
PKLS071 Konstantin Pussep, Predrag Knezevic, Nicolas Liebau, Ralf Steinmetz;
lmproving XPath Query Execution in P2P XML Storage by Using a
Decentralized Index; YLDB International Workshop On Databases, Information
Systems and Peer-to-Peer Computing (DP1SP2P-2007) September 2007. S.

Improving XPath Query Execution in P2P XML
Storage by Using a Decentralized Index

Koiistantin Pussepl, Predrag ~ n e ~ e v i ~ ~ , Nicolas Liebau', and Ralf Steinnictzi

I<OM, TU Darmstadt, Merckstrasse. 25, 64283 Darmstadt, Germany
{pussep,liebau,steinmetz)Qkom.tii-darinstadt.cIe

Frauiihofer IPSI, Dolivostr. 16, 64293 Darinstadt, Germany
knezevic@ipsi.fraunIiofer.de

Abstract. Today, iiiforrnation is managed incressingly in dynainic coni-
miiiiities oii the Intcrnet. Here, peer-to-peer communities in which users
host data by coiitributing their resoiirces is a very promising alternative
for centralized hosting. Maiiaged data is oFteii represented in XA4L and
requires a high-level qiiery language, where XPath is a good candidate.
Ln this paper, we present a decentralized XML index that enahles efficieiit
XPath queries on large documents stored in p2p systems. Unlike other
approaches, we do not rely on a specific overlay as our solution is able to
work on top of aiiy striictured overlay that provides common put and get
operations. Our approach is combined with P2P XML Storage, which
stores arbitrarily XML Files in p2p networks efficiently. Evaluation has
proveri that our index improves the XPath query performance in regard
to 110th the execution time and the niimher of messages by orders of
magiiitude.

1 Introduction
Currently, Iriternet communities like Wikipedia host tlieir data on centralized
systerns, everi tliough the cornrnunities themselves are organized iri a decentral-
ized fashiori. Therefore, peer-to-peer conimiiriities in which users host data. by
contribut,irig tlieir resources are a, good alternative for centralizcd liosting.

Tlie BR.ICKS3 project faces exactly tliis cha.llenge iri that it aims to design,
develop arid rnaiiitairi a iiser arid service-orierited space of digital libraries ori top
of a tleceiitralized architecture. Witliiil BRICKS, data is nianaged hy P2P XML
Storage [I]. Tlie storage is built ori top of a DHT (Distributcd Hasli Table) where
large XML tlocuirients are split into fragments wliich are ttien stored as DHT
values. Users iriust not only be able to read and write XML da.ta, but also to
qiiery a tlocurrient's content witli liigli-level XML query language like XPath 121.
While a query fiirictionality lias beeri implemerited in the stora.ge, it is based
ori tlie traversal of docunieiit fragrrients and is therefore slow. This cari be very
iriefiicient for laige docuiiierits as tlieir fragriierits are spreatl across riiariy peers.

Tliis issue ca.n be solved by the introductiori of ari XML index. This index
iriust 1)c storcd iri tlic. p2p systcm and sigriificaritly iiriprovc tfic cxccutiori of
XPatli queries in P2P XML Storage. The index must be cornpletely deceritralized

BR.ICI<S - Biiilding Resources for Iritegrated Ciiltural I(riowledge Services,
http://www.brickscommunity.org

(a) Example XbIL document (b) Systein architecture

spht
A

docurnent

&V&

(C) Storiiig Xh4L Documerit (daslied lines show links betweeii fragineiits)

Fig. 1.

arid not irnpose lirriitations ori t,lie systerii abilities, but still siipport t,lie fiill
expressiveriess of the XPath larigiiage.

In I.his work, we propose a soliiilion t,hai, liilfills all t,he stal,ed reqiiircineiiis
and hm beeri evaluated by ernulations ori the storage prototype. The proposctl
approach fociises ori tiie iiiclexing of sirigle XML docunients, t ~ u t the approacli
can be easily exterided to siipport collections of tlocurnerits.

The iiext sectiori provides XR/IL-related terminology usecl iri this paper and
the applied systern model. Tlie exact requirenierits for a deceiitralized iiidex a.re
described in Sectiori 3. TI-ie realizatiori of tliese requireriieiits by a p2p XML iiitlex
is preserited in Sect,iori 4. Sectiori 5 presents tfie expeririierital results obtairied. Iri
Section 6 we discuss the related work on indexirig XML iri peer-to-peer systeiiis
in coniparison to our approach. Firially, coriclusions are provided in Sect,ion 7.

2 System Model and Definitions
2.1 XML Documents and Queries
Our sa.rnple XML docuriieiit. is a bibliography clatabase siriiilar to DBLP [3]
as showri in Fig.l(a.). This docurnent contains publicatioiis sucli EIS 600k.s a,nd
a~t i c l e s alorig witli ttie iiiforrriatiori about their aiitliors, t,itles etc.. XML cloc-
iirnerits are coriiprised of elements arid contcziri va.liies as text or attributes
(attributes are orriitted in t,liis exaniple).

Table 1 shows several XPath [2] queries for tkie exariiple docuriierit. TIie query
Q1 allows ail books to be fetclied wl-iile Qz produces the titlcs of a.ll articles
writteri b31 Joliri. Kay. Ariother query type is Q:(which produces titles of all
publicatiori conta.inirig the keyword P2P.

XPath queries corisist of location steps, such as larticlc or /title[a,utl~or =
"John. K ~ L : ~ "] , which select elenients or text iri an XML docunient arid cari

corita.in predicates (e.g. [author = " Jolrn K(z,yX]), which filter the resiilts. A
sequence of location steps specifies that tkie result of a previous location step
is used as iriptit for the next location step. For exai~iple, /bibliography~/book
consists of two steps: bibliogrnpl~y and book, i i i whicili tlie first step returiis tlie
bibliogra.piry elerrierit, whicli is fiirther used to select book elenients in tlie second
step. These steps use so-called axes to specify the directiori iri which XML riodes
are selected, i.e. elenieiits or text. Tlie rriost cominoiily used XPa.t,h axes are tlie
cliild axis aiid descendarit axis abbreviated by / arid // respectively.

2.2 P2P XML Storage

Iri order to mariagc XML data in a p2p envirorimerit P2P XML Storage [4] was
built. Ilere, iisers are able to create, access and modiSl XiML documents via the
DOM API [5] or query a document,'~ content tlirough XPath queries.

The overall arcliitecture of the systeni is presented iri Fig. l (b) . Storage
works on top of ariy DHT, such as Chord [6], Pastry [7] or P-Grid [8], utilizes an
XPat,h qiirry cilginc and offcrs thc DOhI API to rlirnt a.pplicnt,ioils. In P2P XML
Storage, each XML document is fragmented according to its structure and theri
stored iri the DHT. This process is illiistrated iii Fig. l(c), where a document has
beeri split into 9 Fragments tfiat are theri storetl in a Cliord-like DHT. Adjacent
Fragments are connected to orie other, i.e. a dociimerit Fragment coritairis tlie
DHT keys of adjacent Fragments. Dociiment traversal is carried oiit by loading
the root fragri-ierit from tlie DHT and by followirig links to other frag~rients. Tkie
splitting of dociinierits into Fragments allows for better load balaricing, a.s all tlie
riecessa.ry fragmerits has to be retrieved.

As the systeni is docunient-based, collectioris of docunierits can be supported
by ari additiorial dociimerit listing of all the stored documents or tjy combinirig
thern to a super-document (i.e. coririectirig the docurnerit roots to a new root). In
order to access a docurnerit, a peer has to kriow its riarrie so it can corripute the
DHT key of its root fragmerit arid retrieve tlie fragrilerit froni the DHT. Further
fragmerits can be retrieved as each fragnieilt stores tlie DHT key of its rieighbor
fra.grients. Iri this way, a user cari-access an entire document or only parts of it.

An XNIL dociirrient is sliowii as a tree in Fig. 2. Each XML element, text,
and attrihute has I>eeri visiialized nq a tree notie. The docuriierit is split into
tliree fragrnents F", Fi, and F2. Each XMT, element and text has an identifier
coiisistirig of a hagiiierit id arid ttie offset iiiside of tlie fra.gi-rieiit. So btie TD ol'
tlic first art.icle clciricrit is (0; 1) as it is tkie first iiodc iri ttic fragiricrit Fo.

3 Problem Statement
Altliough the P2P XML Storage is able to manage XML data iri P2P Systems,
the support of high-level qiieries like XPath is inefficient. For example, query Q3

Table 1. Example Qiieries

I L Y I ,

Q:,I//title[con,tai71~(., "PZP")] lretiirii all litles coiitairiing "P2P"

Qi

Q2

Qiiery
/bibliography/book

/bibliography/article/title
lauthw = "John KauUl

hlIeaning
fetch all I,ooks

fetch the titles of all articles
written bv "John Kav"

Fig. 2. Example XML dociiineiit as a tree split into 3 fragments

in Table 1 would require that all fragments are scanned, even if there are orily
a few matchirig title elemierits, i.e. tlie query would require access to all frag-
incnt,s, t,hercby involviiig manv pccrs and incrcasing tra,fic in thc DIIT. IIcnce, a.
decent.ralixed XkIL index is needed in order lo siipport, efficieni. XPa1.h qiieries.
i\.Iore precisely, this index inust fulfill the following requiremeiits:

1. Sigilifica.nt,l~r improve qiiery execiit,ion time a.nd rediice t,he a.moiint of t>rafic.
Tlie iritlex rriust be scalable accordirig to the size of docunierits rriaria.ged.

2. The iiidex must spread its conterit within a p2p commuriity. In order to
gua.rantee tha.t tlie data cari bc foiind, the index lias to work on a DHT.

3. The iiidex lias to adapt to new structures in the XML docurrierit, arid tliere-
fore not relp ori a static documerit structure or orie rrianaged rrianuallv.

4. Tlie iridex rnust support docunient updates so tliat the uscr is able t o updatc
stored XbIL docurrieiits witliout needing to republisli them.

5. The iriclex must support the XPath query langiiage and not restrict tlie
structure of tlie docurnerits stored.

As tlie key criteria for tlie iridex is its query execution pcrforma.nce, a siiitable
data structure for decentralizecl environrrierits has to hc fourid, i.e. the intlex
miist work without azig global spchronization and global knowledge. Fiirther,
wc iiccd ari appropriatc distributioii stratcgy for iiitlcx coiitciit aiid, fiiially, qucry
cxcciit,ion t,iin<i and thc nct,work traffic indiiccd miist. bc minimixcd.

4 Decentralized XML Index
A deceritralized index for XML data provides a data structure that improves tlie
execution of XML queries iri a deceritralized environment. No ceritral authority
exists that creates, stores or niairitains this iridex. This striicture boosts the
perforrriarice of qiieries iii P2P XR4L Storage. A typical application is access for
query execiition witlioiit to loacl XML fragments. Tlie result of the executioii,
dependiiig ori the query, is either a list of valiies or refereiices tliat can thcri be
used to access XML fragmerits froni tlie storage for furtlier processing.

4.1 XML Indexing Schemes

Tlie XML arid database coiiirilunities have carried out exterisive researcli ori the
inclexiiig of XbIL data in traditional centralized databases. Path indexing (such
as [9], [10], and [l l]) arid the neurer n,urn.berin,g sch,emes (sucli as [12], [13], aiid
[1.1]) are two main concepts for iridexing XML docurnerits. XML elerrients and

values are labeled with descriptors that provide iriformation about their inter-
relationships iri ari XML document iri a numbering scheme approach. By using
tliese descriptors, the relationship (e.g. parerit-child, aricestor-descendant, or sib-
li~igs) betweeii two riodes cari be eficieritly coniputed. Tlie eleriierits, text aiid
attribute values are theri stored in B+-trees togetlier with their labels. However,
for all riurnberiilg schemes, updatirig index structures is an issue. Everi by at-
teniptirig to foresee updates whilst labeling tlie docunierit's conterit, an arbitrary
update rriay st,ill require that a. large part of tlie (locuriieiit is relabeled, therefore
requiring a'large portion of tlie index structure to be updated.

Update operations are very iri-iportant for the dynamic processirig of XML
docuinents and must be implemented eficiently so that the storage is scalable.
Their inipact oii tlie con.si.stency of tlata is ariother reason wly the index struc-
ture updat,e liat to be as sirriple as possible. Should the update of the inclex
striictiire reqiiire too iniicli time, tlie probability of concurrent uptlates iricreases
becaiise several peers rnay try to rnodify the same part of a docurnent.

Vlre liave concluded tliat ToXin [ll] is tlie riiost suitalde starting poirit to
ari approacli For a decentralized XML index. Tlie key advaritages of ToXiri are
its low update costs a.rid the fact that it corisists of single tables that can be
easily di~tribut~ed in a P2P commuriitjr, especially iri a DHT. Orie drawback of
tliis proposal is the lack of s~ipport for XML content orderirig. This support is
essential for maily XML docurnerits, therefore we will sliow how tliis siipport can
be addeti t,o tlie ToXin iridexirig structure.

4.2 Index Structure
The iridex captures hoth the tree structure of an indexed docurrient and tlie
values stored iii text a.nd attributes. It contaiiis four different structure types:

Path summary sumrnarizes the overall structiire of aii XblL document. It
records all existing paths and supports tlie addressing of other index parts.

Instance tables store parent-child relations betweeri XML elerrients. Tliere is
a table for each path in tlie document ttiat ends witli an XML element.

Value tables store tlie attribiite and text values of elerrierits to support thr
evaluatioii of prcdicates. For eacli path iri the documerit that ends witli ari
attribute or a text value, there is exactly orie value table.

Order tables arr our extensiori of tlie ToXiri structure to provi(lc order ainong
different cliildreii of an XML eleineiit.

Tlie docunierit index consists of exactly one patli sumniary and a.n arhitrary
riiinlber of instarice, value a.riti order tables. Fig. 3 preserits an exarriple of tlie
index structure for our sample dociiriient.

The patli siirniriary frorn Fig. 3(a) for tlie sample dociunerit summarizes all
existing paths, but does not provide any information aboiit iridividual XML
eleinents or text values. It is used for two purposes: to find out whether cer-
triin patlis exist within tlie docuinent arid to locate index tables iri the iin-
derlying DHT. The path summary contains an eritry pointing either to an
order, instarice, or value table for each path occurring in tlie docurrient. For
exarnple, by inspecting the patli Summary, orie is able to tell whether or riot

~ / ~ i b i ~ ~ ~ ~ ~ . ~ h ~ ~ / ~ ~ t ~ ~ l ~ / ~ ~ ~ t h ~ ~ 1;;- 1
/biblio.q~~apli.y/artic1c/author/tezt() VT2
/ b i b l i o . y r r z p l i y / r ~ v t i c l ~ : / t i t l e
/i~ib~iography/articlc/til~r/tc~t() V ? j

(a) Pat,h surnrnary

/ ,)~b l iogr (Lp ,L?l /< l r t i (:~P/a lL t / lor / ~ ~ ~ k ~ t 0 r ~ / a 7 l t l ~ ~ r / n 7 ~ ~ ~ ~ ~ ~ ~ / t ~ t o

' A l l r ~ i Vit to '

(d) VT2
/bibliogrophy/*
id„wnt (id<.lii!d

(0;O) I(O;l), (1;0). (1;l)

(e) OTo
Fig. 3. Exainple of the index structure. (IT=Instarice tablc, VT=Value table,
OT=Order table. Only 4 out of 14 tables are shown)

the path /bibliography/arti~le/n~utI~or exists in ari indexed docuinerit. I t it cx-
ists, there rnust be instance tables storing the parent-chiltl relatioriships for tlie
biblioyrnpIi.y, article arid nvthor elements that belorig to tki'is patli.

Ttie relatioriships between sirigle elements and values a.re stored witliin iri-
starice arid valiie tables as showi-i in Figures 3(b), 3(c), arid 3(d). Ea.ch table
corresponds to the last step of an XML pa.th, e .g the table IT4 stores the rela-
tionships betweeri the root elemerit bibliogrr~plzy and its ctiildren articles.

For example, in order to obtain the title values of all boolts, the steps
/biblzograpl~y, ...I book, ...I title and ...I tezt() have to be processed. The riec-
essary relatioriships a.re stored iri iristance tables ITo, ITl, IT3 and value tat~le
VTl . Ttie relatioriships between bibliography, book, title arid text iiodes cari be
obtairied 1)g studging these tables. Note that elenients are referericetl iri tables
with tlieir IDs. Iri order to conriect the results frorii XPatti queries with X R l L
fragirients stored iii tlie DHT. we reuse ttie elenient IDs that a.lready exist iii

P2P X M L Storage.

As X M L trees are ordered, tlie structure of the tree is not conipletelg dc-
scribed by instance tables. This is because tliese tables do riot preserve ttie order
of child elements with different names, which is prescribed by the XML and
XPath specifications. For iilslance, information about publications in the bib-
liography is contained witliiri two iristance tables: ITl for books and IT4 for
articles. I& are iiot able lo tell wliidi book or article is tlie first publicatiori.
To assure the order of XA4L elements, we also store iriformation about the ctiild
elenients in order tables, wittiout separating thenl bv their child names as done

in iristarice tables. An exaniple of an order table is given in Fig. 3(e). This table
stores all cliil(1 elenierits (book and article) for ttie bibliography elerrieilt. This
order table can be used to find the first or i-th entry in the bibliography. Clearly,
this functioriality is riot always necessary and so order tables can be orriitted for
some applicatioris. However, as the order of elerrients is prescribed by the XPa.th
sprcification ot,licr applicat.ions may rcqiiirr it,.

4.3 Managing Index in a DHT

Our iridex stores its data in tlie underlyirig DHT. Each index table is stored as a
DHT valiie witli a DHT key corriputed from the document nanie, the XML path
of tlie table ancl tlie table type. The dociirnerit name is used to avoid collisioris of
documents with sirriilar striictures. A typical iridex coiisists of iriariy small tables
tliat enable good loatl balancing.

The lookiip of reqiiired iridex components is done by the uriderlying DHT
layer. Tlie index only requires an abstractiori of storirig and retrieving values
frorri the network witli DHT keys as addresses. The data ava.ilability is assiired
by tlie DIIT or by additiorial replication irieckianisiris like [15].

4.4 Query Processing

The most conimori XPath queries appear as /stepi/stepz/ ...I step, with eacli
(location) step selectiiig an XML coriterit relative to the result of the previous
strp, possiblv filt,cring it af'trrwnrds. Thc nlgorirhin 'LVC iisc in oiir iildcx rvnliiat,es
one step a t R tirrie. After each step ha t~eeri processed the result obtained is used
to process the iiext step. Each step in ari XPatli query coritairis an axis, a node-
test and ari optiorial list of predicates. For example in tlie step urticle[c~uth,or =
"John l<(zyl'] the axis is (here irriplicit) tlie child axis, the no(1t'test is article
(tliat rrieailing tliat we are interested in elernents called article) and the predicate
is uuthor = LL,Johr~ Kay". Ari XPatli step must be evaluated regardirig tlie
current context, i.e. the current position iri tlie XML tree, as tlie result of the
previous step or initial context. Starting froni the current positiori iri the XML
tree, all rriatching urtacle elements rriust be selected along the chilrl axis, rneanirig
tliat we select thr entries frorri the matchirig index table for tlie path ...I urticlr
wliere tlie parerit ID equals the IDs of the current position in tlie XML docuriierit.
Aftenvarcls, the result is filtered using the predicates. The predicate reqiiires
that tkie iristarice table ...I nrticle/uuthor is irispected to fiiid ttie authors o f all
articles and that tlie value table ...I article/c~uthor/tezt() is tlien irispected to
obtain tlieir values. This step result in the articles with JOILTL Kay as author. If
the qiiery coritairis fiirther steps, the next step is processed using the resultirig
articles m the eva.luation coritext.

Thus, tlie iiidex structiire supports tlie evaluation of XPath queries iri a
natiiral way. All the required index tables are fetched from tlie DHT to tlie
peers that want to process a query and were used t o process single location
steps. Tlie path suriirria.ry helps to avoid uririecessary DHT lookiips, as it can be
fetclicd at the begiruiing of query processirig aiid reveals whether an' XML path
ancl associated index tables for this docunient exist.

4.5 Adapting Index to Document Updates

XML documerits stored in a P2P envirorimerit niiist be indexed upori crea.tiori
and this index must be kept up-to-date upoii docurnent updates. The initial
iiidexiiig of a riew docurrieiit is doiie by applyirig a deptli-first traversal to ttie
XML tree of tlie docui-nent. For eacli XML patli that occur a.ii eritry iri the
patli surrimary and ari iristance or value table is created. Then, for eacli pair of
elenients or an elernent - value pair, an entry is writteri in tlie correspondirig
table.

This process is not repeated if the stored XML clocurnent is afterwards rrioci-
ificd I)y uscrs. I t is oiily ricccssary to updatc tkic patli surrirriary if a new patli
is adtled to the docurrierit. For iristance, tlie appending of ari eritry journal
under biO1,iography to tlie docurnerit will add tlie entry /bibliography/jou.~7~a[
to the path Summary froni Fig. 3(a). 011 the coritrary, if a riew article is ap-
perided to the bibliograpliy, tlie path suiriniary would not cha.nge because tlie
patli /bibliogrci,pi~y/a~ticle already existed.

Iri gerieral, the update (i.e. append, modify or remove) of an eleirieilt or value
iri a docurnerit requires the update of one instance or value table and sonietiriles
(if an XML path emerges or disappears) an update of the path siiniriiary. Tliere-
fore, tlie update of single elenierits a.rid values reqiiires the adaptatioii of tlie
wsociateti index with coniplexit,y O(1) regarding the riiimber of DHT opera-
tions because. iri tlie worst case, orily one table arid tlie path surriiria.ry have
to be iipdated. As typical DHTs have operation coniplexity of O(1og N) , the
overall iipdate complexity is O(log N) where N is the number of peers iii tlie
p2p rictwork. Notc ttiat this also applics to tlic rriodificatioiis ot' tlic docurriciit's
structiire, i.e. the irisertion of conipletely new elenients lilce ~ o P L ~ T) . (L ~ , p~oceedirags,
teclrreport etc. would have the Same coniplexity.

5 Evaluation
Evaluation of tlie proposed index was dorie by ernula.tioiis 0x1 the storage proto-
type. As we discuss in Section 6, no existing p2p XPIL iildexing a.pproach satisfies
tlie requirenierits iri tlie P2P XML Storage. Thiis, we measured the perforriiaiice
speedup achieved by the index iri comparison to tlie fragment traversal. We dis-
tinguish two speedup iridicators: the execution tinie arid the number of rnessages
iri tlie DHT layer reqiiired to execute a query.

5.1 Settings
Tlie index is evaluated as pa.rt of the P2P XML Storage system. A virtual iiet-
work consistirig of 100 storage iristances is estahlished wliere all insta.nces ruri
within the sanie Java virtiial niacliirie. For this purpose, tlie rietwork layer Iias
Ileen simula.ted in tlie rnain memory within an adjustable rriessage transmissiori
delay that is set to 0.5 ms per kByte. On top of the erriulated rietwork layer,
FreePastry [16] riins as the DHT router implementation. We use benchrriark
documerits gerierated by tlie XMark benchniark generator (XMark) [17] to eval-
uate the perforniance of tlie decentralized XML index. The docunients sliowii iri
Table 2 model ari Iriternet aiictiori site storirig all the iriforniatiori about tlieir
custoincrs a.iid it(:iris iii oiic XML filc.

IQuery Expression I Description 1 ' ~ioraie Size (WJO lndgx) -2- '
140 1 Index Sire ,,+ 1 ,

itcm/rlrsrriptiori rcsult sizc grows

/'

Y'
/'

iriark dociimerits. These queries are selected from those suggested by ttie XMark

Q n

project. Query Ql returris the list of items registered in Australia. Query Q2
returiis tlie riarrie of the persori witli id "personOn arid is an exainple of a lookup

(a) Benchmark Queries üccurneni Size (KBI

(b) Index size vs storage size
Fig. 4.

Three benchmark queries frorii Table 4(a) are processed oii eacli of the bencli-

nauic/tcxt() .
/sitr/rcgions//itriri

qiicry. The last query Qg returns all listed itenis. Note that tl-ie executiori of the

rcquircs value cornparison 2
slow qiicry,

rcsiilt sizc grows
20

4
with dociinirrit sizc 41 L 0 20W 4000 60W 8000 10Wo 12000

last query witlioiit aii iridex requires scaririiilg tlie cornplete document.
Tlie evaluation compares two different wajrs of exccuting XPath qiieries: ap-

plyirig the tree traversal technique without ari iridex arid applying the query . . .-- . .

execiitiori witli the proposed indexing techniqiie. For each query, each docu-
rnerit, and each XPath engine version, the siniiilation ran 10 tirries to corisider
thc random distribution of document fragrrients iri the DHT, whicli cail result
in a dilTerent, roiii.ing time and, hence, yield dilTeren(, perl'orinan<:e resiilils.

5.2 Results
The perforniaiice resiilts are shown in Fig. 5. For eacli query tlie average ex-
ecutiori tirnc (G r a p h 5(a), 5(c), and 5(e)) aild tlie riurnber of DHT niessages
(Graphs 5(b), 5(d), and 5(f)) are presented. The two lines show the perforniance
of query exccutiori based on Fragment traversal and index, respectively. As we
cari See, for all three benchmark queries the index-based query executiori is mucli
faster. The orily exceptioris are queries Q2 and Qg where tlie qucriecl documerit
is orily 26 KB large, rriaking a deceritralized index urinecessary, sirice it is clieaper
to transfer the coinplete file and execute the query locally. In all other cases, the
performaiice is irriproved, especially regarding tlie query execution time, as it. is
up to 40 tiriies faster for the queries Qi arid Q2, arid almost 160 tirries faster
for QJ. The perforniarice speedup is very siniilar regarding the niiiriber of DHT
nlessages.

Fig. 4(b) shoxvs tl-iat for each benchmark docurrierit, the t,otal space consunip-
tiori iri tlie rietwork by the iridex corripared to the storage without tlie iridex. We
can see that for all berichriiark documents the size of the iridex is alwa.ys snialler

Table 2 . Used benchmark documents

File ISize (KB)I# Elements]# Attributes]# Text values
.r7r!iz~kl 1 26 1 :(X2 I 78 I 236

10

100
I
n X , X / X

0 1 10
0 2 4 6 8 1 0 1 2 0 2 4 6 8 1 0 1 2

Documenl stze (MB) Documenl size (MB)

(a) Q1: timc performarice (b) QI: performarice in DHT messages

0.11 ' J
0 2 4 6 8 1 0 1 2

Documenl size (MB)

(C) Qz: time performance

Relerence *
lndex x

Reference
Imü /--

10 L-
0 2 4 6 8 1 0 1 2

Documenl size (MB)

(d) Qz: performance in DHT messages

1 mooo
Reference

lndex x

I ' '
0 2 4 6 8 1 0 1 2 0 2 4 6 8 1 0 1 2

Documenl size (MB) Documenl size (MB)

(e) Q3: time performance (F) Qs: perforniance in DHT messages

Fig. 5. Average performance results for qiieries Qi, Qz, and Q3 ineasured in executioii
time and DHT messages.

tlian the size of the storage itself. Hence, we improve tlie cluery perforriiaiice by
one to two orders of inagiiitude witliout even douhling tkic storage coiisuniptiori.

6 Related work
Iri [18] a distributed catalog for XML data is proposed. For each XML tag,
ttiere is a responsible peer ttiat st,ores all iiniqiie XML paths lea,ding to this tag
130=;eilher wii,h I,he IDs ol'responsible peers. The qiiery execii(.ion is doiie by firsl,
extractiilg siniple pa.tlis froiri the query. Tkien ttie peers responsible for rclrvaiit
catalog parts are looked iip. Ttiese candidate peers receive and process tkie qiiery.
This system has significant limitations, as it only works with a subset of XPatki
a.nd reqiiires an extended version of Chord. Furthermore, it assunies ttiat a peer
stores corriplete XML docurnents and processes queries oii tliern locally. Herice,
pccrs storiiig populas t,ags or docurricnts tend to suffcr uridcr cxtrciricly high

loads. In oiir solutiori the responsibility for ari iridexed tag riarrie is distrit~uted
arriong several peers arid the execution is dorie tjy the query iriitiator itself.

Ariother approach ba.sed ori Chord is XP2P [19], wlierely peers store docu-
nient fragnierits (XML subtrees). Iri addition, each peer stores path.expressioris
of its fragriients and related fragments, i.e. siib antl super fragnients from the
sanle XML document. Aii extended hashing technique allows for the lookups
of bot11 single fra.gnients arid fragrrients with unfolded sub fragrnerits. As qiiery
processing reqiiires the access of peers responsible for fi-aginents, it is inefficient
for queries that require the inspectiori of rnariy fragrrierits. This approach is sirri-
ilar to the origirial P2P XRJIL Storage and, as oiir evaluatiori shows, mucti more
iriclficiciit t1ia.n üii ü.dtlitioria1 iridcx.

Skobeltsyri et al. proposed a distributed index to support a siibset of XPath
queries in structured P2P systems [20]. Their proposal works with P-Grid [8]
or simila,r tree-based DHTs. It orily supports a subset of XPath queries and the
focus of the index is different from ours: for a given query, the index returns the
addresses of peers storing XML docuinerits or docunient fragments containirig
XML paths froni the query. Our approach is iiriique iri that it optimizes the
cxrciition of'gencral XPat,h, docs not rely on a spccific DHT, 2nd most import,ant,,
it concerns tlie corriplete execution of a query aiid riot orily its disseniination to
the peers with relevarit fragments. This last poirit is importarit as the query result
depends on the relationship between different fragments of the same document.

XML indexes for unst,ructured systerns Iike [21], [22], [23], or XPeer [24]
do not guararitke that the data available in the system cari be found. Systeriis
like Squid [25] or ZNet [26] support kelwords, wildcard arid range queries hut
do riot siipport aii all-purpose XML query lariguage like XPath. P-Trees [27]
are a distributetl version of B+-Trees. They can be used t,o build a distributed
value index iri order to answer range queries qiiicltly. However, the rnanagenient
overheatl is high and hence this approach does riot scale well.

Iri [28] a DHT-based framework for tlie publishing and queryirig of XML doc-
iimeni,~ was proposed. The scenario coilsidered is dilTereilt, in 1,ha.t. peers publish
their loca,l docurnents. Queries are routed to all resporisible peers, which theri
process tlierri a.rid returri their resiilts. Tlie systeni supports rio updates, i.e. a.
dociirnerit cari orily be updated by uripublishing and tlieri re-piiblisliing it, whicli
is not feasible for large docunients.

7 Conclusions

In (.bis paper, we have present,ed a decentralixed index Tor 1.he efficie~ll~ qiiery
executiori ori XML docurnents distributed withiri a p2p system. In particular,
our deceritralized index integrates seamlessly witli P2P XML Storage, a syst,erii
that stores large XML documents iri a p2p network. IVe have shown by erriula-
tions tliat oiir prototype boosts the query performance iri ttie system by orders
of iriagiiitudt:. Our solutioii diffcrs frorri ttic rclatcd worlt iii tl1a.t it providcs a
uriique set of fcatures: its structure can be distributed iri any DHT iri cornpletely
deceritralized rrianner, it supports updates arid arbitrary changes in a document
structure witliout the need for rebuilding an iridex, arid it siipports the wliole
rarige of XPath queries.

References

1. Risse, T., KneieviC, P.: A self-organizing data store for large scale distributed
infrastructures. Iii ICDE Workshops, 2005

2. W3C: XML Path Laiigiiage (XPath) Version 1.0 (1999)
3. Ley, M.: DBLP - compiiter science bibliography. (http://dblp.iirii-trier.de/xml/)
4. Knezevic, P.: Towards a reliable peer-to-peer xrnl database. In ICDEIEDBT PIiD

Workshop, 2004
5 . W3C: Dociiment ohjpct model (DOM) level 2 core sperificnt,ian 2000)
6. Stoica I. et al.: Chord: A scalable peer-to-peer lookup service for internet applica-

tions. In SIGCOMM, 2001 149-160
7. Rowstroii, A., Driischel. P.: Pastry: Scalable, decentralized ob,ject location: aiid

routing for large-scale peer-to-peer systems. LNCS, 2001
8. Aberer, K.: P-Grid: A self-organizing access striicture for P2P inforrnation systerns.

ACM SIGMOD Record 2172, 2001, 179-185
9. Goldmaii, R., Widorn, J.: Dataguides: Enabling query formulation and optiiniza-

tion in semistructured databases. In Proc. of VLDB (1997)
10. Milo, T. , Suciu, D.: Index structiires for path expressions. Iri ICDT, 1999
11. Rizzolo, F., Mendelzon, A.O.: Indexiiig xinl data with toxin. Iii WebDB, 2001
12. Li: Q., h40on, B.: Inclexiiig and querying xrnl data for regular path expressions. In

The VLDB Journal, 2001 361-370
13. Chen, Y.; Mihaila, G., Padmanabhan, S., Bordawekar, R.: L-tree: a dynamic la-

beling structure for ordered xrnl data. In EDBT, 2004, (Springer) 31-45
14. Meier, W.: eXist: An Open source native xrnl database, Springer 2002) 7-10
15. Kiiezevic, P., Wombacher, A.: Risse, T.: Highly available DHTs: Keeping data

corisisteiicy alter updates. In AP2PC. Volume 4118 of LNCS, 2005
16. Driiscliel, P. et al.: Freepastry 1.3.2. freepastry.rzce.edu, Febriiary 2004
17. Schinidt, A., Waas, F., Kersteii, M., Carey, M.: h4anolescu, 1.: Busse, R.: Xmark:

A beiiclimark for xnil data maiiagement Iii VLDB, 2002
18. Galanis, L., Wang, Y., .Tefferv, S.R.: DeWit,t,, D..J.: Locating- c1al.a sources in large

distributed systems. In VLDB, 2003
19. Bonifati, A. , Matrangolo, U., Cuzzocrea, A., .Jain; M.: Xpath lookup qiieries in

p2p networks. ACM WIDM, 2004
20. Skobclt,syn, G., IIaiiswirt,h, ;\.I,, Abcror, K.: Efficicnt procrssing of xpath qiieries

witli stri~ctured overlay networks. In ODBASE, 2005
21. Galariis, I,., Warig, Y., Jcffcry, S.R., DcWitt, D.J.: Proccssirig queries in a large

peer-to-peer systcm. In CAiSE, 2003
22. Crespo; A., Garcia-Molina, H.: Roiiting indices for p2p systems. In ICDCS, 2002
23. Karnsteclt, h4., Hose, K.: Sattler, K.U.: Query routing aiicl processing in scherna-

based p2p systeins. Iii DEXA Workshops, 2004
24. Sartiani, C.: Manghi: P., Ghelli, G., Conforti, G.: XPeer: A self-organizing xinl

p2p database systern. Iii EDBT, 2004
25. Schmidt, C., Parashar, R4.: Enabliiig flexible queries with guarantees in p2p sys-

tems. IEEE Internet Computing 8 2004) 19-26
26. Shu, Y., Ooi: B., Tan, K., Zhou, A.: Supporting multi-dimensional range queries

in peer-to-peer systenis. Iii IEEE P2P, 2005 173-180
27. Crainiccanu, A., Linga, P., Gehrke, J., Shanrnugasundaram, J.: Querying peer-tw

peer networks using P-trees. WebDB, 2004
28. Fegaras, L.: He, W., Das, G., Leviiie, D.: Xrnl query routing in structiiretl p2p

systeins. DBISP2P; 2006

