
Enhancing Availability with Self-Organization Extensions in a SOA Platform

Apostolos Papageorgiou, Tronje Krop, Sebastian Ahlfeld, Stefan Schulte, Julian Eckert, Ralf Steinmetz
Multimedia Communications Lab - KOM

Technische Universität Darmstadt
Darmstadt, Germany

apostolos.papageorgiou@kom.tu-darmstadt.de, tronje.kropp@kom.tu-darmstadt.de, ahlfeld@rbg.informatik.tu-darmstadt.de,
stefan.schulte@kom.tu-darmstadt.de, julian.eckert@kom.tu-darmstadt.de, ralf.steinmetz@kom.tu-darmstadt.de

Abstract—The availability and reliability of Service-oriented
architectures (SOA) depends on two factors: On the one hand,
the availability and reliability of the services that provide a
certain business functionality and on the other hand the
services that make up the underlying SOA platform. For
platforms that are supposed to form the core of mission-critical
service-oriented applications, this implicates the need for
mechanisms that can regulate the reliability- and availability-
levels of the core services in changing conditions. In this paper,
we discuss open questions about what kind of monitoring
functionalities and service replication mechanisms should be
integrated in SOA infrastructures. Therefore, the integration
of concepts from peer-to-peer (P2P) computing is proposed:
We present a self-organization extension that can improve the
availability of the core services of SOA infrastructures, and we
provide an experiment-based evaluation, showing some of the
benefits that this extension can have in a critical scenario. The
concepts are prototypically implemented as extensions of
Apache Tuscany, which is a realization of the Service
Component Architecture (SCA) standard.

I. INTRODUCTION
Along with their established advantages, such as high

flexibility, extensibility, and interoperability [11], Service-
oriented Architectures (SOA) are also expected to achieve
availability levels that are at least as high as these of
traditional solutions. Approaches that aim at improving the
availability and reliability of SOA are usually built on the
assumption that a number of service alternatives can be
invoked ad hoc, if a service fails. These approaches use
techniques like process replanning with dynamic service
substitution ([3], [13]), or dynamic enforcement of
governance guidelines [10], and are usually applied at the
level of service consumption or business process execution.
When the availability of the applications that use these
techniques is measured, there is a highest boundary that can
be achieved. It is the maximum availability level that the
used service platform can support. This platform can vary
from a simple enabling infrastructure, i.e., a simple service
registry with any accompanying components, to a complex
Enterprise Service Bus (ESB).

The problem is that current service platforms can
support limited availability levels, because of vulnerabilities
or single points-of-failure inside their core. Such a basic
vulnerability, which we try to address with our approach, is
the centralized access to functions of the domain and the
deployment, i.e., centralized access to interfaces that are
used for address resolution, dynamic launching of services,
and more. Even if the services are available, the availability
experienced by the user sinks if the machines that provide
these interfaces under-perform. Similar problems exist with
service registries and search functions. Furthermore, current
solutions use monitoring approaches (cf. also Section 2) that
cannot support quick enforcement of healing mechanisms,
e.g., replication of overloaded services.

Some techniques, e.g., service replication, appeared in
order to face such problems. These techniques have
sometimes high costs and are applied only dynamically, if
necessary. These techniques, as well as the decision-making
that accompanies them, are supported by monitoring
mechanisms. This monitoring-supported enforcement of
such techniques, as well as related research, are normally
positioned under the fields of adaptation mechanisms and
self-organization. How this can be optimally applied on
SOA infrastructures, is still unclear, and depends on the
nature of the used platform. Different service platforms
(e.g., ESBs) are used in different application domains, and
each of them presents different challenges concerning its
enrichment with adaptation or self-organization capabilities.
This work presents a concept which, in its general form,
could be used for such enrichment of many SOA platforms.
The concept is then implemented as an extension of the
Service Component Architecture (SCA [9]). The work is
presented and evaluated on the state-of-the-art SCA
platform, Apache Tuscany [1].

With this regard, the paper is outlined as follows: Section
2 examines the related work and states our contributions.
Section 3 identifies some extra challenges that are present in
our particular scenario. Sections 4 and 5 form the core of this
paper by describing our solution and its evaluation results.
As the concept could enhance different platforms, the
description of the idea (4.1) will be as independent of the
implementation as possible. We conclude the paper in
Section 6.

rst
Textfeld
Apostolos Papageorgiou, Tronje Kropp, Sebastian Ahlfeld, Stefan Schulte, Julian Eckert, Ralf Steinmetz: Enhancing Availability with Self-Organization Extensions in a SOA Platform. In: Proceedings of the Fifth International Conference on Internet and Web Applications and Services (ICIW 2010), p. 161-166, May 2010. ISBN 978-0-7695-4022-1.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

II. RELATED WORK AND CONTRIBUTIONS
We look into related work in three main directions,

where we also identify and position the three partial
contributions of our work. First, we look at the research
towards third-generation, self-adapting service platforms.
Second, we see attempts of enhancing service platforms by
using peer-to-peer technologies. Last, we examine
monitoring aspects of up-to-date service platforms.

Traditionally, there are two approaches for building SOA
infrastructures: the point-to-point integration and the hub-
and-spoke approach [11]. While the first is simpler and more
static, the latter includes a service bus and/or other related
middleware that dynamically undertakes the routing and
addressing of the used services, and the support and
transformation of the used protocols. Other functionalities
can also be present, letting the hub-and-spoke approach be
considered as more advanced and, in essence, as the
successor of the point-to-point integration (cf. also [11]).
Nevertheless, research in the field of SOA self-adaptation
(e.g., [6] and [15]), lets us assume that we are heading for a
third generation of SOA infrastructures, in which the service
platform, i.e., the service bus with the accompanying
middleware, will offer even more automation and further
functionalities, namely integrated monitoring, adaptation
mechanisms, and more. As the enrichment of service
platforms presents different challenges and opportunities
depending on the exact paradigm, we contribute in these
attempts towards “third-generation” service platforms by
presenting an idea of what these extensions should include,
and by showing how it is implemented in the case of SCA.

Main intension of the adaptation mechanisms is to keep
the QoS above certain limits. A recent survey [7] already
placed peer-to-peer mechanisms among the most highly
suitable solutions for the substrate of future service platforms
that go in the direction of QoS-guarantee and self-adaptation.
Approaches that use peer-to-peer mechanisms for the
enhancement of service platforms have focused until now
either on special-purpose service orchestration [4], or on
service discovery and group collaboration [5]. Believing that
the enablement of self-adaptation dictates that these
mechanisms lie deeper inside the platform and support all or
most of the functionalities of a service bus, we contribute by
using peer-to-peer mechanisms to distribute the service bus
and enhance the availability of the services of an SCA
platform. Furthermore, unlike most of such new frameworks,
we provide an evaluation scenario and some measurements
to demonstrate the availability enhancement.

Aspects of our integrated platform monitoring can be
seen as a further contribution of this work, given that almost
all state-of-the-art monitoring components of service
platforms are not integrated in the platform logic and cannot
serve the goal of supporting self-adaptation optimally.
Instead, they normally perform centrally-controlled
measurements for hardware modules or service invocations.
In the next sections it will be further clarified how this
differs from our decentralized, event-based, adaptation-
enabling platform monitoring approach. Strengthening our
argument, we mention that almost all theoretical SOA

Maturity Models (e.g., [12]) define 5 possible maturity levels
for a SOA and they place the feature of event-based platform
monitoring in the maturity level 4. Related studies (e.g., [2])
prove that almost no current SOAs achieve that maturity
level, but they rather lie between levels 2 and 3.

III. FURTHER CHALLENGES OF OUR SCENARIO
The purpose of our extended platform is to serve as the

SOA substrate for our project [14], a project that supports
the management of disastrous events. In such a scenario, the
availability of the services not only needs to be high when
the disaster occurs but it is also expected to be suddenly
endangered, because of an “explosion” of the system usage
at that point. This system usage pattern will be reflected in
the test cases of our evaluation in Section 5. We list here
how these challenges were translated to technical challenges
for our platform:

• No single point-of-failure is acceptable for any
critical core service.

• Control mechanisms must provide the possibility of
defining different, application- or situation-
dependent algorithms that determine the minimum
number of instances of particular services. These
algorithms will be designed based on the needed
availability levels and the expected usage patterns.

• Consistent and detailed information about the
running services is needed in order to provide
enhanced control. This means that all services have
to be registered with the same procedure before they
are started, and there must be mechanisms that find
out which services, and how many instances of them
are registered / active, and on which nodes.

We have found no approach that addresses exactly our
needs (cf. also Section 2). As for the implementation, the
extensions that will be presented were necessary also
because of the following lacking capabilities, which are
absent from many platforms other than Apache Tuscany:

• The platform enables the development of distributed
applications but it is almost impossible to distribute
all the core modules in the way that our challenges
dictate. Normally, the Tuscany domain and
deployment service is centralized and it also lacks
many of the desired capabilities and functionalities
that we mentioned.

• There are no service monitoring mechanisms that
could support self-organization or absolute control of
service instances. The monitoring modules have
another meaning and a different functionality than
the one we will provide. This difference will be
further explained in the next sections.

• There are no replication or maintenance mechanisms
for the internal application services.

IV. OUR SERVICE PLATFORM AVAILABILITY EXTENSIONS
With regard to the described challenges, we present in

this section a generally applicable idea of how they could be
faced inside a service platform, and then we briefly describe

how we implemented most parts of the concept by modifying
the Apache Tuscany service platform.

A. Concept
We define as core parts of the service platform those

parts that are responsible for the main platform
functionalities, as we mentioned them in Section 2 (registry
mechanisms, address resolution, service deployment etc.).
Our main idea was to re-define the core parts so that:

• They are distributed, consisting of many co-
operating instances, supporting fault-tolerance in the
classical p2p manner, i.e., being able to operate
despite the unavailability of some instances.

• They offer an extended set of functionalities that
enable self-organization/adaptation mechanisms and
support the fulfillment of our availability
requirements.

• All the extended functionalities are offered through
the interfaces of a p2p overlay, so that no centralized
parts of the service bus have to be addressed.

The choice of p2p is driven by our striving for fault-
tolerance. The failure of peer nodes, where instances are
running in order to provide core mechanisms, will now not
mean that the mechanisms will not be available any more. At
the same time, a flexible cooperation of the core part
instances is needed. Few technologies can support this fault-
tolerance and this cooperation as good as p2p. On this basis
we designed a platform where all participating nodes, i.e., all
providers/consumers of application-level services, can also
carry instances of core parts, participating in a common p2p
network that connects their core part instances (Fig. 1). We
re-define, extend and distribute four core parts, while a lot of
accompanying platform parts/functionalities are abstracted in
our concept and “borrowed” from the used platform in our
implementation. A description of these four core parts
follows, focusing on the features that are normally absent in
current solutions, like Apache Tuscany.

Our distributed domain service is addressable through the
overlay (so that one instance of it may be enough) and offers
the extended possibility of returning multiple endpoints to
service-lookups. This will support the usage of service
replicas that will be generated by our self-organization
mechanisms, as well as a more reliable address resolution,
given that any node may be able to perform this resolution.
The service registry can also be seen as part of the domain
service and it has the form of a distributed database with its
entries being transparently and redundantly distributed
among those nodes that carry domain service instances.

Our distributed deployment service enables the local or
remote starting/stopping of services. It is assumed that the
services save their resources when they are registered in the
domain and that these resources are enough in order to
start/replicate them on other nodes. Nodes also use the
deployment service in order to register themselves as capable
of hosting particular services.

Our distributed system manager takes care of pre-defined
numbers of instances of other core services and offers
additional interfaces for system information that is important
to other core parts, especially to the platform monitor.

Figure 1. Overview of the p2p-based distribution of the core parts

Our distributed platform monitor has major differences
from usual service monitoring components or tools. Its goal
is to support adaptation, so it engages the event stream
processing concept [8] and a push-approach for (developer-
defined) monitoring events, rather than a database where
simple observations are stored. Furthermore, it is integrated
in the platform logic, so that no direct or indirect interaction
with the monitored services or their “callers” is needed in
order to gather information about the service calls. In the
evaluation scenario, we will see an exemplary usage of the
monitor that would not be achievable with other approaches.

B. Design and Implementation
All these conceptual extensions pose new challenges

when it comes to their implementation as extensions of
existing service platforms like Tuscany. For example, some
features can be added “on-top” while others may present
incompatibilities with existing mechanisms. We distinguish
3 approaches for enhancing the service platform with new
features, which are generally valid when it comes to
middleware enhancement:

• As new platform modules, i.e., developed and built
additionally to the existing modules of the platform.

• As external libraries, which can be either special-
purpose libraries, i.e., software developed for these
extensions, or ready, possibly third-party, software.

• As modifications in the core of existing platform
modules, when incompatibilities appear.

Before listing what we implemented in these three
directions, we present in Fig. 2 a compact SCA
representation of a node of our modified platform, providing
a view of the interrelations of the core parts of the service
platform, as well as their relation to the p2p overlay and the
normal application components.

Deployment
Instance

System Manager
Instance

P2P Node

Domain
Instance

Platform Monitor
Instance

An
Application
Component

P2P-App

P2P-App

P2P-App

Software
Sensor

Figure 2. Component interrelations in a node of the modified platform

We had to define a new node type, the CoreNode, which
merges an SCA node with a p2p node. While the extended
domain, deployment, and system manager are based directly
on the p2p node, the platform monitor is built on the
(modified) service invocation mechanisms of the platform,
enabling the binding of queries (posed by any monitoring
component) to particular services, in order to retrieve the
data that he needs about the corresponding service
invocations. This is again compactly depicted in Fig. 3.

Further design and implementation details of our
platform extensions, such as UML diagrams, are out of
scope, while the API of each core part corresponds to the
functionalities described in section IV.A. We give here just
an overview of the implementation with regard to the three
categories that we distinguished in this section:

• New platform modules: The module that defines the
CoreNode and includes the implementations for the
deployment and the system manager instances is the
“distributed-core”. It is implemented as a new
module but depends on some core modifications, as
well as on an external library for the p2p overlay.
The “platform-monitor” is also a new module, also
depending on core modifications and on an external
library for the event stream processing.

Figure 3. Adaptation-enabling event processing of the platform monitor

• External libraries: “freepastry” is used for the p2p
overlay and “esper” for the event stream processing.
Both are third-party, open-source libraries.

• Core modifications: The Tuscany module “core”
was modified in order to implement our domain
instances. Inside the “assembly” module of the core,
we had to modify the runtime component
implementation. Some other modules, e.g., the
“java-runtime-implementation”, also had to be
modified in order to support dynamic invocation and
other features needed by our modified platform.

V. EVALUATION
In order to evaluate our approach, we define a specific

scenario that was related to our project, and compare our
approach with a release version of the used platform. Of
course, specific adaptation mechanisms should be compared
to related approaches that could potentially enrich the same
service platforms. Unfortunately, such general comparisons
do not seem to be applicable at the moment, and remain
subject of future work. Still, Apache Tuscany is a state-of-
the-art SCA platform, and comparisons with it appear to be
in our case more interesting than any other scenario.

The experiments that are based on our modified platform
are such that as many new features as possible can be
evaluated. Nevertheless, they are limited to include only
some capabilities. We condense many functions into two
main capabilities that we will use in our experiments. It is
necessary to describe now these two capabilities:

• Interest Registration: Any component can register
itself as “interested” in an SCA service, saving at the
same time its queries, determining this way what
kind of data the software sensors will be sending to it
and when. Such components contain “actors”, which
enforce reactions under certain circumstances.

• Service Instance Control Mechanism (SICM): The
deployment instances offer to other components the
possibility of retrieving the number of running
instances of a particular SCA service, as well as the
addresses of the nodes that could host further
instances. The SICM builds on these capabilities and
can be used by any component in order to define a
minimum number of instances of a service that
should be running. This “requirement” is saved, so
that failures of hosting nodes lead to the starting of
instances of the service on other candidate nodes.

A. Evaluation Scenario
Internal services of our application are expected to be

suddenly invoked with an increasing frequency when a
disaster occurs or later when the emergency level of the
situation is set higher by the involved organizations. With
this regard, we chose an example service, and implemented
external clients that invoke it with the pattern shown in Fig.
4. There, we see also how a linear increase of users leads to
an exponential increase of erroneous service invocations, i.e.,
to decreased availability levels. The test-clients record errors
when no response is received or when a timeout is
overridden. More details will be understood in section 5-B.

With Nt(x) denoting the number of occurrences of x in
the last t seconds, we define as availability of S for our
scenario the value

100%
S) of ns(invocatioN

S) of sinvocationl(successfuNA
10

10 ×= ,

and we measure it over time for the following four
experimental cases:

• Exp1: An instance of S is running on the Apache
Tuscany release platform.

• Exp2: Three instances of S were running on the
Apache Tuscany release platform and the
invocations were equally distributed to them. The
number of instances (3) was chosen empirically, so
that it could almost always satisfy the given
invocations’ curve (Fig.4). For this case, as well as
for the next two cases, the distribution of the
invocations among the instances was simulated, and
not automated. This is safe because the load
balancing is irrelevant to the results that we present,
though it would, of course, be interesting to test with
different balancing of the invocations.

• Exp3: An instance of S is running on our extended
platform, the deployment instance of a node (more
nodes could be used for fail-safety) registers itself as
interested in S, with a query for retrieving the
number of users of S each second. The deployment
instance (more precisely its “actor” upon the
retrieved data) has the following simple logic: use
the SICM to add an instance every time that the load
of S exceeds a limit. This limit was chosen in our
case so that, for the given input of fig. 4, the
mechanism is started almost every minute.

• Exp4: As in Exp3, with the difference that the SICM
now doubles the number of instances every time it is
triggered. With these two different configurations,
we show the flexibility of the freely defined
adaptation logic, indicating how our framework can
easily integrate application-dependent logic in order
to be optimally exploited in different systems.
Obviously, the choice of this logic affects the results.

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180

Time in seconds

W
eb

 S
er

vi
ce

 U
se

rs

0

5000

10000

15000

20000

25000

Er
ro

rs
 in

 E
xp

1

Figure 4. Experimental service invocation pattern

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

0 60 120 180

Time in seconds

A
va

ila
bi

lit
y

(A
)

Exp1
Exp2
Exp3
Exp4

Figure 5. Measured availability

B. Evaluation Results
Fig. 5 and Fig. 6 present the evaluation results based on

the four experiments that we described. Although the results
have been obtained from an example service, which can be
either an internal application service or a core platform
service (e.g., an instance of the deployment service), it is
obvious that this does not harm generality. Similar effects
would be noticed for almost any service, maybe with a
slightly modified invocation pattern. These evaluation results
intend to show some enhancements of a platform in
particular scenarios and are not to be seen as a direct and
complete comparison. Furthermore, the results only show the
benefits of the mechanisms described in 5-A, which are
based on our extended concept. Further benefits of our
solution that we described earlier and relate to the p2p-based
fault-tolerance of the core parts are not included in these
experiments and are not mirrored in the results.

The results for Exp1 prove that the availability of a
service sinks when the number of users increases rapidly.
The same effect is slightly noticeable even in the case of the
second experiment that is based on the original Tuscany
platform, namely Exp2, although the number of service
instances was manually chosen in order to satisfy the given
input. The decrease of the availability level is in that case
slow and trivial, though steady. If the number of users would
grow further, then the number of service instances would not
be able to satisfy them any more, and an effect similar to that
observed in the case of Exp1 would appear. Even if the
maximum load that can be expected for a service is known
from the beginning, excluding this way the possibility of
such effects to appear, the usage of many instances from the
beginning can lead to a big waste of resources. In scenarios
like ours, where the service usage explosion is expected to
happen suddenly but also rarely, this waste will be ongoing
during most of the time.

Contrary to Exp1 and Exp2, the number of service
instances during the experiments Exp3 and Exp4 is adapted
to the service load, maintaining high availability levels
without wasting resources. Fig. 6 shows the effect of service
instance control. The component that uses the extended
mechanisms in order to perform this control is (implicitly)
informed – in this case every ca. 1 minute – by the platform
monitor that the availability is sinking. Accordingly, further

service instances are deployed and the service invocations
are again distributed among them. So, with an appropriate
configuration at the side of the monitoring (and acting)
component, the availability can be maintained at the wished
levels, as long as this is allowed by the total resources that
are available in the system. In a similar manner, the service
instances can be adapted to a sinking number of users,
though this is not shown with the present experiments.

During the last minute of the evaluation, Exp4 presents a
higher availability, because the number of service instances
is increased there more abruptly. With the difference
between Exp3 and Exp4, we can understand the
configurability of the used mechanisms. The fact that
different logics can be used inside these mechanisms offers
flexibility in the regulation of the availability levels, and
their trade-off with costs. For example, a logic like the one
used in Exp3 would be used in a scenario where service
instance adaptations can be performed often, while the logic
of Exp4 would rather be applied in scenarios where the
frequent adaptation is either impossible or not desired.

VI. CONCLUSION
We presented a concept, along with its prototypical

implementation and evaluation, for distributing the core parts
of a service platform and enriching them with adaptation
mechanisms in order to offer fault-tolerance and higher
service availability. Concluding, we mention some
limitations, which can be also seen as subject of future work.

First, security aspects become more critical, because of
the further capabilities that simple nodes have now. Lack of
control upon them is more dangerous when they carry
platform instances than when they simply host applications
services. Moreover, the complexity of the distributed
implementation, as well as the fact that statefull services
cannot be easily replicated or migrated, lead to some
limitations concerning the applicability of our mechanisms.

ACKNOWLEDGMENT
This work is supported in part by the E-Finance Lab e. V.

(www.efinancelab.de) and the BMBF-sponsored project
SoKNOS (www.soknos.de). We would also like to thank
Steffen Lortz for his participation in our implementation.

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 60 120 180

Time in seconds

A
va

ila
bi

lit
y

(A
)

Exp2
Exp3
Exp4

Figure 6. Adaptation effects

REFERENCES
[1] Apache Tuscany project, Apache Software Foundation (ASF),

“http://tuscany.apache.org/”, last updated on November 2009, last
accessed on February 2010.

[2] M. Bachhuber, J. Eckert, A. Miede, and R. Steinmetz, “Readiness and
Maturity of Service-oriented Architectures in the German Banking
Industry – A Multi-Participant Case Study,” E-Finance Lab quarterly,
vol. 4, November 2009, pp. 6-8.

[3] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Heuristics for QoS-aware Web Service Composition,” Proc.
International Conference on Web Services (ICWS 2006), September
2006, pp. 72-82, doi:10.1109/ICWS.2006.69.

[4] W. B. Bradley and D. P. Maher, “The NEMO P2P service
orchestration framework,” Proc. 37th Annual Hawaii International
Conference on System Sciences (HICSS 2004), Track 9, vol. 9, page
90290.3, IEEE Computer Society, January 2004, ISBN:0-7695-2056-
1.

[5] D. G. Galatopoulos, D. N. Kalofonos, and E. S. Manolakos, “A P2P
SOA Enabling Group Collaboration through Service Composition,”
Proc. Fifth International Conference on Pervasive Services (ICPS
2008), ACM Press, July 2008, pp. 111-120,
doi:10.1145/1387269.1387289.

[6] E. Gjorven, R. Rouvoy, and F. Eliassen, “Cross-layer Self-adaptation
of Service-oriented Architectures,” Proc. Of the third Workshop on
Midleware for Service Oriented Computing (MW4SOC 2008),
December 2008, pp. 37-42, doi:10.1145/1462802.1462809..

[7] V. Issarny, M. Caporuscio, and N. Georgantas, “A Perspective on the
Future of Middleware-based Software Engineering,” IEEE
International Conference on Software Engineering (ICSE 2007),
Proc. Workshop on the Future of Software Engineering (FOSE 2007),
IEEE Computer Society, May 2007, pp. 244-258,
doi:10.1109/FOSE.2007.2.

[8] D. C. Luckham, “The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems,” Addison-
Wesley Longman Publishing Co., Inc., 2001, ISBN:0201727897.

[9] OASIS openCSA Specifications for the Service Component
Architecture (SCA), “http://www.oasis-opencsa.org/sca”, last updated
on August 2007, last accessed on February 2010.

[10] A. Papageorgiou, S. Schulte, D. Schuller, M. Niemann, N. Repp, and
R. Steinmetz, “Governance of a Service-Oriented Architecture for
Environmental and Public Security,” Proc. Fourth International ICSC
Symposium on Information Technologies in Environmental
Engineering (ITEE 2009), May 2009, pp. 39-52, doi:10.1007/978-3-
540-88351-7_3.

[11] M. P. Papazoglou and W. J. Heuvel, “Service oriented architectures:
approaches, technologies and research issues,” The VLDB Journal,
vol. 16, No. 3, 2007, pp. 389-415, doi:10.1007/s00778-007-0044-3.

[12] C. Rathfelder and H. Groenda, “iSOAMM: An Independent SOA
Maturity Model,” Proc. 8th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS'08), vol.
5053/2008 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg , 2008, pp. 1-15, doi:10.1007/978-3-540-68642-2_1.

[13] D. Schuller, A. Papageorgiou, S. Schulte, J. Eckert, N. Repp, and R.
Steinmetz, “Process Reliability in Service-Oriented Architectures,”
Proc. Third IEEE International Conference on Digital Ecosystems
and Technologies (IEEE DEST 2009), IEEE Computer Society, June
2009, pp. 640-645, ISBN 978-1-4244-2346-0.

[14] The SoKNOS project, “Service-oriented Architectures Supporting
Networks of Public Security, “http://www.soknos.de”, last updated on
October 2009, last accessed on February 2010.

[15] G. Tosi, G. Denaro, and M. Pezze, “Towards Autonomic Service-
Oriented Applications,” International Journal of Autonomic
Computing, vol. 1, issue 1, April 2009, pp. 58-80, ISSN:1741-8569

http://www.efinancelab.de/
http://www.soknos.de/
http://doi.acm.org/10.1145/1387269.1387289
http://doi.acm.org/10.1145/1462802.1462809
http://dx.doi.org/10.1109/FOSE.2007.2
http://www.kom.tu-darmstadt.de/en/publications/publications-details/publications/PSS%2B09-1/?no_cache=1
http://www.kom.tu-darmstadt.de/en/publications/publications-details/publications/PSS%2B09-1/?no_cache=1
http://www.kom.tu-darmstadt.de/en/publications/publications-details/publications/SPS%2B09-1/?no_cache=1

	I. Introduction
	II. Related Work And Contributions
	III. Further Challenges Of Our Scenario
	IV. Our Service Platform Availability Extensions
	A. Concept
	B. Design and Implementation

	V. Evaluation
	A. Evaluation Scenario
	B. Evaluation Results

	VI. Conclusion
	Acknowledgment
	References

