] 7 i Liebau, Ralf Steinmetz,

PKLS07 Konstantin Pussep, Predrag Knezewc':, Nicolas ; 1
: Improving XPath Query Execution in P2P XML Storage by Usmg' a
Decentralized Index; YLDB International Workshop On Databases, Information

Systems and Peer-to-Peer Computing (DB'SP2P-2007) September 2007. S.

Improving XPath Query Execution in P2P XML
Storage by Using a Decentralized Index

Konstantin Pussep!, Predrag KneZevié?, Nicolas Liebau!, and Ralf Steinmetz!

' KOM, TU Darmstadt, Merckstrasse. 25, 64283 Darmstadt, Germany
{pussep,liebau,steinmetz }@kom.tu-darmstadt.de
* Fraunhofer IPSI, Dolivostr. 15, 64293 Darmstadt, Germany
knezevic@ipsi.fraunhofer.de

Abstract. Today, information is managed increasingly in dynamic com-
munities on the Internet. Here, peer-to-peer communities in which users
host data by contributing their resources is a very promising alternative
for centralized hosting. Managed data is often represented in XML and
requires a high-level query language, where XPath is a good candidate.
In this paper, we present a decentralized XML index that enables efficient,
XPath queries on large documents stored in p2p systems. Unlike other
approaches, we do not rely on a specific overlay as our solution is able to
work on top of any structured overlay that provides common put and get
operations. Our approach is combined with P2P XML Storage, which
stores arbitrarily XML files in p2p networks efficiently. Evaluation has
proven that our index improves the XPath query performance in regard
to both the execution time and the number of messages by orders of
magnitude.

1 Introduction

Currently, Internet communities like Wikipedia host their data on centralized
systerns, even though the communities themselves are organized in a decentral-
ized fashion. Therefore, peer-to-peer communities in which users host data by
contributing their resources are a good alternative for centralized hosting.

The BRICKS? project faces exactly this challenge in that it aims to design,
develop and maintain a user and service-oriented space of digital libraries on top
of a decentralized architecture. Within BRICKS, data is managed by P2P XML
Storage [1]. The storage is built on top of a DHT (Distributed Hash Table) where
large XML documents are split into fragments which are then stored as DHT
values. Users must not only be able to read and write XML data, but also to
query a document’s content with high-level XML query language like XPath [2].
While a query functionality has been implemented in the storage, it is based
on the traversal of document fragments and is therefore slow. This can be very
inefficient for large documents as their fragments are spread across many peers.

This issue can be solved by the introduction of an XML index. This index
must be stored in the p2p system and significantly improve the execution of
XPath queries in P2P XML Storage. The index must be completely decentralized

' BRICKS - Building Resources for Integrated Cultural Knowledge Services,
http://www.brickscommunity.org

<hibliography >

<article>
b Application J

< o Allen V. »< /author>
< /article> Query Engine

<article>

<author>Alice Carrol< /author>
<title>P2P < /title> l P2P-DOM ’—‘ INDEX
< /article>

rook

ut l.“t'\'\;‘1»,'.’”/,]\;;‘1\(«lrh\v.!l'.ul > ‘ el ek el ’
< /book>
bibliography >
Network Layers I
(a) Example XML document (b} System architecture
AF=
7" N
A / Ny
/B\\. : /’3\/”\

/d t ™ Aé&é‘k i:t'ngCT ,2
VoV VN VN ' g

(c) Storing XML Document (dashed lines show links between fragments)

Fig. 1.

and not impose limitations on the system abilities, but still support the full
expressiveness of the XPath language.

In this work, we propose a solution that {ulfills all the stated requirements
and has been evaluated by emulations on the storage prototype. The proposed
approach focuses on the indexing of single XML documents, but the approach
can be easily extended to support collections of documents.

The next section provides XML-related terminology used in this paper and
the applied system model. The exact requirements for a decentralized index are
described in Section 3. The realization of these requirements by a p2p XML index
is presented in Section 4. Section 5 presents the experimental results obtained. In
Section 6 we discuss the related work on indexing XML in peer-to-peer systems
in comparison to our approach. Finally, conclusions are provided in Section 7.

2 System Model and Definitions
2.1 XML Documents and Queries

Our sample XML document is a bibliography database similar to DBLP [3]
as shown in Fig.1(a). This document contains publications such as books and
articles along with the information about their authors, titles etc. XML doc-
uments are comprised of elements and contain values as text or attributes
(attributes are omitted in this example).

Table 1 shows several XPath [2] queries for the example document. The query
2 allows all books to be fetched while Q2 produces the titles of all articles
written by John, Kay. Another query type is @3 which produces titles of all
publication containing the keyword P2P.

XPath queries consist of location steps, such as /article or /title[author =
"John Kay"], which select elements or text in an XML document and can

contain predicates (e.g. [author = " John Kay”]), which filter the results. A
sequence of location steps specifies that the result of a previous location step
is used as input for the next location step. For example, /bibliography/book
consists of two steps: bibliography and book, in which the first step returns the
bibliography element, which is further used to select book elements in the second
step. These steps use so-called axes to specify the direction in which XML nodes
are selected, i.e. elements or text. The most commonly used XPath axes are the
child axis and descendant axis abbreviated by / and // respectively.

2.2 P2P XML Storage

In order to manage XML data in a p2p environment P2P XML Storage [4] was
built. Here, users are able to create, access and modify XML documents via the
DOM API [5] or query a document’s content through XPath queries.

The overall architecture of the system is presented in Fig. 1(b). Storage
works on top of any DHT, such as Chord [6], Pastry [7] or P-Grid [8], utilizes an
XPath query engine and offers the DOM API to client applications. In P2P> XML
Storage, each XML document is fragmented according to its structure and then
stored in the DHT. This process is illustrated in Fig. 1(c), where a document has
been split into 9 fragments that are then stored in a Chord-like DHT. Adjacent
fragments are connected to one other, i.e. a document fragment contains the
DHT keys of adjacent fragments. Document traversal is carried out by loading
the root fragment from the DHT and by following links to other fragments. The
splitting of documents into fragments allows for better load balancing, as all the
necessary fragments has to be retrieved.

As the system is document-based, collections of documents can be supported
by an additional document listing of all the stored documents or by combining
them to a super-document (i.e. connecting the document roots to a new root). In
order to access a document, a peer has to know its name so it can compute the
DHT key of its root fragment and retrieve the fragment from the DHT. Further
fragments can be retrieved as each fragment stores the DHT key of its neighbor
fragments. In this way, a user can-access an entire document or only parts of it.

An XML document is shown as a tree in Fig. 2. Each XML element, text
and attribute has been visualized as a tree node. The document is split into
three fragments Fy, [}, and F;. Each XML element and text has an identifier
consisting of a fragment id and the offset inside of the fragment. So the TD of
the first article clement is (051) as it is the first node in the fragment Fy.

3 Problem Statement

Although the P2P XML Storage is able to manage XML data in P2P systems,
the support of high-level queries like XPath is inefficient. For example, query Q3

Table 1. Example Queries

\ Query| Meaning
1 /bibliography /book fetch all hooks
Q2| /bibliography/article/title fetch the titles of all articles

lauthor = “John Kay* written by ”John Kay”
Qsl//title[contains(., “P2P)]|return all titles containing " P2P”

<book> "}

<article>"!

/

14

-~ <article> !

s<author>"? <author>?4

/ |

{John Kay' %% 'Allen Vitto'*

<author>?

|

John Kay' 2

<author>

|

Indexing' '

Fig. 2. Example XML document as a tree split into 3 fragments

in Table 1 would require that all fragments are scanned, even if there are only
a few matching title elements, i.e. the query would require access to all frag-
ments, thereby involving many peers and increasing traffic in the DIIT. Hence, a
decentralized XML index is needed in order to support efficient, XPath queries.
More precisely, this index must fulfill the following requirements:

1. Significantly improve query execution time and reduce the amount of traffic.
The index must be scalable according to the size of documents managed.

2. The index must spread its content within a p2p community. In order to
guarantee that the data can be found, the index has to work on a DHT.

3. The index has to adapt to new structures in the XML document, and there-
fore not rely on a static document structure or one managed manually.

4. The index must support document updates so that the user is able to update

stored XML documents without needing to republish them.

The index must support the XPath query language and not restrict the

structure of the documents stored.

ot

As the key criteria for the index is its query execution performance, a suitable
data structure for decentralized environments has to be found, i.e. the index
must work without any global synchronization and global knowledge. Further,
we need an appropriate distribution strategy for index content and, finally, query
execution time and the network traffic induced must be minimized.

4 Decentralized XML Index

A decentralized index for XML data provides a data structure that improves the
execution of XML queries in a decentralized environment. No central authority
exists that creates, stores or maintains this index. This structure boosts the
performance of queries in P2P XML Storage. A typical application is access for
query execution without to load XML fragments. The result of the execution,
depending on the query, is either a list of values or references that can then be
used to access XML fragments from the storage for further processing.

4.1 XML Indexing Schemes

The XML and database communities have carried out extensive research on the
indexing of XML data in traditional centralized databases. Path indexing (such
as [9], [10], and [11]) and the newer numbering schemes (such as [12], [13], and
[14]) are two main concepts for indexing XML documents. XML elements and

values are labeled with descriptors that provide information about their inter-
relationships in an XML document in a numbering scheme approach. By using
these descriptors, the relationship (e.g. parent-child, ancestor-descendant, or sib-
lings) between two nodes can be efficiently computed. The elements, text and
attribute values are then stored in B-+-trees together with their labels. However,
for all numbering schemes, updating index structures is an issue. Even by at-
tempting to foresee updates whilst labeling the document’s content, an arbitrary
update may still require that a large part of the document is relabeled, therefore
requiring a’large portion of the index structure to be updated.

Update operations are very important for the dynamic processing of XML
documents and must be implemented efficiently so that the storage is scalable.
Their impact on the consistency of data is another reason why the index struc-
ture update hat to be as simple as possible. Should the update of the index
structure require too much time, the probability of concurrent updates increases
because several peers may try to modify the same part of a document.

We have concluded that ToXin [11] is the most suitable starting point to
an approach for a decentralized XML index. The key advantages of ToXin are
its low update costs and the fact that it consists of single tables that can be
easily distributed in a P2P community, especially in a DHT. One drawback of
this proposal is the lack of support for XML content ordering. This support is
essential for many XML documents, therefore we will show how this support can
be added to the ToXin indexing structure.

4.2 Index Structure

The index captures both the tree structure of an indexed document and the
values stored in text and attributes. It contains four different structure types:

Path summary summarizes the overall structure of an XML document. It
records all existing paths and supports the addressing of other index parts.

Instance tables store parent-child relations between XML elernents. There is
a table for each path in the document that ends with an XML element.

Value tables store the attribute and text values of elements to support the
evaluation of predicates. For each path in the document that ends with an
attribute or a text value, there is exactly one value table.

Order tables are our extension of the ToXin structure to provide order among
different children of an XML element.

The document index consists of exactly one path summary and an arbitrary
number of instance, value and order tables. Fig. 3 presents an example of the
index structure for our sample document.

The path summary from Fig. 3(a) for the sample document summarizes all
existing paths, but does not provide any information about individual XML
elements or text values. It is used for two purposes: to find out whether cer-
tain paths exist within the document and to locate index tables in the un-
derlying DHT. The path summary contains an entry pointing either to an
order, instance, or value table for each path occurring in the document. For
example, by inspecting the path summary, one is able to tell whether or not

Path Table

/bibliography I'Ty

/bibliography /= OTy

/bibliography/book I'T

/bibliography /book [= oT,

/bibliography/book [author 1T, / - i
/bibliography/book [author /text() |V T, 1{4’["(’[””" ”""'."(’/""”' fe
Jbibliography/book /title ITs (’(m)/ ((')’_'I”)’*
/bibliography /book [title /text() VT (“:[)) U:”‘
/bibliography/article 1Ty - —
/bibliography /book /= OTs, (I)) 1T,
/bibliography/articlc/author 1Ty
Jbibliography/article/author [text()|V T2
/bibliography/article/title ITs
Jbibliography/article/title/text() |VTh

(a) Path summary

Jbibliography /article/author /bookstorc/au[h‘or/auth()r/t(.’xt()

|,¢] idehild idparent text value
T AR (i (0;2) "John Kay’
(Ul):(]l) m'z(){-.f;)“” (0;4) 'Allen Vitto'
e T . (1;4) 'Alice Carrol’
) £ d) VT
/bibliography/«
|i(1pﬂr{',nl,| idenild
G660, (50), (151)]
(e) OT()

Fig. 3. Lxample of the index structure. (IT=Instance table, VT=Value table,
OT=O0rder table. Only 4 out of 14 tables are shown)

the path /bibliography/article/author exists in an indexed document. It it cx-
ists, there must be instance tables storing the parent-child relationships for the
bibliography, article and author elements that belong to this path.

The relationships between single elements and values are stored within in-
stance and value tables as shown in Figures 3(b), 3(c), and 3(d). Each table
corresponds to the last step of an XML path, e.g. the table I'Ty stores the rela-
tionships between the root element bibliography and its children articles.

For example, in order to obtain the title values of all books, the steps
/bibliography, ...Jbook, .../title and .../text() have to be processed. The nec-
essary relationships are stored in instance tables ITy, I'Ty, I'T; and value table
VT). The relationships between bibliography, book, title and text nodes can be
obtained by studying these tables. Note that elements are referenced in tables
with their IDs. In order to connect the results from XPath queries with XML
fragments stored in the DHT, we reuse the element IDs that already exist in
P2P XML Storage.

As XML trees are ordered, the structure of the tree is not completely de-
scribed by instance tables. This is because these tables do not preserve the order
of child elements with different names, which is prescribed by the XML and
XPath specifications. For instance, information about publications in the bib-
liography is contained within two instance tables: IT; for books and [Ty for
articles. We are not able to tell which book or article is the first publication.
To assure the order of XML elements, we also store information about the child
elements in order tables, without separating them by their child names as done

in instance tables. An example of an order table is given in Fig. 3(e). This table
stores all child elements (book and article) for the bibliography element. This
order table can be used to find the first or i-th entry in the bibliography. Clearly,
this functionality is not always necessary and so order tables can be omitted for
some applications. However, as the order of elements is prescribed by the XPath
specification other applications may require it.

4.3 Managing Index in a DHT

Our index stores its data in the underlying DHT. Each index table is stored as a
DHT value with a DHT key computed from the document name, the XML path
of the table and the table type. The document name is used to avoid collisions of
documents with similar structures. A typical index consists of many small tables
that enable good load balancing.

The lookup of required index components is done by the underlying DHT
layer. The index only requires an abstraction of storing and retrieving values
from the network with DHT keys as addresses. The data availability is assured
by the DHT or by additional replication mechanisms like [15].

4.4 Query Processing

The most common XPath queries appear as /step;/steps/.../step, with each
(location) step selecting an XML content relative to the result of the previous
step, possibly filtering it afterwards. The algorithm we use in our index evalnates
one step at a time. After each step has been processed the result obtained is used
to process the next step. Each step in an XPath query contains an axis, a node-
test and an optional list of predicates. For example in the step article[author =
“John Kay"] the axis is (here implicit) the child axis, the node-test is article
(that meaning that we are interested in elements called article) and the predicate
is author = “John Kay”. An XPath step must be evaluated regarding the
current context, i.e. the current position in the XML tree, as the result of the
previous step or initial context. Starting from the current position in the XML
tree, all matching article elements must be selected along the child axis, meaning
that we select the entries from the matching index table for the path .../article
where the parent ID equals the IDs of the current position in the XML document.
Afterwards, the result is filtered using the predicates. The predicate requires
that the instance table .../article/author is inspected to find the authors of all
articles and that the value table .../article/author/text() is then inspected to
obtain their values. This step result in the articles with John Kay as author. If
the query contains further steps, the next step is processed using the resulting
articles as the evaluation context.

Thus, the index structure supports the evaluation of XPath queries in a
natural way. All the required index tables are fetched from the DHT to the
peers that want to process a query and were used to process single location
steps. The path summary helps to avoid unnecessary DHT lookups, as it can be
fetched at the beginning of query processing and reveals whether an XML path
and associated index tables for this document exist.

4.5 Adapting Index to Document Updates

XML documents stored in a P2P environment must be indexed upon creation
and this index must be kept up-to-date upon document updates. The initial
indexing of a new document is done by applying a depth-first traversal to the
XML tree of the document. For each XML path that occur an entry in the
path summary and an instance or value table is created. Then, for each pair of
elements or an element - value pair, an entry is written in the corresponding
table.

This process is not repeated if the stored XML document is afterwards mod-
ified by uscrs. Tt is only necessary to update the path summary if a new path
is added to the document. For instance, the appending of an entry journal
under bibliography to the document will add the entry /bibliography/journal
to the path summary from Fig. 3(a). On the contrary, if a new article is ap-
pended to the bibliography, the path summary would not change because the
path /bibliography/article already existed.

In general, the update (i.e. append, modify or remove) of an element or value
in a document requires the update of one instance or value table and sometimes
(if an XML path emerges or disappears) an update of the path summary. There-
fore, the update of single elements and values requires the adaptation of the
associated index with complexity O(1) regarding the number of DHT opera-
tions because, in the worst case, only one table and the path summary have
to be updated. As typical DHTs have operation complexity of O(log N), the
overall update complexity is O(log N) where N is the number of peers in the
p2p nctwork. Note that this also applics to the modifications of the document’s
structure, i.e. the insertion of completely new elements like journal, proceedings,
techreport etc. would have the same complexity.

5 Evaluation

Evaluation of the proposed index was done by emulations on the storage proto-
type. As we discuss in Section 6, no existing p2p XML indexing approach satisfies
the requirements in the P2P XML Storage. Thus, we measured the performance
speedup achieved by the index in comparison to the fragment traversal. We dis-
tinguish two speedup indicators: the execution time and the number of messages
in the DHT layer required to execute a query.

5.1 Settings

The index is evaluated as part of the P2P XML Storage system. A virtual net-
work consisting of 100 storage instances is established where all instances run
within the same Java virtual machine. For this purpose, the network layer has
been simulated in the main memory within an adjustable message transmission
delay that is set to 0.5 ms per kByte. On top of the emulated network layer,
FreePastry [16] runs as the DHT router implementation. We use benchmark
documents generated by the XMark benchmark generator (XMark) [17] to eval-
nate the performance of the decentralized XML index. The documents shown in
Table 2 model an Internet auction site storing all the information about their
customners and iterns in one XML file.

[Query Expression [Description Storage Size (wio Index) -~

140 Index Size s J‘
Q. |/site/regions/australia/ simple query, — 120 s
item/description result size grows 2
with document size o 100 e
Q2 ,".\Hw/pvu})lv/ : contains predicates, x 80 //
person|[@id="person0 1/ constant result size g 60 /’
.
name/text() requires valuc comparison & 49 / .
Q3| /site/regions//item slow query, 20 .
result size grows 0 A
with document size 0 2000 4000 6000 8000 10000 12000

(a) Benchmark Queries Documert Size (KB)
(b) Index size vs storage size
Fig. 4.

Three benchmark queries from Table 4(a) are processed on each of the bench-
mark documents. These queries are selected from those suggested by the XMark
project. Query Q1 returns the list of items registered in Australia. Query Qs
returns the name of the person with id “person0” and is an example of a lookup
query. The last query Q3 returns all listed items. Note that the execution of the
last query without an index requires scanning the complete document.

The evaluation compares two different ways of executing XPath queries: ap-
plying the tree traversal technique without an index and applying the query
execution with the proposed indexing technique. For each query, each docu-
ment, and each XPath engine version, the simulation ran 10 times to consider
the random distribution of document fragments in the DHT, which can result
in a different, ronting time and, hence, yield different. performance results.

5.2 Results

The performance results are shown in Fig. 5. For each query the average ex-
ecution time (Graphs 5(a), 5(c), and 5(¢)) and the number of DHT messages
(Graphs 5(b), 5(d), and 5(f)) are presented. The two lines show the performance
of query execution based on fragment traversal and index, respectively. As we
can see, for all three benchmark queries the index-based query execution is much
faster. The only exceptions are queries Q2 and Q3 where the queried document
is only 26 KB large, making a decentralized index unnecessary, since it is cheaper
to transfer the complete file and execute the query locally. In all other cases, the
performance is improved, especially regarding the query execution time, as it is
up to 40 times faster for the queries @), and @, and almost 160 times faster
for 3. The performance speedup is very similar regarding the number of DHT
messages.

Fig. 4(b) shows that for each benchmark documnent, the total space consump-
tion in the network by the index compared to the storage without the index. We
can see that for all benchmark documents the size of the index is always smaller

Table 2. Used benchmark documents

File [Size (KB)|# Elements|# Attributes[# Text values

amark 382
xzmarks 17131
zmarks 50198
xzmarky 83798
zmarks 118669
rmarkes 11396 167864

100 . 10000
| Reference i Reference
Index X Index
&) 4
@ 10 | E 1000
E t o 1
£ 3
=1 i)
o £
3 } 8
8 1x o i 100 |
i f | I
| a - % <, x ' x
‘
01 —— J 10
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Document size (MB) Document size (MB)
(a) Q1: time performance (b) @Q:: performance in DHT messages
1000 — . —
[Reference | 16000 Reference :
| Index d | Index ~
% 100 | i) s
= i i E 1000 |
E [° |
= a
s 10 | £
3 ‘ ®
3 y 5 100 |
w 13 T |
| o
‘
0 | | 10 | [
[2 4 6 8 10 12 0o 2 4 6 g 10 12
Document size (MB) Document size (MB)
(¢) Q2: time performance (d) Q2: performance in DHT messages
1000 | - ‘ 100000 |
Reference - v { | Reference
Index - x | | Index %
%
0 & 10000 |
o 100 { (= |
£ ‘ | - ‘
o~ 1 «
§ i 2 1000 |
E | | 13 {
8 10 | i {
] i 100 X
x a ;
1l 1 10 . —
0 2 4 6 8 10 12 o 2 4 6 8 10 12
Document size (MB) Document size (MB)
(e) Q3: time performance (f) Q3: performance in DHT messages

Fig. 5. Average performance results for queries Q;, @2, and Q3 measured in execution
time and DHT messages.

than the size of the storage itself. Hence, we improve the query performance by
one to two orders of magnitude without even doubling the storage consumption.

6 Related work

In [18] a distributed catalog for XML data is proposed. For each XML tag,
there is a responsible peer that stores all unique XML paths leading to this tag
together with Lhe IDs ol responsible peers. The query execution is done by first,
extracting simple paths from the query. Then the peers responsible for relevant
catalog parts are looked up. These candidate peers receive and process the query.
This system has significant, limitations, as it only works with a subset of XPath
and requires an extended version of Chord. Furthermore, it assumes that a peer
stores complete XML documents and processes queries on them locally. Hence,
peers storing popular tags or documents tend to suffer under extrenely high

loads. In our solution the responsibility for an indexed tag name is distributed
among several peers and the execution is done by the query initiator itself.

Another approach based on Chord is XP2P [19], whereby peers store docu-
ment fragments (XML subtrees). In addition, each peer stores path expressions
of its fragments and related fragments, i.e. sub and super fragments from the
same XML document. An extended hashing technique allows for the lookups
of both single fragments and fragments with unfolded sub fragments. As query
processing requires the access of peers responsible for fragments, it is inefficient,
for queries that require the inspection of many fragments. This approach is sim-
ilar to the original P2P XML Storage and, as our evaluation shows, much more
incefficient than an additional index.

Skobeltsyn et al. proposed a distributed index to support a subset of XPath
queries in structured P2P systems [20]. Their proposal works with P-Grid [8]
or similar tree-based DHTs. It only supports a subset of XPath queries and the
focus of the index is different from ours: for a given query, the index returns the
addresses of peers storing XML documents or document fragments containing
XML paths from the query. Our approach is unique in that it optimizes the
execution of general XPath, docs not. rely on a specific DHT, and most important,
it concerns the complete execution of a query and not only its dissemination to
the peers with relevant fragments. This last point is important as the query result
depends on the relationship between different fragments of the same document.

XML indexes for unstructured systems like [21], [22], [23], or XPeer [24]
do not gunarantee that the data available in the system can be found. Systems
like Squid [25] or ZNet [26] support keywords, wildcard and range queries but
do not support an all-purpose XML query language like XPath. P-Trees [27]
are a distributed version of B*-Trees. They can be used to build a distributed
value index in order to answer range queries quickly. However, the management
overhead is high and hence this approach does not scale well.

In [28] a DHT-based framework for the publishing and querying of XML doc-
uments was proposed. The scenario considered is different, in that peers publish
their local documents. Queries are routed to all responsible peers, which then
process them and return their results. The system supports no updates, i.e. a
document can only be updated by unpublishing and then re-publishing it, which
is not feasible for large documents.

7 Conclusions

In this paper, we have presented a decentralized index for the elficient query
execution on XML documents distributed within a p2p system. In particular,
our decentralized index integrates seamlessly with P2P XML Storage, a systemt
that stores large XML documents in a p2p network. We have shown by emula-
tions that our prototype boosts the query performance in the system by orders
of magnitude. Our solution differs from the related work in that it provides a
unique set of features: its structure can be distributed in any DHT in completely
decentralized manner, it supports updates and arbitrary changes in a document
structure without the need for rebuilding an index, and it supports the whole
range of XPath queries.

References

10.
11.
12.
13.

14.
15.

16.
17.

19.

20.

21.

22.
23.

24.

25,

26.

27.

28.

. Risse, T., Knezevié, P.. A self-organizing data store for large scale distributed

infrastructures. In ICDE Workshops, 2005

. W3C: XML Path Language (XPath) Version 1.0 (1999)
. Ley, M.: DBLP - computer science bibliography. (http://dblp.uni-trier.de/xml/)
. Knezevic, P.: Towards a reliable peer-to-peer xml database. In ICDE/EDBT PhD

Workshop, 2004

. W3C: Document object model (DOM) level 2 core specification 2000)
. Stoica I. et al.: Chord: A scalable peer-to-peer lookup service for internet applica-

tions. In SIGCOMM, 2001 149-160

. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. LNCS, 2001

. Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems.

ACM SIGMOD Record 2172, 2001, 179-185

. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In Proc. of VLDB (1997)

Milo, T., Suciu, D.: Index structures for path expressions. In ICDT, 1999
Rizzolo, F., Mendelzon, A.O.: Indexing xml data with toxin. In WebDB, 2001
Li, Q., Moon, B.: Indexing and querying xml data for regular path expressions. In
The VLDB Journal, 2001 361-370

Chen, Y., Mihaila, G., Padmanabhan, S., Bordawekar, R.: L-tree: a dynamic la-
beling structure for ordered xml data. In EDBT, 2004, (Springer) 31-45

Meier, W.: eXist: An open source native xml database, Springer 2002) 7-10
Knezevic, P., Wombacher, A., Risse, T.: Highly available DHTs: Keeping data
consistency after updates. In AP2PC. Volume 4118 of LNCS, 2005

Druschel, P. et al.: Freepastry 1.3.2. freepastry.rice.edu, February 2004

Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: Xmark:
A benchmark for xml data management In VLDB, 2002

. Galanis, L., Wang. Y., Jeffery, S.R., DeWitt, D.J.: Locating data sources in large

distributed systems. In VLDB, 2003

Bonifati, A., Matrangolo, U., Cuzzocrea, A., Jain, M.: Xpath lookup queries in
p2p networks. ACM WIDM, 2004

Skobeltsyn, G., Hauswirth, M., Aberer, K.: Efficient processing of xpath queries
with structured overlay networks. In ODBASE, 2005

Galanis, L., Wang, Y., Jeffery, S.R., DeWitt, D.J.: Processing queries in a large
peer-to-peer system. In CAiSE, 2003

Crespo, A., Garcia-Molina, H.: Routing indices for p2p systems. In ICDCS, 2002
Karnstedt, M., Hose, K., Sattler, K.U.: Query routing and processing in schema-
based p2p systems. In DEXA Workshops, 2004

Sartiani, C., Manghi, P., Ghelli, G., Conforti, G.: XPeer: A self-organizing xml
p2p database system. In EDBT, 2004

Schmidt, C., Parashar, M.: Enabling flexible queries with guarantees in p2p sys-
tems. IEEE Internet Computing 8 2004) 19-26

Shu, Y., Ooi, B., Tan, K., Zhou, A.: Supporting multi-dimensional range queries
in peer-to-peer systems. In IEEE P2P, 2005 173-180

Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-
peer networks using P-trees. WebDB, 2004

Fegaras, L., He, W., Das, G., Levine, D.: Xml query routing in structured p2p
systems. DBISP2P, 2006

