility of adding software sensors with
a developer-defined focus, as well as the possibility to trigger
different adaption actions for different “captured events”.

The platform monitor implements the ESP concept. This
means that it can gather and preprocess events from remote
software sensors. Additionally, it offers the developer the
possibility to implement a monitoring logic that may be
different for each software sensor. This monitoring logic is
defined by writing ESP queries with an SQL-like language,
called Event Processing Language (EPL) [19]. With the
following example, we give an idea of how such a query
looks like:

select sender, count(sender)
as sentPackets from
Event.win:time(5 sec)

group by sender

The node that submits the query is called actor, because it
will act (or better, react) upon the event defined in the query.
For example, an actor registered at the platform monitor
with the above query is interested in all services which
transmit packets inside the network of the platform. The
platform monitor will store the information that matches
the query and will send back to the actor an event for
every service that sends packets. This event will contain
the packets transmitted by the service within the last five
seconds.

To collect the queried information, a software sensor has
to be registered at the platform monitor. Then, it sends the
collected information back to the platform monitor. The
procedure of a registration of a software sensor for service
X and the calling of this service by a node B is presented
in Figure 7. We refer to this software sensor as sensor S.

After the registration of S at the platform monitor, its
creation is registered at the system manager. The system
manager inserts S to a proxy of the service that is to be
monitored, and not to the service itself.

After this step, S is successfully deployed and will send
events to the platform monitor according to the query with
which it has been created. In order to present the monitoring
process when service X is called by node B, Figure 7 shows
the corresponding sequence of actions. Node B perceives the
call of service X as a direct call, but inside the extended
platform the call is redirected to a proxy. At the proxy, all
registered sensors observe the call and act according to their
logic. For example, there is the possibility of sending an
event just after the service call or after the service execution
has been finished.

When the call finishes, the proxy will transmit the result
to the calling node (B), which perceives it as a answer from
the original service X.
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With the mechanisms of the platform monitor described
above, it is possible for a developer to implement own
software sensors and event consumers for services and to
monitor them according to his needs. This is a completely
new feature for Apache Tuscany and is to our best knowl-
edge a highly innovative feature for any service platform.

V. QUANTITATIVE EVALUATION: AVAILABILITY
ENHANCEMENT

In order to evaluate our approach with regard to the avail-
ability enhancements, which have been our main concern,
we define a specific scenario that was related to our project,
and compare our approach with a release version of the
used platform. Of course, specific adaptation mechanisms
should be compared to related approaches that could po-
tentially enrich the same service platforms. Unfortunately,
such general comparisons do not seem to be applicable
at the moment, and remain subject of future work. Still,
Apache Tuscany is a state-of-the-art SCA platform, and
comparisons with it appear to be in our case more interesting
than any other scenario. In the next section, we will describe
an additional scenario, showing how a node can decide to
adapt the protocols used by its services based on monitored
information about the types of clients that dominate the
system.

A. Evaluation Scenario

The experiments that are based on our modified platform
are such that as many new features as possible can be
evaluated. Nevertheless, they are limited to include only
some capabilities. We condense many functions into two
main capabilities that we will use in our experiments. It is
necessary to describe now these two capabilities:

o Interest Registration: Any component can register itself

as “interested” in an SCA service, saving at the same

< itself nor with the
calling node
The event 9
depends
on the monitoring . ;
8: event: service X call finished uer 7: result of service X >

Event-based service monitoring in the extended SCA platform

time its queries, determining this way what kind of data
the software sensors will be sending to it and when.
Such components contain “actors”, which enforce re-
actions under certain circumstances.

o Service Instance Control Mechanism: The deployment
instances offer to other components the possibility of
retrieving the number of running instances of a partic-
ular SCA service, as well as the addresses of the nodes
that could host further instances. The SICM builds on
these capabilities and can be used by any component
in order to define a minimum number of instances of
a service that should be running. This “requirement”
is saved, so that failures of hosting nodes lead to the
starting of instances of the service on other candidate
nodes.

Internal services of our application are expected to be
suddenly invoked with an increasing frequency when a
disaster occurs or later when the emergency level of the
situation is set higher by the involved organizations. With
this regard, we chose an example service, and implemented
external clients that invoke it with the pattern shown in
Figure 8. There, we see also how a linear increase of
users leads to an exponential increase of erroneous service
invocations, i.e., to decreased availability levels. The test-
clients record errors when no response is received or when
a timeout occurs. More details will be analyzed in Section
V.B.

With Ny (z) denoting the number of occurrences of z in
the last ¢ seconds, we define as availability of S for our
scenario the value

Nyo(Successful invocations of S)
A= 100
Njo(Invocations of S) X 100%
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Figure 8. Experimental service invocation pattern

and we measure it over time for the following four
experimental cases:

e Expl: An instance of S is running on the Apache
Tuscany release platform.

e Exp2: Three instances of S are running on the Apache
Tuscany release platform and the invocations are
equally distributed to them. The number of instances (3)
was chosen empirically, so that it could almost always
satisfy the given invocations’ curve (Figure 8). For this
case, as well as for the next two cases, the distribution
of the invocations among the instances was simulated.
This is safe because the load balancing is irrelevant to
the results that we present, though it would, of course,
be interesting to test with different balancing of the
invocations.

e Exp3: An instance of S is running on our extended
platform, the deployment instance of a node (more
nodes could be used for fail-safety) registers itself as
interested in S, with a query for retrieving the number
of users of S each second. The deployment instance
(more precisely its “actor” upon the retrieved data) has
the following simple logic: use the SICM to add an
instance every time that the load of S exceeds a limit.
This limit was chosen in our case so that, for the given
input of Figure 8, the mechanism is started almost every
minute.

e Exp4: As in Exp3, with the difference that the SICM
now doubles the number of instances every time it
is triggered. With these two different configurations,
we show the flexibility of the freely defined adapta-
tion logic, indicating how our framework can easily
integrate application-dependent logic in order to be
optimally exploited in different systems. Obviously, the
choice of this logic affects the results.

B. Comparison Results

Figure 9 and Figure 10 present the evaluation results
based on the four experiments that we described. Although
the results have been obtained from an example service,
which can be either an internal application service or a
core platform service (e.g., an instance of the deployment
service), it is obvious that this does not harm generality.
Similar effects would be noticed for almost any service,
maybe with a slightly modified invocation pattern. These
evaluation results intend to show some enhancements of a
platform in particular scenarios and are not to be seen as
a direct and complete comparison. Furthermore, the results
only show the benefits of the mechanisms described in
Section 5.A, which are based on our extended concept.
Further benefits of our solution that we described earlier
and relate to the p2p-based fault-tolerance of the core parts
are not included in these experiments and are not mirrored
in the results.

The results for Expl prove that the availability of a service
sinks when the number of users increases rapidly. The same
effect is slightly noticeable even in the case of the second
experiment that is based on the original Tuscany platform,
namely Exp2, although the number of service instances was
manually chosen in order to satisfy the given input. The
decrease of the availability level is in that case much slower
than in Expl, though steady. If the number of users would
grow further, then the number of service instances would not
be able to satisfy them any more, and an effect similar to
that observed in the case of Expl would appear. Even if the
maximum load that can be expected for a service is known
from the beginning, excluding this way the possibility of
such effects to appear, the usage of many instances from the
beginning can lead to a big waste of resources. In scenarios
like ours, where the service usage explosion is expected to
happen suddenly but also rarely, this waste will be ongoing
during most of the time.

Contrary to Expl and Exp2, the number of service in-
stances during the experiments Exp3 and Exp4 is adapted to
the service load, maintaining high availability levels without
wasting resources. Figure 10 shows the effect of service
instance control. The component that uses the extended
mechanisms in order to perform this control is (implicitly)
informed (in this case every ca. 1 minute) by the platform
monitor that the availability is sinking. Accordingly, further
service instances are deployed and the service invocations
are again distributed among them. So, with an appropriate
configuration at the side of the monitoring (and acting)
component, the availability can be maintained at the wished
levels, as long as this is allowed by the total resources that
are available in the system. In a similar manner, the service
instances can be adapted to a decreasing number of users,
though this is not shown with the present experiments.

During the last minute of the evaluation, Exp4 presents a
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higher availability, because the number of service instances
is increased more abruptly. With the difference between
Exp3 and Exp4, we can understand the configurability of the
used mechanisms. The fact that different logics can be used
inside these mechanisms offers flexibility in the regulation
of the availability levels and of their trade-off with the costs.
For example, a logic like the one used in Exp3 would be
used in a scenario where service instance adaptations can be
performed often, while the logic of Exp4 would rather be
applied in scenarios where the frequent adaptation is either
impossible or not desired.

VI. QUALITATIVE EVALUATION: DYNAMIC PROTOCOL
ADAPTATION

While a quantitative evaluation has been presented in the
previous scenario, the evaluation of this section is character-
ized as qualitative. A qualitative evaluation does not directly
compare approaches in order to mathematically prove which
one is the best one, but it rather provides (measurable) hints
about how an approach could bring benefits and leaves space
for further research. Indeed, we are going to explain on

the basis of some experiments, why the dynamic protocol
adaptation of services can offer benefits.

In this scenario, the adaptation is triggered based on client
types rather than client numbers. More precisely, nodes use
our platform extensions in order to extract information about
the involvement of mobile service consumers and they adapt
their communication protocols accordingly. Mobile usage of
services is not the only case that can profit from dynamic
protocol adaptation but it is by far the most important one.
Thus, our evaluation will refer to this case. Before we
discuss the benefits and the limitations of such adaptations
based on experimental results, we describe the scenario and
explain why it is our platform extension that enables it.

A. Dynamic Protocol Adaptation with Our Apache Tuscany
Extensions

Although mobile SOA is pre-mature and the participants
of SOA systems are usually stationary computers of IT de-
partments, mobile SOA participants start to appear, usually
as simple Web service clients. Mobile SOA participants
have many differences to other participants, regarding both
the way in which the devices consume the service and
the QoS-efficiency of particular communication protocols
[22]. For example, service buses, such as Apache Tuscany,
normally cannot be used for the development of the client
side, if the client is a constrained mobile device. Even more
important, the standard communication protocol of Web
services (SOAP) causes big delays in some cases of mobile
Web service consumption. Although the service platform
cannot be run and used on mobile clients, it could trigger
service adaptation actions in cases of extensive mobile usage
of particular services. Such an important adaptation action
could be the dynamic adaptation of the protocol with which
a service is offered by the platform. In the following,
we describe this dynamic protocol adaptation that can be
triggered by our extended platform. After that, we present
some experimental results that demonstrate the importance
of being able to perform such adaptations dynamically.

In order to explain dynamic protocol adaptation of a ser-
vice with our extended service platform, a short description
of how components and services are configured in SCA
is necessary. SCA uses the Service Component Definition
Language (SCDL) in order to define inside a configuration
file (composite file) the components, the services, and their
interactions inside the system. So, the architecture of a
system, or of a system part, is implicitly defined in this
file. Every service deployed to the service platform has to
be contained in such a composite file, defining the attributes
and settings of the service. The important part related to
dynamic protocol adaptation of services is the determina-
tion of bindings, with which a service is made available.
The bindings determine how a service communicates with
other components, with each binding corresponding with
a particular protocol. To explain the possibility of binding



modifications in SCDL, we provide the following composite
file snippet:

<service name="ServiceX">
<binding.ws
uri="http://www.a.com/serviceX"/>
<binding.rmi host="www.b.com"
port="8099" serviceName="serviceX"/>
</service>

Two main service settings can be seen in the above
snippet:

o The name with which the service is defined inside the
platform (ServiceX).

o The bindings with which the service is offered, in
this case a Web service (SOAP) binding and an RMI
binding. The Web service binding only needs the URI
of the service, while the RMI binding needs the host
address, the port number and the specific name of the
service at the location it connects to.

To modify an existing service so that a new binding for it
is added, the composite file must be edited and re-deployed.
Let us assume that initially only the Web service binding
is present for Service X and the usage of this service in
the system changes in such a way that the addition of an
RMI binding is desired. The first step for the modification
is to fetch the current resources of the service from the DHT
and to edit the composite file by adding the part written in
bold font in the snippet above. The second step is to upload
the resources back to the DHT, replacing the old, unedited
files with the mechanisms introduced earlier. The last step
is the re-deployment of the service which is recognized as a
restart of it. After the re-deployment, the additional binding
for service X can be used.

SCA supports several protocols and bindings, but it is not
recommended to use every binding for every service from
the beginning, and, of course, this is never done in the praxis.
This is because the existence of many open bindings may
lead to increased complexity, unnecessary traffic inside the
network, or even security gaps. For this reason, a dynamic
and adaptive modification of the bindings of a service
is preferrable and is supported by our extended service
platform. Furthermore, the whole process is easier with our
implementation, because the programmatical re-deployment
of a service is simplified in our extended platform, as it can
be done through a simple function offered by the overlay.

Another example mechanism, not binding-based this time,
for dynamically modifying the way with which a Web
service can be accessed, is the activation or de-activation
of compression for the SOAP communication. It is not
implemented and supported by Apache Tuscany originally,
but it is possible through modifications in the configuration
of the used Web container. The platform monitor could
sense an increase in the number of clients that would profit

from compression, e.g., mobile clients, so that the adaptation
action of activating compression would be then enforced.

B. Experiments Showing the Potentials of Dynamic Protocol
Adaptation

The experiments correspond with the scenario decribed in
the previous subsection. Thus, it is assumed that one or more
services are offered with a SOAP interface, which means,
for our platform, with a Web service binding (“binding.ws”).
The existence of more access methods (or bindings) for this
service, e.g., over RMI or with data compression, may not
be desired from the beginning, for various reasons. This can
be, for example, because of system complexity, server costs,
or security concerns, caused by the existence of many open
endpoints.

Thus, the experiments are meant to answer the following
question: “Assuming that the usage of a service changes
in such a way that we need to reduce the communication
overhead (for example, because more and more mobile
clients are consuming it), can our monitored data help
us decide which of the re-deployment options that our
extensions enable is the most adequate?”. It is reminded that
Apache Tuscany offers various different types of bindings,
but let us abide by our example and prove how the adequacy
of RMI and compression depend on other data that could
be captured by our platform monitor. In order to demon-
strate this, many different experimental setups were possible.
However, an interesting comparison is presented, for which
no equivalent experimental results were found in literature.
This is obviously because the interest in such comparisons
is much bigger in the case of self-adaptive SOA platforms
than in any other case.

The experimental setup is as follows:

o« Two Web services were tested. One sends responses
with complex types (a List of complex objects), the
other sends responses with single types (a String of
varying size).

« The size of the data in the response messages has been
varied from 1 to 1000000 bytes (X-axis). In the case
of the complex data, the minimum size was ca. 2000
bytes (= size of one Object).

e« The two services were called directly with SOAP
communication, as well as with the two alternative
access methods, i.e., with the RMI protocol and with
compression.

o The reduction of the data needed for the transmission
of the responses was measured in all cases and was
expressed as the size of the “reduced” response divided
by the size of the original SOAP response (Y-axis). As
mentioned, this overhead reduction is usually unimpor-
tant for strong workstations with great connections, but
it may be critical for constrained mobile clients [23].
As nicely described in [24], this gap will continue to
exist. Even the latest analyses of future technologies
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for wireless communications strengthen this argument.
In the book of Sesia et al. [25] about LTE (Long Term
Evolution of 3G mobile networks), 5 categories of user
equipment are defined, with smartphones being placed
only under the second or third category. According to
this categorization, devices of higher categories will
be able to use wireless internet connection rates that
are up to 6 times bigger. Of course, the wired con-
nections of the future will be even faster than that,
not to mention the fact that devices less capable than
smartphones will be able to consume Web services. So,
the big differences of device capabilities and connection
qualities will maintain the need for adaptation and the
overhead reduction shown in our experimental results
will be always important, as the size of the data that is
processed and wirelessly transmitted is growing parallel
to all other technological developments.

No detailed analysis of the results shown in Figure 11 is
necessary for our qualitative evaluation. The results show
unambiguously that the two techniques perform differently
under different conditions. For example, compression re-
duces the overhead significantly for single-typed big data,
while the opposite is true for RMI. The conditions (data sizes
and data types, in this example) can be perfectly captured by
our platform monitor and exploited by a developer-defined
adaptation logic. Concerning the exact logic, i.e., in order
to answer the question “which adaptation action should
be taken under which conditions?”, further experiments
including all influencing aspects are needed and, of course,
the application-specific requirements, as well as the devel-
oper preferences, play an important role. A corresponding
decision support is an interesting area of research and is a
subject of our future work.

VII. CONCLUSION

In this work, a concept for distributing the core parts of
a service platform and enriching them with self-adaptation

Overhead reduction with different protocol adaptations under varying conditions

mechanisms in order to offer fault-tolerance and higher ser-
vice availability has been presented. Based on a prototypical
implementation of our concept, the mentioned enhancements
were shown primarily through an evaluation scenario where
service availability was measured for the original and the ex-
tended platform. The prototypical implementation was done
as an extension of the state-of-the-art SCA platform, Apache
Tuscany. In addition to the availability measurements, further
possible enhancements through different adaptation actions
were explained through a qualitative evaluation. In the
following, we mention some limitations of our approach,
as well as further aspects that we see as subject of future
work.

First, security aspects become more critical, because of
the further capabilities that simple nodes have now. Lack
of control upon them is more dangerous when they carry
platform instances than when they simply host applications
services. Moreover, the complexity of the distributed imple-
mentation, as well as the fact that statefull services cannot
be easily replicated or migrated, lead to some limitations
concerning the applicability of our mechanisms.

However, the most important incentives for further re-
search can be found in the qualitative evaluation that has
been presented. There, it has been explained how the diver-
sity of the users of the platform can lead to the need for
different adaptation actions. As an example, mobile clients
have been mentioned. On this basis, it must be researched
how the different possible adaptation actions match different
situations, so that new decision algorithms can be integrated
in the logic of a self-adaptive SOA platform, such as the
one presented in the work at hand.
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